Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (658)

Search Parameters:
Keywords = two-tank system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3863 KiB  
Article
Optimal Scheduling of Integrated Energy Systems Considering Oxy-Fuel Power Plants and Carbon Trading
by Hui Li, Xianglong Bai, Hua Li and Liang Bai
Energies 2025, 18(14), 3814; https://doi.org/10.3390/en18143814 - 17 Jul 2025
Viewed by 224
Abstract
To reduce carbon emission levels and improve the low-carbon performance and economic efficiency of Integrated Energy Systems (IESs), this paper introduces oxy-fuel combustion technology to transform traditional units and proposes a low-carbon economic dispatch method. Considering the stepwise carbon trading mechanism, it provides [...] Read more.
To reduce carbon emission levels and improve the low-carbon performance and economic efficiency of Integrated Energy Systems (IESs), this paper introduces oxy-fuel combustion technology to transform traditional units and proposes a low-carbon economic dispatch method. Considering the stepwise carbon trading mechanism, it provides new ideas for promoting energy conservation, emission reduction, and economic operation of integrated energy systems from both technical and policy perspectives. Firstly, the basic principles and energy flow characteristics of oxy-fuel combustion technology are studied, and a model including an air separation unit, an oxygen storage tank, and carbon capture equipment is constructed. Secondly, a two-stage power-to-gas (P2G) model is established to build a joint operation framework for oxy-fuel combustion and P2G. On this basis, a stepwise carbon trading mechanism is introduced to further constrain the carbon emissions of the system, and a low-carbon economic dispatch model with the objective of minimizing the total system operation cost is established. Finally, multiple scenarios are set up for simulation analysis, which verifies that the proposed low-carbon economic optimal dispatch strategy can effectively reduce the system operation cost by approximately 21.4% and improve the system’s carbon emission level with a total carbon emission reduction of about 38.3%. Meanwhile, the introduction of the stepwise carbon trading mechanism reduces the total cost by 12.3% and carbon emissions by 2010.19 tons, increasing the carbon trading revenue. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

18 pages, 1422 KiB  
Article
Potable Water Recovery for Space Habitation Systems Using Hybrid Life Support Systems: Biological Pretreatment Coupled with Reverse Osmosis for Humidity Condensate Recovery
by Sunday Adu, William Shane Walker and William Andrew Jackson
Membranes 2025, 15(7), 212; https://doi.org/10.3390/membranes15070212 - 16 Jul 2025
Viewed by 584
Abstract
The development of efficient and sustainable water recycling systems is essential for long-term human missions and the establishment of space habitats on the Moon, Mars, and beyond. Humidity condensate (HC) is a low-strength wastewater that is currently recycled on the International Space Station [...] Read more.
The development of efficient and sustainable water recycling systems is essential for long-term human missions and the establishment of space habitats on the Moon, Mars, and beyond. Humidity condensate (HC) is a low-strength wastewater that is currently recycled on the International Space Station (ISS). The main contaminants in HC are primarily low-molecular-weight organics and ammonia. This has caused operational issues due to microbial growth in the Water Process Assembly (WPA) storage tank as well as failure of downstream systems. In addition, treatment of this wastewater primarily uses adsorptive and exchange media, which must be continually resupplied and represent a significant life-cycle cost. This study demonstrates the integration of a membrane-aerated biological reactor (MABR) for pretreatment and storage of HC, followed by brackish water reverse osmosis (BWRO). Two system configurations were tested: (1) periodic MABR fluid was sent to batch RO operating at 90% water recovery with the RO concentrate sent to a separate waste tank; and (2) periodic MABR fluid was sent to batch RO operating at 90% recovery with the RO concentrate returned to the MABR (accumulating salinity in the MABR). With an external recycle tank (configuration 2), the system produced 2160 L (i.e., 1080 crew-days) of near potable water (dissolved organic carbon (DOC) < 10 mg/L, total nitrogen (TN) < 12 mg/L, total dissolved solids (TDS) < 30 mg/L) with a single membrane (weight of 260 g). When the MABR was used as the RO recycle tank (configuration 1), 1100 L of permeate could be produced on a single membrane; RO permeate quality was slightly better but generally similar to the first configuration even though no brine was wasted during the run. The results suggest that this hybrid system has the potential to significantly enhance the self-sufficiency of space habitats, supporting sustainable extraterrestrial human habitation, as well as reducing current operational problems on the ISS. These systems may also apply to extreme locations such as remote/isolated terrestrial locations, especially in arid and semi-arid regions. Full article
(This article belongs to the Special Issue Advanced Membranes and Membrane Technologies for Wastewater Treatment)
Show Figures

Figure 1

19 pages, 1841 KiB  
Article
Analysis of Liquid Xenon Tank Filling Process in Different Gravity Environments
by Zong-Yu Wu, Chao Jiang, Yong Chen, Kai Li, Yiyong Huang and Yun Cheng
Aerospace 2025, 12(7), 624; https://doi.org/10.3390/aerospace12070624 - 11 Jul 2025
Viewed by 247
Abstract
With the advancement in deep-space exploration, the injection technology using xenon as a working fluid in electric propulsion systems has emerged as a key area of interest. To delve into the gas-liquid dynamics of the liquid xenon injection process and the influence of [...] Read more.
With the advancement in deep-space exploration, the injection technology using xenon as a working fluid in electric propulsion systems has emerged as a key area of interest. To delve into the gas-liquid dynamics of the liquid xenon injection process and the influence of gravity on this mechanism, this investigation employs a VOF two-phase flow model coupled with the Lee model to elucidate the characteristics of the two-phase flow during microgravity conditions. The findings uncover that in the absence of gravitational forces, gas-liquid stratification does not occur during the filling process. Consequently, this leads to an even distribution of gas and liquid within the tank, which in turn prolongs the filling duration in orbiting scenarios. Full article
(This article belongs to the Special Issue Numerical Simulations in Electric Propulsion)
Show Figures

Figure 1

18 pages, 3631 KiB  
Article
Analysis of Implementing Hydrogen Storage for Surplus Energy from PV Systems in Polish Households
by Piotr Olczak and Dominika Matuszewska
Energies 2025, 18(14), 3674; https://doi.org/10.3390/en18143674 - 11 Jul 2025
Viewed by 290
Abstract
One of the methods for mitigating the duck curve phenomenon in photovoltaic (PV) energy systems is storing surplus energy in the form of hydrogen. However, there is a lack of studies focused on residential PV systems that assess the impact of hydrogen storage [...] Read more.
One of the methods for mitigating the duck curve phenomenon in photovoltaic (PV) energy systems is storing surplus energy in the form of hydrogen. However, there is a lack of studies focused on residential PV systems that assess the impact of hydrogen storage on the reduction of energy flow imbalance to and from the national grid. This study presents an analysis of hydrogen energy storage based on real-world data from a household PV installation. Using simulation methods grounded in actual electricity consumption and hourly PV production data, the research identified the storage requirements, including the required operating hours and the capacity of the hydrogen tank. The analysis was based on a 1 kW electrolyzer and a fuel cell, representing the smallest and most basic commercially available units, and included a sensitivity analysis. At the household level—represented by a single-family home with an annual energy consumption and PV production of approximately 4–5 MWh over a two-year period—hydrogen storage enabled the production of 49.8 kg and 44.6 kg of hydrogen in the first and second years, respectively. This corresponded to the use of 3303 kWh of PV-generated electricity and an increase in self-consumption from 30% to 64%. Hydrogen storage helped to smooth out peak energy flows from the PV system, decreasing the imbalance from 5.73 kWh to 4.42 kWh. However, while it greatly improves self-consumption, its capacity to mitigate power flow imbalance further is constrained; substantial improvements would necessitate a much larger electrolyzer proportional in size to the PV system’s output. Full article
(This article belongs to the Special Issue Challenges and Opportunities in the Global Clean Energy Transition)
Show Figures

Figure 1

26 pages, 5716 KiB  
Article
Study on Vibration Control Systems for Spherical Water Tanks Under Earthquake Loads
by Jingshun Zuo, Jingchao Guan, Wei Zhao, Keisuke Minagawa and Xilu Zhao
Vibration 2025, 8(3), 41; https://doi.org/10.3390/vibration8030041 - 11 Jul 2025
Viewed by 264
Abstract
Ensuring the safety of large spherical water storage tanks in seismic environments is critical. Therefore, this study proposed a vibration control device applicable to general spherical water tanks. By utilizing the upper interior space of a spherical tank, a novel tuned mass damper [...] Read more.
Ensuring the safety of large spherical water storage tanks in seismic environments is critical. Therefore, this study proposed a vibration control device applicable to general spherical water tanks. By utilizing the upper interior space of a spherical tank, a novel tuned mass damper (TMD) system composed of a mass block and four elastic springs was proposed. To enable practical implementation, the vibration control mechanism and tuning principle of the proposed TMD were examined. Subsequently, an experimental setup, including the spherical water tank and the TMD, was developed. Subsequently, shaking experiments were conducted using two types of spherical tanks with different leg stiffness values under various seismic waves and excitation directions. Shaking tests using actual El Centro NS and Taft NW earthquake waves demonstrated vibration reduction effects of 34.87% and 43.38%, respectively. Additional shaking experiments were conducted under challenging conditions, where the natural frequency of the spherical tank was adjusted to align closely with the dominant frequency of the earthquake waves, yielding vibration reduction effects of 18.74% and 22.42%, respectively. To investigate the influence of the excitation direction on the vibration control performance, shaking tests were conducted at 15-degree intervals. These experiments confirmed that an average vibration reduction of more than 15% was achieved, thereby verifying the validity and practicality of the proposed TMD vibration control system for spherical water tanks. Full article
Show Figures

Figure 1

13 pages, 620 KiB  
Article
Assessing Environmental Risk Posed by Pharmaceuticals and Personal Care Products in Shallow Lakes, Florida, USA—Part B
by Elzbieta Bialkowska-Jelinska, Philip van Beynen and Laurent Calcul
Environments 2025, 12(7), 231; https://doi.org/10.3390/environments12070231 - 8 Jul 2025
Viewed by 815
Abstract
The use of pharmaceuticals and personal care products (PPCPs) is steadily growing as the world’s population both increases and ages. Many of these products are released into the environment via municipal wastewater treatment plants and onsite wastewater treatment systems (septic tanks). Consequently, it [...] Read more.
The use of pharmaceuticals and personal care products (PPCPs) is steadily growing as the world’s population both increases and ages. Many of these products are released into the environment via municipal wastewater treatment plants and onsite wastewater treatment systems (septic tanks). Consequently, it is essential to ascertain whether these contaminants pose any risk to aquatic organisms who live in the water bodies receiving this waste. Risk quotients (RQ) are a commonly used method to do so. For our pilot study, we undertook such analysis for three trophic levels: algae, crustaceans, and fish from two small lakes, one fed by septic tanks and the other not. This research was conducted in 2021 from the end of the dry season and through most of the wet season in west central Florida, USA. Of the 14 PPCPs measured, six had RQs that posed a risk to all three trophic levels. This risk increased during the wet season. Both lakes, regardless of whether they directly received PPCPs from septic tanks or not, had some level of risk. However, the lake without septic tanks had a smaller risk, both in elevated RQs and the occurrence to the various species. Of the PPCPs measured, DEET, caffeine, and theophylline posed the greatest risk. Full article
(This article belongs to the Special Issue Research Progress in Groundwater Contamination and Treatment)
Show Figures

Graphical abstract

20 pages, 4574 KiB  
Article
Experimental and Numerical Flow Assessment of the Main and Additional Tract of Prototype Differential Brake Valve
by Marcin Kisiel and Dariusz Szpica
Appl. Sci. 2025, 15(13), 7483; https://doi.org/10.3390/app15137483 - 3 Jul 2025
Viewed by 218
Abstract
The throughput of the pneumatic brake valve is a key parameter in ensuring fast and safe vehicle braking. The instantaneous value of this parameter determines the short response time of the system to an operator’s force. The scientific objective of this paper was [...] Read more.
The throughput of the pneumatic brake valve is a key parameter in ensuring fast and safe vehicle braking. The instantaneous value of this parameter determines the short response time of the system to an operator’s force. The scientific objective of this paper was to determine the throughput of brake valve tracts using numerical and experimental methods. These tracts are supposed to provide the tracking and acceleration function of the valve depending on the setting of the correction system. The first numerical method was based on polyhedral meshes using computational fluid dynamics (CFD) and Ansys Fluent software. The second research method—experimental tests on the author’s bench using the reservoir method—consisted of identifying throughputs based on pressure waveforms in the measurement tanks. The determined throughputs were averaged over the range of pressure differences tested and allowed the final calculation of the mass flow rate. The analysis of the obtained results showed an average discrepancy between the two research methods for both tracts, in which the flow in both directions was considered to be 9.43%, taking into account the use of a polyhedral numerical mesh ensuring high-quality results with an optimal simulation duration. The analysis of the pressure distribution inside the working chambers showed local areas of increased pressure and negative pressure resulting from the acceleration of the flow in narrow flow channels and the occurrence of the Venturi effect. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

15 pages, 1238 KiB  
Article
Capture and Maintenance of Balistes capriscus for Aquaculture and Conservation
by Douglas da Cruz Mattos, Leonardo Demier Cardoso, André Batista de Souza, Marcelo Fanttini Polese, Tiago Queiroz de Morais, Jones Santander-Neto, Paulo Henrique Rocha Aride, Adriano Teixeira de Oliveira, Maria Aparecida da Silva and Henrique David Lavander
Fishes 2025, 10(7), 316; https://doi.org/10.3390/fishes10070316 - 2 Jul 2025
Viewed by 333
Abstract
The gray triggerfish Balistes capriscus has a wide geographical distribution and is used for commercial and recreational fishing worldwide. In this study, we aimed to provide technical knowledge for developing strategies for the sustainable production of gray triggerfish in aquaculture systems by characterizing [...] Read more.
The gray triggerfish Balistes capriscus has a wide geographical distribution and is used for commercial and recreational fishing worldwide. In this study, we aimed to provide technical knowledge for developing strategies for the sustainable production of gray triggerfish in aquaculture systems by characterizing the capture procedures for broodstock acquisition and developing a protocol for species maintenance in captivity. Broodstock maintenance data were collected over six months (April to September) each year, whereas breeder data were collected over three months each year (November to January). The number of shipments, capture, and survival of B. capriscus was 100%. The animals grew on average by 9.99 ± 0.11 cm over 9 months and increased their average weight by 1.658 ± 0.1 kg, representing a specific growth rate of 0.62% and an average daily weight gain of 6.14 g/day. The species were fed by alternating the supply of fresh food (minced fish, fish fillets, shrimp, squid, minced octopus and crab), divided into two times, 9:00 a.m. and 4:00 p.m., and offered until the animals were satiated. Regarding the structures used to maintain the breeding stock, 15,000 L tanks are recommended to keep up to 30 breeding individuals. Full article
Show Figures

Figure 1

19 pages, 1886 KiB  
Article
Uncertainty-Guided Prediction Horizon of Phase-Resolved Ocean Wave Forecasting Under Data Sparsity: Experimental and Numerical Evaluation
by Yuksel Rudy Alkarem, Kimberly Huguenard, Richard W. Kimball and Stephan T. Grilli
J. Mar. Sci. Eng. 2025, 13(7), 1250; https://doi.org/10.3390/jmse13071250 - 28 Jun 2025
Viewed by 348
Abstract
Accurate short-term wave forecasting is critical for the safe and efficient operation of marine structures that rely on real-time, phase-resolved ocean wave information for control and monitoring purposes (e.g., digital twins). These systems often depend on environmental sensors (e.g., waverider buoys, wave-sensing LIDAR). [...] Read more.
Accurate short-term wave forecasting is critical for the safe and efficient operation of marine structures that rely on real-time, phase-resolved ocean wave information for control and monitoring purposes (e.g., digital twins). These systems often depend on environmental sensors (e.g., waverider buoys, wave-sensing LIDAR). Challenges arise when upstream sensor data are missing, sparse, or phase-shifted due to drift. This study investigates the performance of two machine learning models, time-series dense encoder (TiDE) and long short-term memory (LSTM), for forecasting phase-resolved ocean surface elevations under varying degrees of data degradation. We introduce the τ-trimming algorithm, which adapts the prediction horizon based on uncertainty thresholds derived from historical forecasts. Numerical wave tank (NWT) and wave basin experiments are used to benchmark model performance under short- and long-term data masking, spatially coarse sensor grids, and upstream phase shifts. Results show under a 50% probability of upstream data loss, the τ-trimmed TiDE model achieves a 46% reduction in error at the most upstream target, compared to 22% for LSTM. Furthermore, phase misalignment in upstream data introduces a near-linear increase in forecast error. Under moderate model settings, a ±3 s misalignment increases the mean absolute error by approximately 0.5 m, while the same error is accumulated at ±4 s using the more conservative approach. These findings inform the design of resilient, uncertainty-aware wave forecasting systems suited for realistic offshore sensing environments. Full article
(This article belongs to the Special Issue Data-Driven Methods for Marine Structures)
Show Figures

Figure 1

22 pages, 2211 KiB  
Article
Seasonality of Pharmaceuticals and Personal Care Products in Shallow Lakes, Florida, USA—Part A
by Elzbieta Bialkowska-Jelinska, Philip van Beynen and Laurent Calcul
Environments 2025, 12(7), 219; https://doi.org/10.3390/environments12070219 - 27 Jun 2025
Cited by 1 | Viewed by 955
Abstract
Shallow lakes are highly vulnerable to pollution due to their small water volume. Those that receive effluent from the drainfields of onsite wastewater treatment systems (septic tanks) may contain pharmaceuticals and personal care products (PPCPs) that escaped removal during treatment. This study examined [...] Read more.
Shallow lakes are highly vulnerable to pollution due to their small water volume. Those that receive effluent from the drainfields of onsite wastewater treatment systems (septic tanks) may contain pharmaceuticals and personal care products (PPCPs) that escaped removal during treatment. This study examined the effects of seasonal rainfall variability on the assemblages and concentrations of fourteen PPCPs in two shallow lakes in West–Central Florida, USA: one surrounded by residents equipped with septic tanks and the other located within a nature preserve. Water samples were collected weekly during an 18-week interval from April to August 2021. Liquid chromatography–mass spectrometry analyses revealed the omnipresence of five PPCPs: theophylline, caffeine, cotinine, DEET, and testosterone, although acetaminophen, ibuprofen, and sulfamethoxazole were also common. Of all the PPCPs detected, theophylline, DEET, and acetaminophen concentrations were higher during the wet season in the septic tank-influenced lake, while caffeine, cotinine, and testosterone concentrations decreased. In the lake located in the nature preserve, theophylline, caffeine, and acetaminophen levels increased in the wet season. In contrast, cotinine, DEET, and testosterone levels decreased. Overall, more compounds were detected during the wet season, with highly hydrophobic PPCPs (fluoxetine, atorvastatin, and octocrylene) only present during this period. Full article
(This article belongs to the Special Issue Research Progress in Groundwater Contamination and Treatment)
Show Figures

Figure 1

28 pages, 2554 KiB  
Article
Design, Calibration, and Performance Evaluation of a High-Fidelity Spraying Rainfall Simulator for Soil Erosion Research
by Vukašin Rončević, Nikola Živanović, Lazar Radulović, Ratko Ristić, Seyed Hamidreza Sadeghi, María Fernández-Raga and Sergio A. Prats
Water 2025, 17(13), 1863; https://doi.org/10.3390/w17131863 - 23 Jun 2025
Viewed by 387
Abstract
Rainfall simulators are essential tools in soil research, providing a controlled and repeatable approach to studying rainfall-induced erosion. However, the development of high-fidelity rainfall simulators remains a challenge. This study aimed to design, construct, and calibrate a spraying-type rainfall simulator and validate assessment [...] Read more.
Rainfall simulators are essential tools in soil research, providing a controlled and repeatable approach to studying rainfall-induced erosion. However, the development of high-fidelity rainfall simulators remains a challenge. This study aimed to design, construct, and calibrate a spraying-type rainfall simulator and validate assessment criteria optimized for soil erosion research. The simulator’s design is based on a modified simulator model previously described in the literature and following the defined criteria. The calibration of the simulator was conducted in two phases, on slopes of 0° and 15°, measuring rainfall intensity, drop size, and its spatial distribution, and calculating drop falling velocity, kinetic energy, and momentum. The simulator consists of structural support, a water tank, a water-moving mechanism, a flow regulation system, and sprayers, contributing to its simplicity, cost-effectiveness, durability, rigidity, and stability, ensuring smooth simulator operation. The calibration of the rainfall simulator demonstrated that rainfall intensity increased from 1.4 mm·min−1 to 4.6 mm·min−1 with higher pressure in the hydraulic system (1.0 to 2.0 bar), while spatial uniformity remained within 79–91% across different nozzle configurations. The selected Rain Bird HE-VAN series nozzles proved highly effective in simulating rainfall, achieving drop diameters ranging from 0.8 mm to 1.9 mm, depending on pressure and nozzle type. The rainfall simulator successfully replicates natural rainfall characteristics, offering a controlled environment for investigating soil erosion processes. Drop velocity values varied between 2.5 and 2.9 m·s−1, influencing kinetic energy, which ranged from 0.6 J·min−1·m−2 to 2.9 J·min−1·m−2, and impact momentum, which was measured between 0.005 N·s and 0.032 N·s. The simulator design suggests that it is suitable for future applications in both field and laboratory soil erosion research, ensuring repeatability and adaptability for various experimental conditions. Calibration results emphasized the significance of nozzle selection and water pressure adjustments. These factors significantly affect rainfall intensity, drop size, kinetic energy, and momentum, parameters that are critical for accurate erosion modeling. Full article
Show Figures

Figure 1

34 pages, 7582 KiB  
Article
Proposed SmartBarrel System for Monitoring and Assessment of Wine Fermentation Processes Using IoT Nose and Tongue Devices
by Sotirios Kontogiannis, Meropi Tsoumani, George Kokkonis, Christos Pikridas and Yorgos Kotseridis
Sensors 2025, 25(13), 3877; https://doi.org/10.3390/s25133877 - 21 Jun 2025
Viewed by 1332
Abstract
This paper introduces SmartBarrel, an innovative IoT-based sensory system that monitors and forecasts wine fermentation processes. At the core of SmartBarrel are two compact, attachable devices—the probing nose (E-nose) and the probing tongue (E-tongue), which mount directly onto stainless steel wine tanks. These [...] Read more.
This paper introduces SmartBarrel, an innovative IoT-based sensory system that monitors and forecasts wine fermentation processes. At the core of SmartBarrel are two compact, attachable devices—the probing nose (E-nose) and the probing tongue (E-tongue), which mount directly onto stainless steel wine tanks. These devices periodically measure key fermentation parameters: the nose monitors gas emissions, while the tongue captures acidity, residual sugar, and color changes. Both utilize low-cost, low-power sensors validated through small-scale fermentation experiments. Beyond the sensory hardware, SmartBarrel includes a robust cloud infrastructure built on open-source Industry 4.0 tools. The system leverages the ThingsBoard platform, supported by a NoSQL Cassandra database, to provide real-time data storage, visualization, and mobile application access. The system also supports adaptive breakpoint alerts and real-time adjustment to the nonlinear dynamics of wine fermentation. The authors developed a novel deep learning model called V-LSTM (Variable-length Long Short-Term Memory) to introduce intelligence to enable predictive analytics. This auto-calibrating architecture supports variable layer depths and cell configurations, enabling accurate forecasting of fermentation metrics. Moreover, the system includes two fuzzy logic modules: a device-level fuzzy controller to estimate alcohol content based on sensor data and a fuzzy encoder that synthetically generates fermentation profiles using a limited set of experimental curves. SmartBarrel experimental results validate the SmartBarrel’s ability to monitor fermentation parameters. Additionally, the implemented models show that the V-LSTM model outperforms existing neural network classifiers and regression models, reducing RMSE loss by at least 45%. Furthermore, the fuzzy alcohol predictor achieved a coefficient of determination (R2) of 0.87, enabling reliable alcohol content estimation without direct alcohol sensing. Full article
(This article belongs to the Special Issue Applications of Sensors Based on Embedded Systems)
Show Figures

Figure 1

24 pages, 8252 KiB  
Article
A Constant-Pressure Air Storage Operation Strategy for an Isothermal Compressed Air Energy Storage System Based on a Linear-Drive Liquid Piston
by Yan Cui, Tong Jiang and Zhengda Chen
Energies 2025, 18(12), 3178; https://doi.org/10.3390/en18123178 - 17 Jun 2025
Viewed by 373
Abstract
Compressed air energy storage (CAES) systems represent a critical technological solution for addressing power grid load fluctuations by generating electrical power during peak load periods and storing energy during low load periods. As a prominent branch of CAES, isothermal compressed air energy storage [...] Read more.
Compressed air energy storage (CAES) systems represent a critical technological solution for addressing power grid load fluctuations by generating electrical power during peak load periods and storing energy during low load periods. As a prominent branch of CAES, isothermal compressed air energy storage (ICAES) systems have attracted significant research attention due to their elimination of requirements for high-temperature storage chambers and high-temperature compressors. Implementing constant-pressure operation in air storage reservoirs not only enhances energy storage density but also improves system safety. However, existing constant-pressure air storage methodologies necessitate supplementary infrastructure, such as high-pressure water reservoirs or elevated hydraulic columns, thereby escalating capital expenditures. This study introduces a novel constant-pressure air storage strategy for ICAES systems utilizing a linear-driven liquid piston mechanism. The proposed approach achieves constant-pressure air storage through the dual-mode operation strategies of buffer tanks (CBA and CBP modes) and hydraulic cylinders (CPP and CPW modes), eliminating the requirement for an auxiliary high-pressure apparatus or extensive civil engineering modifications. A prototype two-stage constant-pressure ICAES architecture was proposed, integrating low-pressure equipment with liquid pistons and providing detailed operational processes for preconditioning, energy storage, and power generation. A comprehensive mathematical model of the system is developed and validated through process simulation and performance characterization of a 100 kWh capacity system. It demonstrates that under operational conditions of 1 MPa of low pressure and 5 MPa of storage pressure, the system achieves an efficiency of 74.0% when the low-pressure equipment and liquid piston exhibit efficiencies of 85% and 90%, respectively. Furthermore, parametric analysis reveals a negative correlation between system efficiency and low-pressure parameters. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

16 pages, 2522 KiB  
Article
Assessment of the Performance of Ozone Nanobubble Technology to Enhance Water Treatment Performance of a Constructed Floating Wetland
by Soheil Aber, Christopher W. K. Chow, Ke Xing and Raufdeen Rameezdeen
Environments 2025, 12(6), 202; https://doi.org/10.3390/environments12060202 - 14 Jun 2025
Viewed by 904
Abstract
Small-scale decentralised wastewater treatment facilities are essential to provide services to remote regional communities. This study presents an innovative and sustainable approach to wastewater treatment by integrating ozone nanobubble technology (ONBT) with constructed floating wetlands (CFWs). Effluent from a community wastewater treatment plant [...] Read more.
Small-scale decentralised wastewater treatment facilities are essential to provide services to remote regional communities. This study presents an innovative and sustainable approach to wastewater treatment by integrating ozone nanobubble technology (ONBT) with constructed floating wetlands (CFWs). Effluent from a community wastewater treatment plant was used in two sets of twelve 170-litre tanks, each with different ONBT–CFW treatment combinations, and monitored for key water quality parameters over an eleven-week study. The experiment results indicated that the combined ONBT–CFW system, particularly with higher ozone doses, achieved substantial reductions in total nitrogen (>70%), BOD (>43%), and E. coli (100%). ONBT alone showed limited effectiveness on nutrient removal, while CFWs performed well in reducing nutrients and controlling E. coli. However, phosphorus removal was modest (~12%), suggesting the need for complementary strategies. Overall, the hybrid ONBT–CFW system demonstrated superior performance compared to individual treatments, offering strong potential for improving wastewater quality and treatment. Full article
(This article belongs to the Special Issue Advanced Technologies of Water and Wastewater Treatment (2nd Edition))
Show Figures

Figure 1

13 pages, 1504 KiB  
Article
Prototype Mobile Vision System for Automatic Length Estimation of Olive Flounder (Paralichthys olivaceus) in Indoor Aquaculture
by Inyeong Kwon, Hang Thi Phuong Nguyen, Paththige Waruni Prasadini Fernando, Hieyong Jeong, Sungju Jung and Taeho Kim
J. Mar. Sci. Eng. 2025, 13(6), 1167; https://doi.org/10.3390/jmse13061167 - 13 Jun 2025
Viewed by 365
Abstract
Real-time estimation of fish growth offers multiple benefits in indoor aquaculture, including reduced labor, lower operational costs, improved feeding efficiency, and optimized harvesting schedules. This study presents a low-cost, vision-based method for estimating the body length and weight of olive flounder (Paralichthys [...] Read more.
Real-time estimation of fish growth offers multiple benefits in indoor aquaculture, including reduced labor, lower operational costs, improved feeding efficiency, and optimized harvesting schedules. This study presents a low-cost, vision-based method for estimating the body length and weight of olive flounder (Paralichthys olivaceus) in tank environments. A 5 × 5 cm reference grid is placed on the tank bottom, and images are captured using two fixed-position RGB smartphone cameras. Pixel measurements from the images are converted into millimeters using a calibrated pixel-to-length relationship. The system calculates fish length by detecting contour extremities and applying Lagrange interpolation. Based on the estimated length, body weight is derived using a power regression model. Accuracy was validated using both manual length measurements and Bland–Altman analysis, which indicated a mean bias of −0.007 cm and 95% limits of agreement from −0.475 to +0.462 cm, confirming consistent agreement between methods. The mean absolute error (MAE) and mean squared error (MSE) were 0.11 cm and 0.025 cm2, respectively. While optimized for benthic species such as olive flounder, this system is not suitable for free-swimming species. Overall, it provides a practical and scalable approach for non-invasive monitoring of fish growth in commercial indoor aquaculture. Full article
(This article belongs to the Special Issue New Challenges in Marine Aquaculture Research—2nd Edition)
Show Figures

Figure 1

Back to TopTop