Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = twisted bilayer graphene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1309 KB  
Article
Thermal Conductivity of Graphene Moiré Superlattices at Small Twist Angles: An Approach-to-Equilibrium Molecular Dynamics and Boltzmann Transport Study
by Lorenzo Manunza, Riccardo Dettori, Antonio Cappai and Claudio Melis
C 2025, 11(3), 46; https://doi.org/10.3390/c11030046 - 30 Jun 2025
Cited by 1 | Viewed by 1643
Abstract
We investigate the thermal conductivity of graphene Moiré superlattices formed by twisting bilayer graphene (TBG) at small angles, employing approach-to-equilibrium molecular dynamics and lattice dynamics calculations based on the Boltzmann Transport Equation. Our simulations reveal a non-monotonic dependence of the thermal conductivity on [...] Read more.
We investigate the thermal conductivity of graphene Moiré superlattices formed by twisting bilayer graphene (TBG) at small angles, employing approach-to-equilibrium molecular dynamics and lattice dynamics calculations based on the Boltzmann Transport Equation. Our simulations reveal a non-monotonic dependence of the thermal conductivity on the twisting angle, with a local minimum near the first magic angle (θ1.1°). This behavior is attributed to the evolution of local stacking configurations—AA, AB, and saddle-point (SP)—across the Moiré superlattice, which strongly affect phonon transport. A detailed analysis of phonon mean free paths (MFP) and mode-resolved thermal conductivity shows that AA stacking suppresses thermal transport, while AB and SP stackings exhibit enhanced conductivity owing to more efficient low-frequency phonon transport. Furthermore, we establish a direct correlation between the thermal conductivity of twisted structures and the relative abundance of stacking domains within the Moiré supercell. Our results demonstrate that even very small changes in twisting angle (<2°) can lead to thermal conductivity variations of over 30%, emphasizing the high tunability of thermal transport in TBG. Full article
(This article belongs to the Special Issue 10th Anniversary of C — Journal of Carbon Research)
Show Figures

Figure 1

8 pages, 4688 KB  
Article
Grain Boundary Guided Folding of Graphene for Twisted Bilayer Graphene
by Feiru Feng, Kun Zhou, Kang Zhang, Liya Wang, Ruijie Wang, Jun Xia and Chun Tang
Nanomaterials 2025, 15(7), 482; https://doi.org/10.3390/nano15070482 - 24 Mar 2025
Cited by 1 | Viewed by 728
Abstract
Bilayer graphene exhibits intriguing physical and mechanical properties that are suitable for advanced electronic device applications. By introducing a new degree of freedom through interlayer twisting, exotic phenomena such as superconductivity can arise. However, in practical experiments, manual manipulation is often required to [...] Read more.
Bilayer graphene exhibits intriguing physical and mechanical properties that are suitable for advanced electronic device applications. By introducing a new degree of freedom through interlayer twisting, exotic phenomena such as superconductivity can arise. However, in practical experiments, manual manipulation is often required to fabricate such a configuration and therefore, scaled production of magic angle bilayer graphene is challenging. In this work, we propose utilizing the grain boundaries and accompanying localized out-of-plane deformation in graphene to facilitate twisted bi-layer graphene formation. Based on molecular dynamics simulations, the structure folding process along the boundary line is examined where a lower energetic cost is found. Once stabilized, the folded bilayer structure shows twist angles that differ visibly from the conventional AA or AB stacking modes and can achieve twist angles close to the 1.1° magic angle. This observation suggests a potential novel strategy for synthesizing stable twisted bilayer graphene or other two dimensional van der Waals heterostructures with greater efficiency. Full article
Show Figures

Figure 1

12 pages, 16463 KB  
Article
Two-Photon Absorption in Twisted Graphene/Hexagonal Boron Nitride Heterojunction Tuned by Vertical Electric Field
by Mengping Chen, Yingliang Chen, Guang Yang, Qiwen Wang and Xiaobo Feng
Nanomaterials 2025, 15(5), 345; https://doi.org/10.3390/nano15050345 - 23 Feb 2025
Cited by 1 | Viewed by 1406
Abstract
We theoretically investigate the comprehensive modulation effect of interlayer twisting and external electric field to the two-photon absorption (TPA) in twisted graphene/hexagonal boron nitride (tG/hBN) heterojunction with small twist angles (2° < θ < 10°) starting from an effective continuum model. It is [...] Read more.
We theoretically investigate the comprehensive modulation effect of interlayer twisting and external electric field to the two-photon absorption (TPA) in twisted graphene/hexagonal boron nitride (tG/hBN) heterojunction with small twist angles (2° < θ < 10°) starting from an effective continuum model. It is found that the TPA of tG/hBN is extended to the visible light band from infrared light band of that in twisted bilayer graphene (tBLG) due to the increase in energy band gap caused by twisting and the potential energy of the boron nitride atomic layer. And the TPA coefficient is enhanced several times via an external electric field, which increases the density of states, leading to an increase transition probability for two-photon absorption. Full article
Show Figures

Figure 1

9 pages, 1182 KB  
Article
The Cooper-Pair Distribution Function of Untwisted-Misaligned Bilayer Graphene
by Jose Alfredo Camargo-Martínez, Guillermo Iván González-Pedreros and Fredy Mesa
Int. J. Mol. Sci. 2024, 25(23), 12549; https://doi.org/10.3390/ijms252312549 - 22 Nov 2024
Viewed by 1261
Abstract
The Cooper-pair distribution function Dcp(ω,Tc) of Untwisted-Misaligned Bilayer Graphene (UMBLG) in the presence of an external electric field is calculated and analysed within the framework of first-principle calculations. A bilayer graphene structure is proposed using [...] Read more.
The Cooper-pair distribution function Dcp(ω,Tc) of Untwisted-Misaligned Bilayer Graphene (UMBLG) in the presence of an external electric field is calculated and analysed within the framework of first-principle calculations. A bilayer graphene structure is proposed using a structural geometric approximation, enabling the simulation of a structure rotated at a small angle, avoiding a supercell calculation. The Dcp(ω,Tc) function of UMBLG indicates the presence of the superconducting state for specific structural configurations, which is consistent with the superconductivity in Twisted Bilayer Graphene (TBLG) reported in the literature. The Dcp(ω,Tc) function of UMBLG suggests that Cooper-pairs are possible in the low-frequency vibration region. Furthermore, the structural geometric approximation allowed the evaluation of the effect of the electric field on the superconducting state of UMBLG and its superconducting critical temperature through the Ncp parameter. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

8 pages, 2670 KB  
Article
Co-Dominant Piezoelectric and Flexoelectric Effects in Twisted Double Bilayer Graphene
by Yuanhao Wei, Yuhao Li, Hanhao Zhang, Shengsheng Lin, Takashi Taniguchi, Kenji Watanabe, Cun-Fa Gao and Yan Shi
Symmetry 2024, 16(11), 1524; https://doi.org/10.3390/sym16111524 - 14 Nov 2024
Cited by 1 | Viewed by 1348
Abstract
Controlling the balance between piezoelectric and flexoelectric effects is crucial for tailoring the electromechanical responses of a material. In twisted graphene, it is found that the electromechanical response near the domain walls (DWs) is dominated by either the flexoelectric effect as in twisted [...] Read more.
Controlling the balance between piezoelectric and flexoelectric effects is crucial for tailoring the electromechanical responses of a material. In twisted graphene, it is found that the electromechanical response near the domain walls (DWs) is dominated by either the flexoelectric effect as in twisted bilayer graphene (tBLG) or the piezoelectric effect as in twisted monolayer–bilayer graphene (tMBG). The codominance of both effects in a single system is rare. Here, utilizing lateral piezoresponse force microscopy (LPFM), we show that piezoelectric and flexoelectric effects can coexist and are equally important in twisted double bilayer graphene (tDBG), termed as the piezo-flexoelectric effect. Unlike tBLG and tMBG, distinctive two-step LPFM spatial profiles are captured across the moiré DWs of tDBG. By decomposing the LPFM signal into axisymmetric and antisymmetric components, we find that the angular dependence of both components satisfies sinusoidal relations. Quantitatively, the in-plane piezoelectric coefficient of DWs in tDBG is determined to be 0.15 pm/V by dual AC resonance tracking (DART) LPFM measurement. The conclusion is further supported by continuum mechanics simulations. Our results demonstrate that the stacking configuration serves as a powerful tuning knob for modulating the electromechanical responses of twisted van der Waals materials. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

9 pages, 2754 KB  
Communication
Circular Dichroism Reflectance Anisotropy of Chiral Atomically Thin Films
by Ilaria Tomei, Filippo Pierucci, Beatrice Bonanni, Anna Sgarlata, Massimo Fanfoni, Seong-Jun Yang, Cheol-Joo Kim and Claudio Goletti
Chemosensors 2024, 12(9), 170; https://doi.org/10.3390/chemosensors12090170 - 24 Aug 2024
Viewed by 1900
Abstract
Recently, a technical modification of a Reflectance Anisotropy Spectroscopy (RAS) spectrometer has been proposed to investigate the circular dichroism (CD) of samples instead of the normally studied linear dichroism. CD-RAS measures the anisotropy of the optical properties of a sample under right-handed and [...] Read more.
Recently, a technical modification of a Reflectance Anisotropy Spectroscopy (RAS) spectrometer has been proposed to investigate the circular dichroism (CD) of samples instead of the normally studied linear dichroism. CD-RAS measures the anisotropy of the optical properties of a sample under right-handed and left-handed circularly polarized light. Here, we present the application of CD-RAS to measure the circular dichroism of a twisted bilayer of graphene, purposely prepared as a possible substrate for the adsorption of thin molecular layers, in air, in liquid or in a vacuum. This result demonstrates the performance of the apparatus and shows interesting perspectives for the investigation of chiral organic assemblies deposited in solid film. Full article
Show Figures

Figure 1

18 pages, 4868 KB  
Article
Unraveling the Interactions between Lithium and Twisted Graphene
by Maximo Ramírez, Giorgio De Luca and Lorenzo Caputi
Materials 2024, 17(9), 1941; https://doi.org/10.3390/ma17091941 - 23 Apr 2024
Viewed by 1454
Abstract
Graphene is undoubtedly the carbon allotrope that has attracted the attention of a myriad of researchers in the last decades more than any other. The interaction of external or intercalated Li and Li+ with graphene layers has been the subject of particular [...] Read more.
Graphene is undoubtedly the carbon allotrope that has attracted the attention of a myriad of researchers in the last decades more than any other. The interaction of external or intercalated Li and Li+ with graphene layers has been the subject of particular attention for its importance in the applications of graphene layers in Lithium Batteries (LiBs). It is well known that lithium atoms and Li+ can be found inside and/or outside the double layer of graphene, and the graphene layers are often twisted around its parallel plane to obtain twisted graphene with tuneable properties. Thus, in this research, the interactions between Li and Li+ with bilayer graphene and twisted bilayer graphene were investigated by a first-principles density functional theory method, considering the lithium atom and the cation at different symmetry positions and with two different adsorption configurations. Binding energies and equilibrium interlayer distances of filled graphene layers were obtained from the computed potential energy profiles. This work shows that the twisting can regulate the interaction of bilayer graphene with Li and Li+. The binding energies of Li+ systematically increase from bilayer graphene to twisted graphene regardless of twisted angles, while for lithium atoms, the binding energies decrease or remain substantially unchanged depending on the twist angles. This suggests a higher adsorption capacity of twisted graphene towards Li+, which is important for designing twisted graphene-based material for LiB anode coating. Furthermore, when the Li or Li+ is intercalated between two graphene layers, the equilibrium interlayer distances in the twisted layers increase compared to the unrotated bilayer, and the relaxation is more significant for Li+ with respect to Li. This suggests that the twisted graphene can better accommodate the cation in agreement with the above result. The outcomes of this research pave the way for the study of the selective properties of twisted graphene. Full article
Show Figures

Figure 1

12 pages, 2762 KB  
Article
Light Confinement in Twisted Single-Layer 2D+ Moiré Photonic Crystals and Bilayer Moiré Photonic Crystals
by Steve Kamau, Noah Hurley, Anupama B. Kaul, Jingbiao Cui and Yuankun Lin
Photonics 2024, 11(1), 13; https://doi.org/10.3390/photonics11010013 - 25 Dec 2023
Cited by 2 | Viewed by 2660
Abstract
Twisted photonic crystals are photonic analogs of twisted monolayer materials such as graphene and their optical property studies are still in their infancy. This paper reports optical properties of twisted single-layer 2D+ moiré photonic crystals where there is a weak modulation in z [...] Read more.
Twisted photonic crystals are photonic analogs of twisted monolayer materials such as graphene and their optical property studies are still in their infancy. This paper reports optical properties of twisted single-layer 2D+ moiré photonic crystals where there is a weak modulation in z direction, and bilayer moiré-overlapping-moiré photonic crystals. In weak-coupling bilayer moiré-overlapping-moiré photonic crystals, the light source is less localized with an increasing twist angle, similar to the results reported by the Harvard research group in References 37 and 38 on twisted bilayer photonic crystals, although there is a gradient pattern in the former case. In a strong-coupling case, however, the light source is tightly localized in AA-stacked region in bilayer PhCs with a large twist angle. For single-layer 2D+ moiré photonic crystals, the light source in Ex polarization can be localized and forms resonance modes when the single-layer 2D+ moiré photonic crystal is integrated on a glass substrate. This study leads to a potential application of 2D+ moiré photonic crystal in future on-chip optoelectronic integration. Full article
(This article belongs to the Special Issue Recent Advances in Micro-Nano Optics)
Show Figures

Figure 1

12 pages, 3695 KB  
Article
Spin Polarization and Flat Bands in Eu-Doped Nanoporous and Twisted Bilayer Graphenes
by Iu. A. Melchakova, G. T. Oyeniyi, S. P. Polyutov and P. V. Avramov
Micromachines 2023, 14(10), 1889; https://doi.org/10.3390/mi14101889 - 30 Sep 2023
Cited by 1 | Viewed by 1878
Abstract
Advanced two-dimensional spin-polarized heterostructures based on twisted (TBG) and nanoporous (NPBG) bilayer graphenes doped with Eu ions were theoretically proposed and studied using Periodic Boundary Conditions Density Functional theory electronic structure calculations. The significant polarization of the electronic states at the Fermi level [...] Read more.
Advanced two-dimensional spin-polarized heterostructures based on twisted (TBG) and nanoporous (NPBG) bilayer graphenes doped with Eu ions were theoretically proposed and studied using Periodic Boundary Conditions Density Functional theory electronic structure calculations. The significant polarization of the electronic states at the Fermi level was discovered for both Eu/NPBG(AA) and Eu/TBG lattices. Eu ions’ chemi- and physisorption to both graphenes may lead to structural deformations, drop of symmetry of low-dimensional lattices, interlayer fusion, and mutual slides of TBG graphene fragments. The frontier bands in the valence region at the vicinity of the Fermi level of both spin-polarized 2D Eu/NPBG(AA) and Eu/TBG lattices clearly demonstrate flat dispersion laws caused by localized electronic states formed by TBG Moiré patterns, which could lead to strong electron correlations and the formation of exotic quantum phases. Full article
(This article belongs to the Special Issue Feature Papers of Micromachines in 'Materials and Processing' 2023)
Show Figures

Figure 1

11 pages, 5817 KB  
Article
Holographic Fabrication of 3D Moiré Photonic Crystals Using Circularly Polarized Laser Beams and a Spatial Light Modulator
by Noah Hurley, Steve Kamau, Jingbiao Cui and Yuankun Lin
Micromachines 2023, 14(6), 1217; https://doi.org/10.3390/mi14061217 - 9 Jun 2023
Cited by 6 | Viewed by 2843
Abstract
A moiré photonic crystal is an optical analog of twisted graphene. A 3D moiré photonic crystal is a new nano-/microstructure that is distinguished from bilayer twisted photonic crystals. Holographic fabrication of a 3D moiré photonic crystal is very difficult due to the coexistence [...] Read more.
A moiré photonic crystal is an optical analog of twisted graphene. A 3D moiré photonic crystal is a new nano-/microstructure that is distinguished from bilayer twisted photonic crystals. Holographic fabrication of a 3D moiré photonic crystal is very difficult due to the coexistence of the bright and dark regions, where the exposure threshold is suitable for one region but not for the other. In this paper, we study the holographic fabrication of 3D moiré photonic crystals using an integrated system of a single reflective optical element (ROE) and a spatial light modulator (SLM) where nine beams (four inner beams + four outer beams + central beam) are overlapped. By modifying the phase and amplitude of the interfering beams, the interference patterns of 3D moiré photonic crystals are systemically simulated and compared with the holographic structures to gain a comprehensive understanding of SLM-based holographic fabrication. We report the holographic fabrication of phase and beam intensity ratio-dependent 3D moiré photonic crystals and their structural characterization. Superlattices modulated in the z-direction of 3D moiré photonic crystals have been discovered. This comprehensive study provides guidance for future pixel-by-pixel phase engineering in SLM for complex holographic structures. Full article
(This article belongs to the Special Issue Photon-Driven Technologies: Exploring the Latest Advancements)
Show Figures

Figure 1

11 pages, 2874 KB  
Communication
Valley-Selective Polarization in Twisted Bilayer Graphene Controlled by a Counter-Rotating Bicircular Laser Field
by Jiayin Chen, Candong Liu and Ruxin Li
Photonics 2023, 10(5), 516; https://doi.org/10.3390/photonics10050516 - 1 May 2023
Cited by 8 | Viewed by 3106
Abstract
The electron valley pseudospin in two-dimensional hexagonal materials is a crucial degree of freedom for achieving their potential application in valleytronic devices. Here, bringing valleytronics to layered van der Waals materials, we theoretically investigate lightwave-controlled valley-selective excitation in twisted bilayer graphene (tBLG) with [...] Read more.
The electron valley pseudospin in two-dimensional hexagonal materials is a crucial degree of freedom for achieving their potential application in valleytronic devices. Here, bringing valleytronics to layered van der Waals materials, we theoretically investigate lightwave-controlled valley-selective excitation in twisted bilayer graphene (tBLG) with a large twist angle. It is demonstrated that the counter-rotating bicircular light field, consisting of a fundamental circularly-polarized pulse and its counter-rotating second harmonic, can manipulate the sub-cycle valley transport dynamics by controlling the relative phase between two colors. In comparison with monolayer graphene, the unique interlayer coupling of tBLG renders its valley selectivity highly sensitive to duration, leading to a noticeable valley asymmetry that is excited by single-cycle pulses. We also describe the distinct signatures of the valley pseudospin change in terms of observing the valley-selective circularly-polarized high-harmonic generation. The results show that the valley pseudospin dynamics can still leave visible fingerprints in the modulation of harmonic signals with a two-color relative phase. This work could assist experimental researchers in selecting the appropriate protocols and parameters to obtain ideal control and characterization of valley polarization in tBLG. Full article
(This article belongs to the Special Issue Light Control and Particle Manipulation)
Show Figures

Figure 1

8 pages, 2186 KB  
Communication
Ferroelectric Polarization in an h-BN-Encapsulated 30°-Twisted Bilayer–Graphene Heterostructure
by Lingling Ren and Baojuan Dong
Magnetochemistry 2023, 9(5), 116; https://doi.org/10.3390/magnetochemistry9050116 - 26 Apr 2023
Cited by 2 | Viewed by 3848
Abstract
Recently, the emergent two-dimensional (2D) ferroelectric materials have provided new possibilities for the miniaturization of ferroelectric systems and the integration of novel 2D nano-electronic devices. In addition to the intrinsic ferroelectrics exfoliated from bulk, 2D heterostructures hybridized from electrically non-polarized van der Waals [...] Read more.
Recently, the emergent two-dimensional (2D) ferroelectric materials have provided new possibilities for the miniaturization of ferroelectric systems and the integration of novel 2D nano-electronic devices. In addition to the intrinsic ferroelectrics exfoliated from bulk, 2D heterostructures hybridized from electrically non-polarized van der Waals (vdW) materials have also been proven to be a promising platform for the construction of ferroelectricity. Here, we report 30° twisted bilayer–graphene (TBLG) incommensurate moiré superlattice encapsulated by hexagonal boron nitride (h-BN), in which robust hysteretic resistance was detected at the top interface between h-BN and the TBLG from room temperature down to 40 mK. The hysteretic phenomenon can be understood by the extra carrier induced by the interfacial 2D ferroelectric polarization, which is estimated to be around 0.7 pC/m. Our work of interfacial ferroelectric heterostructure achieved by a TBLG/h-BN hybrid system expands the 2D ferroelectric families and opens more possibilities for future coupling the ferroelectricity with rich electronic and optical properties in vdW twistronic devices. Full article
(This article belongs to the Special Issue Advances in Magnetic Two Dimensional Materials)
Show Figures

Figure 1

8 pages, 19202 KB  
Communication
Vertical Stress Induced Anomalous Spectral Shift of 13.17° Moiré Superlattice in Twist Bilayer Graphene
by Wenjing Miao, Hao Sheng and Jingang Wang
Molecules 2023, 28(7), 3015; https://doi.org/10.3390/molecules28073015 - 28 Mar 2023
Cited by 5 | Viewed by 2307
Abstract
The electronic states of the twist bilayer graphene (TBG) moiré superlattice are usually regulated by the rotation angle, applied electric field, applied magnetic field, carrier concentration and applied stress, and thus exhibit novel physical properties. Squeezing, that is, applying vertical compressive stress to [...] Read more.
The electronic states of the twist bilayer graphene (TBG) moiré superlattice are usually regulated by the rotation angle, applied electric field, applied magnetic field, carrier concentration and applied stress, and thus exhibit novel physical properties. Squeezing, that is, applying vertical compressive stress to the graphene layers, has profound significance in regulating the photoelectric properties of the moiré superlattice and constructing optical nanodevices. This paper presents the photoelectric properties of a TBG moiré superlattice with a twist angle of 13.17° and tunability under vertical stress. Interlayer distance decreases nonlinearly with compressive stress from 0 to 10 GPa, giving rise to weakened interlayer coupling compared to a Bernal-stacked graphene bilayer and an enhanced repulsive effect between the layers. The calculated Bloch wave functions show a strong dependence on stress. With the increase in stress, the band gaps of the system present a nonlinear increase, which induces and enhances the interlayer charge transfer and leads to the redshift of the absorption spectrum of the moiré superlattice system. By analyzing the differences in the Bloch wave function and charge density differences, we explain the nature of the physical mechanism of photoelectric property change in a stress-regulated twist superlattice system. This study provides a theoretical basis for the identification of piezoelectric properties and the stress regulation of photoelectric devices based on TBG, and also provides a feasible method for regulating the performance of TBG. Full article
(This article belongs to the Special Issue Graphene-Based Nanocomposites for Advanced Applications)
Show Figures

Figure 1

17 pages, 3867 KB  
Article
Graphene Twistronics: Tuning the Absorption Spectrum and Achieving Metamaterial Properties
by Ammar Armghan, Meshari Alsharari, Khaled Aliqab, Osamah Alsalman, Juveriya Parmar and Shobhit K. Patel
Mathematics 2023, 11(7), 1579; https://doi.org/10.3390/math11071579 - 24 Mar 2023
Cited by 10 | Viewed by 2699
Abstract
Graphene twistronics using multilayer graphene is presented in such a way that it provides a metamaterial effect. This manuscript also analyzes the prediction of behavior using machine learning. The metamaterial effect is achieved by twisting the graphene layers. Graphene twistronics is a new [...] Read more.
Graphene twistronics using multilayer graphene is presented in such a way that it provides a metamaterial effect. This manuscript also analyzes the prediction of behavior using machine learning. The metamaterial effect is achieved by twisting the graphene layers. Graphene twistronics is a new concept for changing the electrical and optical properties of bilayer graphene by applying a small angle twist between the layers. The angle twists of 5°, 10°, and 15° are analyzed for the proposed graphene twistronics design. Tuning in the absorption spectrum is achieved by applying small twists to the angles of the bilayer graphene. Results in the form of absorption, conductivity, permeability, permittivity, and impedance are presented for different twist angles. The twisted graphene layers also demonstrate negative permittivity and negative permeability, similar to metamaterials. These negative refraction properties of graphene twistronics provide flexibility and transparency, which can be applied in photovoltaic applications. Machine-learning-based regression models are used to reduce the simulation time and resources. The results show that a regression model can reliably estimate intermediate wavelength absorption values with an R2 of 0.9999. Full article
(This article belongs to the Special Issue Analytical Methods in Wave Scattering and Diffraction, 2nd Edition)
Show Figures

Figure 1

9 pages, 3519 KB  
Article
BN Diamane-like Quasicrystal Based on 30° Twisted H-BN Bilayers and Its Approximants: Features of the Atomic Structure and Electronic Properties
by Leonid A. Chernozatonskii and Aleksey I. Kochaev
Crystals 2023, 13(3), 421; https://doi.org/10.3390/cryst13030421 - 28 Feb 2023
Cited by 3 | Viewed by 2287
Abstract
The dodecagonal graphene quasicrystal (GQC) based on a 30° twisted bigraphene has been well investigated. Recently, the sp3-hybridizated carbon analog, the diamane quasicrystal as a H(F) functionalized GQC was proposed. Here we present a study of a similar sp3-hybridizated [...] Read more.
The dodecagonal graphene quasicrystal (GQC) based on a 30° twisted bigraphene has been well investigated. Recently, the sp3-hybridizated carbon analog, the diamane quasicrystal as a H(F) functionalized GQC was proposed. Here we present a study of a similar sp3-hybridizated boron nitride 3-fold symmetry piezoelectric quasicrystal (BNnQC) based on a 30° twisted hexagonal BN bilayer (BNQC). The analysis of the atomic and electronic structures of its approximants based on 29.4° and 27.8° twisted h-BN bilayers has been carried by using of the density functional theory (DFT). The calculated values of the energy gaps ∼5 eV classify this predicted boron nitride material as a new wide-gap 2D quasicrystal. Full article
(This article belongs to the Special Issue Aperiodic Crystals: Theory, Structure and Properties)
Show Figures

Figure 1

Back to TopTop