Vertical Stress Induced Anomalous Spectral Shift of 13.17° Moiré Superlattice in Twist Bilayer Graphene
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mele, E.J. Novel electronic states seen in graphene. Nature 2018, 556, 37–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchenko, D.; Evtushinsky, D.V.; Golias, E.; Varykhalov, A.; Rader, O. Extremely flat band in bilayer graphene. Sci. Adv. 2018, 4, eaau0059. [Google Scholar] [CrossRef] [Green Version]
- Ramires, A.; Lado, J.L. Electrically Tunable Gauge Fields in Tiny-Angle Twisted Bilayer Graphene. Phys. Rev. Lett. 2018, 121, 146801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, C.; Fatemi, V.; Demir, A.; Fang, S.; Tomarken, S.L.; Luo, J.Y.; Sanchezyamagishi, J.D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84. [Google Scholar]
- Kim, Y.; Herlinger, P.; Moon, P.; Koshino, M.; Taniguchi, T.; Watanabe, K.; Smet, J.H. Charge Inversion and Topological Phase Transition at a Twist Angle Induced van Hove Singularity of Bilayer Graphene. Nano Lett. 2016, 16, 5053–5059. [Google Scholar] [CrossRef] [Green Version]
- Kort-Kamp, W.J.M. Topological Phase Transitions in the Photonic Spin Hall Effect. Phys. Rev. Lett. 2017, 119, 147401. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Kim, K.; Efimkin, D.K.; Lovorn, T.; Taniguchi, T.; Watanabe, K.; MacDonald, A.H.; Tutuc, E.; LeRoy, B.J. Topologically Protected Helical States in Minimally Twisted Bilayer Graphene. Phys. Rev. Lett. 2018, 121, 037702. [Google Scholar] [CrossRef] [Green Version]
- Alex, T.; Shubhayu, C.; Subir, S.; Mathias, S.S. Triangular antiferromagnetism on the honeycomb lattice of twisted bilayer graphene. Phys. Rev. B 2018, 98, 075109. [Google Scholar]
- Pant, D.; Aryal, S.; Mandal, S.; Pati, R. Emergence of ferromagnetism due to spontaneous symmetry breaking in a twisted bilayer graphene nanoflex. Nano Lett. 2021, 21, 7548–7554. [Google Scholar] [CrossRef]
- Nick, B.; Shubhayu, C.; Michael, P.Z. Mechanism for Anomalous Hall Ferromagnetism in Twisted Bilayer Graphene. Phys. Rev. Lett. 2020, 124, 166601. [Google Scholar]
- Lin, X.; Chen, B.B.; Li, W.; Meng, Z.Y.; Shi, T. Exciton Proliferation and Fate of the Topological Mott Insulator in a Twisted Bilayer Graphene Lattice Model. Phys. Rev. Lett. 2022, 128, 157201. [Google Scholar] [CrossRef]
- Andrea, B.; Michele, F. Local Kekulé distortion turns twisted bilayer graphene into topological Mott insulators and superconductors. Phys. Rev. B 2022, 106, 235112. [Google Scholar]
- Huang, T.; Zhang, L.; Ma, T. Antiferromagnetically ordered mott insulator and d+id superconductivity in twisted bilayer graphene: A quantum monte carlo study. Sci. Bull. 2019, 64, 310–314. [Google Scholar] [CrossRef] [Green Version]
- Kou, A.; Feldman, B.E.; Levin, A.J.; Halperin, B.I.; Watanabe, K.; Taniguchi, T.; Yacoby, A. Electron-hole asymmetric integer and fractional quantum hall effect in bilayer graphene. Science 2014, 345, 55–57. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.S.; Riedl, C.; Beringer, T.; Neto, A.C.; von Klitzing, K.; Starke, U.; Smet, J.H. Quantum hall effect in twisted bilayer graphene. Phys. Rev. Lett. 2011, 107, 216602. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Shi, W.; Yang, T.; Zhang, Z. Magic angles and flat Chern bands in alternating-twist multilayer graphene system. J. Mater. Sci. Technol. 2022, 111, 28–34. [Google Scholar] [CrossRef]
- Sharpe, A.L.; Fox, E.J.; Barnard, A.W.; Finney, J.; Watanabe, K.; Taniguchi, T.; Kastner, M.A.; Goldhaber-Gordon, D. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 2019, 365, 605–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serlin, M.; Tschirhart, C.L.; Polshyn, H.; Zhang, Y.; Zhu, J.; Watanabe, K.; Taniguchi, T.; Balents, L.; Young, A.F. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 2020, 367, 900–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.F.; Liu, F.; Chou, M.Y. Fractal Landau-Level Spectra in Twisted Bilayer Graphene. Nano Lett. 2012, 12, 3833–3838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, L.J.; Qiao, J.B.; Wang, W.X.; Zuo, W.J.; Yan, W.; Xu, R.; Dou, R.F.; Nie, J.C.; He, L. Landau quantization and Fermi velocity renormalization in twisted graphene bilayers. Phys. Rev. B 2015, 92, 201408. [Google Scholar] [CrossRef] [Green Version]
- Hicks, J.; Sprinkle, M.; Shepperd, K.; Wang, F.; Tejeda, A.; Taleb-Ibrahimi, A.; Bertran, F.; Le Fèvre, P.; de Heer, W.A.; Berger, C.; et al. Symmetry breaking in commensurate graphene rotational stacking: Comparison of theory and experiment. Phys. Rev. B 2011, 82, 205403. [Google Scholar] [CrossRef] [Green Version]
- Ni, Z.; Wang, Y.; Yu, T.; You, Y.; Shen, Z. Reduction of Fermi velocity in folded graphene observed by resonance Raman spectroscopy. Phys. Rev. B 2008, 77, 235403. [Google Scholar] [CrossRef] [Green Version]
- Sunku, S.S.; McLeod, A.S.; Stauber, T.; Yoo, H.; HalbertaL, D.; Ni, G.; Sternbach, A.; Jiang, B.Y.; Taniguchi, T.; Watanabe, K.; et al. Nano-photocurrent mapping of local electronicstructure in twisted bilayer graphene. Nano Lett. 2020, 20, 2958–2964. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Forsythe, C.; Jung, M.; McLeod, A.S.; Sunku, S.S.; Shao, Y.M.; Ni, G.X.; Sternbach, A.J.; Liu, S.; Edgar, J.H.; et al. Photonic crystal for graphene plasmons. Nat. Commun. 2019, 10, 4780. [Google Scholar] [CrossRef] [Green Version]
- Yoo, H.; Engelke, R.; Carr, S.; Fang, S.; Zhang, K.; Cazeaux, P.; Sung, S.H.; Hovden, R.; Tsen, A.W.; Taniguchi, T.; et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Phys. 2019, 18, 448–453. [Google Scholar] [CrossRef] [Green Version]
- Patel, H.; Huang, L.; Kim, C.J.; Park, J.; Graham, M.W. Stacking angle-tunable photoluminescence from interlayer exciton states in twisted bilayer graphene. Nat. Commun. 2019, 10, 1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, B.; Hao, H.; Huang, J.; Zhao, Y.; Yang, T.; Zhang, J.; Tong, L. Twist-Induced New Phonon Scattering Pathways in Bilayer Graphene Probed by Helicity-Resolved Raman Spectroscopy. J. Phys. Chem. C 2022, 126, 10487–10493. [Google Scholar] [CrossRef]
- Liao, L.; Wang, H.; Peng, H.; Ying, J.; Koh, A.L.; Chen, Y.; Xie, Q.; Peng, H.; Liu, Z. van Hove Singularity Enhanced Photochemical Reactivity of Twisted Bilayer Graphene. Nano Lett. 2015, 15, 5585–5589. [Google Scholar] [CrossRef]
- Lu, X.; Stepanov, P.; Yang, W.; Xie, M.; Efetov, D.K. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 2019, 574, 653–657. [Google Scholar] [CrossRef] [Green Version]
- Stepanov, P.; Das, I.; Lu, X.; Fahimniya, A.; Watanabe, K.; Taniguchi, T.; Koppens, F.H.; Lischner, J.; Levitov, L.; Efetov, D.K. Untying the insulating and superconducting orders in magic-angle graphene. Nature 2020, 583, 375–378. [Google Scholar] [CrossRef]
- Koshino, M.; Yuan, N.F.Q.; Koretsune, T.; Ochi, M.; Kuroki, K.; Fu, L. Maximally localized wannier orbitals and the extended hubbard model for twisted bilayer graphene. Phys. Rev. X 2018, 8, 031087. [Google Scholar] [CrossRef] [Green Version]
- Salman, S.; Rekik, N.; Abuzir, A.; Alshoaibi, A.; Suleiman, J. The effect of an external electric Öeld on the electronic properties of defective CBNnanotubes: A density functional theory approach. Crystals 2022, 12, 321. [Google Scholar] [CrossRef]
- Salman, S.; Rekik, N.; Abuzir, A.; Suleiman, J. Electronic properties tuning of defective heterostructured CBN nanotubes by uniaxial pressure: A density functional study. Appl. Phys. A 2021, 127, 914. [Google Scholar] [CrossRef]
- Hidalgo, F.; Rubio-Ponce, A.; Noguez, C. Cysteine Adsorption on Twisted-Bilayer Graphene. J. Phys. Chem. C 2021, 125, 27314–27322. [Google Scholar] [CrossRef]
- Hidalgo, F.; Rubio-Ponce, A.; Noguez, C. Tuning Adsorption of Methylamine and Methanethiol on Twisted-Bilayer Graphene. J. Phys. Chem. C 2019, 123, 15273–15283. [Google Scholar] [CrossRef]
- Yankowitz, M.; Chen, S.; Polshyn, H.; Zhang, Y.; Watanabe, K.; Taniguchi, T.; Graf, D.; Young, A.F.; Dean, C.R. Tuning superconductivity in twisted bilayer graphene. Science 2019, 363, 1059–1064. [Google Scholar] [CrossRef] [Green Version]
- Tap, P.; Guo, H.; Yang, T.; Zhang, Z. Stacking stability of MoS2 bilayer: An ab initio study. Chin. Phys. B 2014, 23, 106801. [Google Scholar]
- Tan, P.; Cong, X. Raman Spectroscopy of Graphene-Based Materials; East China University of Technology Press: Shanghai, China, 2021; p. 202. [Google Scholar]
- Smidstrup, S.; Markussen, T.; Vancraeyveld, P.; Wellendorff, J.; Schneider, J.; Gunst, T.; Verstichel, B.; Stradi, D.; Khomyakov, P.A.; Vej-Hansen, U.G.; et al. QuantumATK: An integrated platform of electronic and atomic-scale modelling tools. J. Phys.-Condens. Matter 2019, 32, 015901. [Google Scholar] [CrossRef]
- van Setten, M.J.; Giantomassi, M.; Bousquet, E.; Verstraete, M.J.; Hamann, D.R.; Gonze, X.; Rignanese, G.M. The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 2018, 226, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, W.; Sheng, H.; Wang, J. Vertical Stress Induced Anomalous Spectral Shift of 13.17° Moiré Superlattice in Twist Bilayer Graphene. Molecules 2023, 28, 3015. https://doi.org/10.3390/molecules28073015
Miao W, Sheng H, Wang J. Vertical Stress Induced Anomalous Spectral Shift of 13.17° Moiré Superlattice in Twist Bilayer Graphene. Molecules. 2023; 28(7):3015. https://doi.org/10.3390/molecules28073015
Chicago/Turabian StyleMiao, Wenjing, Hao Sheng, and Jingang Wang. 2023. "Vertical Stress Induced Anomalous Spectral Shift of 13.17° Moiré Superlattice in Twist Bilayer Graphene" Molecules 28, no. 7: 3015. https://doi.org/10.3390/molecules28073015