Graphene Twistronics: Tuning the Absorption Spectrum and Achieving Metamaterial Properties
Abstract
1. Introduction
2. Graphene Twistronics Design
3. Results and Discussion
4. Machine Learning Prediction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Dirac Velocity | |
k | momentum measured from the layer’s Dirac point |
momentum orientation relative to the x axis | |
unit cell area | |
tq | Fourier transform of the tunneling amplitude t(r) |
G1, G2 | Summed over reciprocal lattice vectors |
one of the two zero energy state of and of the isolated layer | |
Counterflow conductivity | |
Density Of States of the twisted bilayer | |
Temperature | |
Reflectance | |
Angle of incidence |
References
- Geim, A.K.; Novoselov, K.S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Patel, S.K.; Surve, J.; Parmar, J.; Natesan, A.; Katkar, V. Graphene-Based Metasurface Refractive Index Biosensor For Hemoglobin Detection: Machine Learning Assisted Optimization. IEEE Trans. Nanobioscience 2022. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.K.; Surve, J.; Parmar, J.; Armghan, A.; Aliqab, K.; Altahan, B.R.; Ahmed, K.; Bui, F.M.; Al-Zahrani, F.A. Graphene-Based H-Shaped Biosensor with High Sensitivity and Optimization Using ML-Based Algorithm. Alex. Eng. J. 2023, 68, 15–28. [Google Scholar] [CrossRef]
- Khan, M.E.; Khan, M.M.; Cho, M.H. Recent Progress of Metal-Graphene Nanostructures in Photocatalysis. Nanoscale 2018, 10, 9427–9440. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Liu, C.; Hu, B.; Deng, X.; Wang, X. Tunable Plasmonic Absorber in THz-Band Range Based on Graphene “Arrow” Shaped Metamaterial. Results Phys. 2019, 15, 102777. [Google Scholar] [CrossRef]
- Patel, S.K.; Surve, J.; Parmar, J.; Aliqab, K.; Alsharari, M.; Armghan, A. SARS-CoV-2 Detecting Rapid Metasurface-Based Sensor. Diam. Relat. Mater. 2023, 132, 109644. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelkareem, M.A.; Wilberforce, T.; Sayed, E.T. Application of Graphene in Energy Storage Device—A Review. Renew. Sustain. Energy Rev. 2020, 135, 110026. [Google Scholar] [CrossRef]
- Fardoost, A.; Vanani, F.G.; Amirhosseini, A.; Safian, R. Design of a Multilayer Graphene-Based Ultrawideband Terahertz Absorber. IEEE Trans. Nanotechnol. 2017, 16, 68–74. [Google Scholar] [CrossRef]
- Cen, C.; Chen, Z.; Xu, D.; Jiang, L.; Chen, X.; Yi, Z.; Wu, P.; Li, G.; Yi, Y. High Quality Factor, High Sensitivity Metamaterial Graphene—Perfect Absorber Based on Critical Coupling Theory and Impedance Matching. Nanomaterials 2020, 10, 95. [Google Scholar] [CrossRef]
- Rahmanshahi, M.; Noori Kourani, S.; Golmohammadi, S.; Baghban, H.; Vahed, H. A Tunable Perfect THz Metamaterial Absorber with Three Absorption Peaks Based on Nonstructured Graphene. Plasmonics 2021, 16, 1665–1676. [Google Scholar] [CrossRef]
- Patel, S.K.; Charola, S.; Parmar, J.; Ladumor, M.; Ngo, Q.M.; Dhasarathan, V. Broadband and Efficient Graphene Solar Absorber Using Periodical Array of C-Shaped Metasurface. Opt. Quantum Electron. 2020, 52, 250. [Google Scholar] [CrossRef]
- Ogawa, S.; Shimatani, M.; Fukushima, S.; Okuda, S.; Matsumoto, K. Graphene on Metal-Insulator-Metal-Based Plasmonic Metamaterials at Infrared Wavelengths. Opt. Express 2009, 26, 5665–5674. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.K.; Parmar, J.; Katkar, V. Graphene-Based Multilayer Metasurface Solar Absorber with Parameter Optimization and Behavior Prediction Using Long Short-Term Memory Model. Renew. Energy 2022, 191, 47–58. [Google Scholar] [CrossRef]
- Muhammad, N.; Tang, X.; Tao, F.; Qiang, L.; Zhengbiao, O. Broadband Polarization-Insensitive Absorption by Metasurface with Metallic Pieces for Energy Harvesting Application. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2019, 249, 114419. [Google Scholar] [CrossRef]
- Poorgholam-Khanjari, S.; Zarrabi, F.B. Reconfigurable Vivaldi THz Antenna Based on Graphene Load as Hyperbolic Metamaterial for Skin Cancer Spectroscopy. Opt. Commun. 2021, 480, 126482. [Google Scholar] [CrossRef]
- Xu, Z.; Dong, X.; Bornemann, J. Design of a Reconfigurable MIMO System for THz Communications Based on Graphene Antennas. IEEE Trans. Terahertz Sci. Technol. 2014, 4, 609–617. [Google Scholar] [CrossRef]
- Lucido, M. Electromagnetic Scattering from a Graphene Disk: Helmholtz-Galerkin Technique and Surface Plasmon Resonances. Mathematics 2021, 9, 1429. [Google Scholar] [CrossRef]
- Frieler, M.; Pho, C.; Lee, B.H.; Dobrovolny, H.; Naumov, A.V.; Akkaraju, G.R. Effects of Doxorubicin Delivery by Nitrogen-Doped Graphene Quantum Dots on Cancer Cell Growth: Experimental Study and Mathematical Modeling. Nanomaterials 2021, 11, 140. [Google Scholar] [CrossRef]
- Carr, S.; Massatt, D.; Fang, S.; Cazeaux, P.; Luskin, M.; Kaxiras, E. Twistronics: Manipulating the Electronic Properties of Two-Dimensional Layered Structures through Their Twist Angle. Phys. Rev. B 2017, 95, 075420. [Google Scholar] [CrossRef]
- Yang, Y.; Li, J.; Yin, J.; Xu, S.; Mullan, C.; Taniguchi, T.; Watanabe, K.; Geim, A.K.; Novoselov, K.S.; Mishchenko, A. In Situ Manipulation of van Der Waals Heterostructures for Twistronics. Sci. Adv. 2020, 6, eabd3655. [Google Scholar] [CrossRef]
- Andrei, E.Y.; MacDonald, A.H. Graphene Bilayers with a Twist. Nat. Mater. 2020, 19, 1265–1275. [Google Scholar] [CrossRef]
- Weckbecker, D.; Shallcross, S.; Fleischmann, M.; Ray, N.; Sharma, S.; Pankratov, O. Low-Energy Theory for the Graphene Twist Bilayer. Phys. Rev. B 2016, 93, 035452. [Google Scholar] [CrossRef]
- Mogera, U.; Kulkarni, G.U. A New Twist in Graphene Research: Twisted Graphene. Carbon N. Y. 2020, 156, 470–487. [Google Scholar] [CrossRef]
- Ren, Y.N.; Zhang, Y.; Liu, Y.W.; He, L. Twistronics in Graphene-Based van Der Waals Structures. Chin. Phys. B 2020, 29, 117303. [Google Scholar] [CrossRef]
- Wu, D.; Pan, Y.; Min, T. Twistronics in Graphene, from Transfer Assembly to Epitaxy. Appl. Sci. 2020, 10, 4690. [Google Scholar] [CrossRef]
- Liao, M.; Wei, Z.; Du, L.; Wang, Q.; Tang, J.; Yu, H.; Wu, F.; Zhao, J.; Xu, X.; Han, B.; et al. Precise Control of the Interlayer Twist Angle in Large Scale MoS2 Homostructures. Nat. Commun. 2020, 11, 2153. [Google Scholar] [CrossRef]
- Hu, G.; Qiu, C.-W.; Alù, A. Twistronics for Photons: Opinion. Opt. Mater. Express 2021, 11, 1377. [Google Scholar] [CrossRef]
- Deng, Y.; Oudich, M.; Gerard, N.J.R.K.; Ji, J.; Lu, M.; Jing, Y. Magic-Angle Bilayer Phononic Graphene. Phys. Rev. B 2020, 102, 180304. [Google Scholar] [CrossRef]
- Ciarrocchi, A.; Tagarelli, F.; Avsar, A.; Kis, A. Excitonic Devices with van Der Waals Heterostructures: Valleytronics Meets Twistronics. Nat. Rev. Mater. 2022, 7, 449–464. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, L.; Zhao, T. Study on Dynamic Characteristics of a Rotating Sandwich Porous Pre-Twist Blade with a Setting Angle Reinforced by Graphene Nanoplatelets. Mathematics 2022, 10, 2814. [Google Scholar] [CrossRef]
- Li, H.; Liu, H.; Zou, J. Minnaert Resonances for Bubbles in Soft Elastic Materials. SIAM J. Appl. Math. 2022, 82, 119–141. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, H.; Zheng, G.H. Mathematical Analysis of Plasmon Resonances for Curved Nanorods. J. Math. Pures Appl. 2021, 153, 248–280. [Google Scholar] [CrossRef]
- Zheng, G.H. Mathematical Analysis of Plasmonic Resonance for 2-D Photonic Crystal. J. Differ. Equ. 2019, 266, 5095–5117. [Google Scholar] [CrossRef]
- Li, H. Recent Progress On The Mathematical Study Of Anomalous Localized Resonance In Elasticity. Electron. Res. Arch. 2020, 28, 1257–1272. [Google Scholar] [CrossRef]
- Wang, S.; Ren, C.; Tian, H.; Yu, J.; Sun, M. MoS2/ZnO van Der Waals Heterostructure as a High-Efficiency Water Splitting Photocatalyst: A First-Principles Study. Phys. Chem. Chem. Phys. 2018, 20, 13394–13399. [Google Scholar] [CrossRef]
- Wang, S.; Tian, H.; Ren, C.; Yu, J.; Sun, M. Electronic and Optical Properties of Heterostructures Based on Transition Metal Dichalcogenides and Graphene-like Zinc Oxide. Sci. Rep. 2018, 8, 12009. [Google Scholar] [CrossRef] [PubMed]
- COMSOL. COMSOL Multiphysics®, version 6.0; COMSOL: Stockholm, Sweden, 2021.
- Niu, K.; Li, P.; Huang, Z.; Jiang, L.J.; Bagci, H. Numerical Methods for Electromagnetic Modeling of Graphene: A Review. IEEE J. Multiscale Multiphysics Comput. Tech. 2020. [Google Scholar] [CrossRef]
- Bludov, Y.V.; Ferreira, A.; Peres, N.M.R.; Vasilevskiy, M.I. A Primer on Surface Plasmon-Polaritons in Graphene. Int. J. Mod. Phys. B 2013. [Google Scholar] [CrossRef]
- Kouroublakis, M.; Tsitsas, N.L.; Fikioris, G. Shielding Effectiveness of Ideal Monolayer Graphene in Cylindrical Configurations With the Method of Auxiliary Sources. IEEE Trans. Electromagn. Compat. 2022, 64, 1042–1051. [Google Scholar] [CrossRef]
- Surve, J.; Parmar, J.; Patel, S.K.; Jadeja, R. Comparative Analysis of Metasurface Array-Based Solar Absorber for Visible Region. Opt. Quantum Electron. 2021, 53, 696. [Google Scholar] [CrossRef]
- Gusynin, V.P.; Sharapov, S.G.; Carbotte, J.P. Magneto-Optical Conductivity in Graphene. J. Phys. Condens. Matter 2007, 19, 026222. [Google Scholar] [CrossRef]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef]
- Bistritzer, R.; MacDonald, A.H. Moiré Bands in Twisted Double-Layer Graphene. Proc. Natl. Acad. Sci. USA 2011, 108, 12233–12237. [Google Scholar] [CrossRef]
- Numan, A.B.; Sharawi, M.S. Extraction of Material Parameters for Metamaterials Using a Full-Wave Simulator [Education Column]. IEEE Antennas Propag. Mag. 2013, 55, 202–221. [Google Scholar] [CrossRef]
- Azad, A.K.; Kort-Kamp, W.J.M.; Sykora, M.; Weisse-Bernstein, N.R.; Luk, T.S.; Taylor, A.J.; Dalvit, D.A.R.; Chen, H.T. Metasurface Broadband Solar Absorber. Sci. Rep. 2016, 6, 20347. [Google Scholar] [CrossRef]
- Mahmud, S.; Islam, S.S.; Almutairi, A.F.; Islam, M.T. A Wide Incident Angle, Ultrathin, Polarization-Insensitive Metamaterial Absorber for Optical Wavelength Applications. IEEE Access 2020, 8, 129525–129541. [Google Scholar] [CrossRef]
- Patel, S.K.; Surve, J.; Katkar, V.; Parmar, J.; Al-Zahrani, F.A.; Ahmed, K.; Bui, F.M. Encoding and Tuning of THz Metasurface-Based Refractive Index Sensor with Behavior Prediction Using XGBoost Regressor. IEEE Access 2022, 10, 24797–24814. [Google Scholar] [CrossRef]
- Patel, S.K.; Surve, J.; Katkar, V.; Parmar, J. Optimization of Metamaterial-Based Solar Energy Absorber for Enhancing Solar Thermal Energy Conversion Using Artificial Intelligence. Adv. Theory Simul. 2022, 5, 2200139. [Google Scholar] [CrossRef]
- Patel, S.K.; Surve, J.; Jadeja, R.; Katkar, V.; Parmar, J.; Ahmed, K. Ultra-Wideband, Polarization-Independent, Wide-Angle Multilayer Swastika-Shaped Metamaterial Solar Energy Absorber with Absorption Prediction Using Machine Learning. Adv. Theory Simul. 2022, 5, 2100604. [Google Scholar] [CrossRef]
- Cleveland, W.S.; Devlin, S.J. Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting. J. Am. Stat. Assoc. 1988, 83, 596–610. [Google Scholar] [CrossRef]
Twist angles | 5° | 10° | 15° | |||
λ (μm) | 1.2 | 1.19 | 0.97 | |||
Δλ (nm) | 10 | 220 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armghan, A.; Alsharari, M.; Aliqab, K.; Alsalman, O.; Parmar, J.; Patel, S.K. Graphene Twistronics: Tuning the Absorption Spectrum and Achieving Metamaterial Properties. Mathematics 2023, 11, 1579. https://doi.org/10.3390/math11071579
Armghan A, Alsharari M, Aliqab K, Alsalman O, Parmar J, Patel SK. Graphene Twistronics: Tuning the Absorption Spectrum and Achieving Metamaterial Properties. Mathematics. 2023; 11(7):1579. https://doi.org/10.3390/math11071579
Chicago/Turabian StyleArmghan, Ammar, Meshari Alsharari, Khaled Aliqab, Osamah Alsalman, Juveriya Parmar, and Shobhit K. Patel. 2023. "Graphene Twistronics: Tuning the Absorption Spectrum and Achieving Metamaterial Properties" Mathematics 11, no. 7: 1579. https://doi.org/10.3390/math11071579
APA StyleArmghan, A., Alsharari, M., Aliqab, K., Alsalman, O., Parmar, J., & Patel, S. K. (2023). Graphene Twistronics: Tuning the Absorption Spectrum and Achieving Metamaterial Properties. Mathematics, 11(7), 1579. https://doi.org/10.3390/math11071579