Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (347)

Search Parameters:
Keywords = turbocharger

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2672 KiB  
Article
Development Process of TGDI SI Engine Combustion Simulation Model Using Ethanol–Gasoline Blends as Fuel
by Bence Zsoldos, András L. Nagy and Máté Zöldy
Appl. Sci. 2025, 15(15), 8677; https://doi.org/10.3390/app15158677 (registering DOI) - 5 Aug 2025
Abstract
The Fit for 55 package introduced by the European Union aims to achieve a 55% reduction in greenhouse gas emissions by 2030. In parallel, increasingly stringent exhaust gas regulations have intensified research into alternative fuels. Ethanol presents a promising option due to its [...] Read more.
The Fit for 55 package introduced by the European Union aims to achieve a 55% reduction in greenhouse gas emissions by 2030. In parallel, increasingly stringent exhaust gas regulations have intensified research into alternative fuels. Ethanol presents a promising option due to its compatibility with gasoline, higher octane rating, and lower exhaust emissions compared to conventional gasoline. Additionally, ethanol can be derived from agricultural waste, further enhancing its sustainability. This study examines the impact of two ethanol–gasoline blends (E10, E20) on emissions and performance in a turbocharged gasoline direct injection (TGDI) spark-ignition (SI) engine. The investigation is conducted using three-dimensional computational fluid dynamics (3D CFD) simulations to minimize development time and costs. This paper details the model development process and presents the initial results. The boundary conditions for the simulations are derived from one-dimensional (1D) simulations, which have been validated against experimental data. Subsequently, the simulated performance and emissions results are compared with experimental measurements. The E10 simulations correlated well with experimental measurements, with the largest deviation in cylinder pressure being an RMSE of 1.42. In terms of emissions, HC was underpredicted, while CO was overpredicted compared to the experimental data. For E20, the IMEP was slightly higher at some operating points; however, the deviations were negligible. Regarding emissions, HC and CO emissions were higher with E20, whereas NOx and CO2 emissions were lower. Full article
(This article belongs to the Special Issue Sustainable Mobility and Transportation (SMTS 2025))
Show Figures

Figure 1

26 pages, 15885 KiB  
Article
Comparative Analysis of Fully Floating and Semi-Floating Ring Bearings in High-Speed Turbocharger Rotordynamics
by Kyuman Kim and Keun Ryu
Lubricants 2025, 13(8), 338; https://doi.org/10.3390/lubricants13080338 - 31 Jul 2025
Viewed by 215
Abstract
This study presents a detailed experimental comparison of the rotordynamic and thermal performance of automotive turbochargers supported by two distinct hydrodynamic bearing configurations: fully floating ring bearings (FFRBs) and semi-floating ring bearings (SFRBs). While both designs are widely used in commercial turbochargers, they [...] Read more.
This study presents a detailed experimental comparison of the rotordynamic and thermal performance of automotive turbochargers supported by two distinct hydrodynamic bearing configurations: fully floating ring bearings (FFRBs) and semi-floating ring bearings (SFRBs). While both designs are widely used in commercial turbochargers, they exhibit significantly different dynamic behaviors due to differences in ring motion and fluid film interaction. A cold air-driven test rig was employed to assess vibration and temperature characteristics across a range of controlled lubricant conditions. The test matrix included oil supply pressures from 2 bar (g) to 4 bar (g) and temperatures between 30 °C and 70 °C. Rotor speeds reached up to 200 krpm (thousands of revolutions per minute), and data were collected using a high-speed data acquisition system, triaxial accelerometers, and infrared (IR) thermal imaging. Rotor vibration was characterized through waterfall and Bode plots, while jump speeds and thermal profiles were analyzed to evaluate the onset and severity of instability. The results demonstrate that the FFRB configuration is highly sensitive to oil supply parameters, exhibiting strong subsynchronous instabilities and hysteresis during acceleration–deceleration cycles. In contrast, the SFRB configuration consistently provided superior vibrational stability and reduced sensitivity to lubricant conditions. Changes in lubricant supply conditions induced a jump speed variation in floating ring bearing (FRB) turbochargers that was approximately 3.47 times larger than that experienced by semi-floating ring bearing (SFRB) turbochargers. Furthermore, IR images and oil outlet temperature data confirm that the FFRB system experiences greater heat generation and thermal gradients, consistent with higher energy dissipation through viscous shear. This study provides a comprehensive assessment of both bearing types under realistic high-speed conditions and highlights the advantages of the SFRB configuration in improving turbocharger reliability, thermal performance, and noise suppression. The findings support the application of SFRBs in high-performance automotive systems where mechanical stability and reduced frictional losses are critical. Full article
(This article belongs to the Collection Rising Stars in Tribological Research)
Show Figures

Figure 1

17 pages, 4360 KiB  
Article
Turbine Performance of Variable Geometry Turbocharger Applied to Small Gasoline Engine Considering Heat Transfer Effect
by Jeong-Eui Yun, Joon-Young Shin, Cartur Harsito, Gi-Yong Kim and Hyung-Jun Kim
Energies 2025, 18(14), 3775; https://doi.org/10.3390/en18143775 - 16 Jul 2025
Viewed by 260
Abstract
The performance of the turbine in a variable geometry turbocharger (VGT) may be affected by changes in the vane operating angle and heat transfer loss during operation. However, existing studies have been conducted under the assumption of an adiabatic process. In this study, [...] Read more.
The performance of the turbine in a variable geometry turbocharger (VGT) may be affected by changes in the vane operating angle and heat transfer loss during operation. However, existing studies have been conducted under the assumption of an adiabatic process. In this study, we investigated the effect of heat transfer between all working fluids and a VGT structure when using computational fluid dynamics to evaluate turbine performance. Through this study, we confirmed that when heat transfer was considered, the turbine efficiency decreased by approximately 2–6%, depending on the vane position angle change, compared to when heat transfer was not considered. In addition, the total entropy production ratio, which represented the flow loss in the turbine during operation, increased by approximately 0.2–0.5% when heat transfer was considered. In conclusion, the findings confirmed that the heat transfer phenomenon directly affected the efficiency and flow loss during the turbine performance evaluation process. Full article
Show Figures

Figure 1

26 pages, 3079 KiB  
Article
Implementing CAD API Automated Processes in Engineering Design: A Case Study Approach
by Konstantinos Sofias, Zoe Kanetaki, Constantinos Stergiou, Antreas Kantaros, Sébastien Jacques and Theodore Ganetsos
Appl. Sci. 2025, 15(14), 7692; https://doi.org/10.3390/app15147692 - 9 Jul 2025
Viewed by 662
Abstract
Increasing mechanical design complexity and volume, particularly in component-based manufacturing, require scalable, traceable, and efficient design processes. In this research, a modular in-house automation platform using Autodesk Inventor’s Application Programming Interface (API) and Visual Basic for Applications (VBA) is developed to automate recurrent [...] Read more.
Increasing mechanical design complexity and volume, particularly in component-based manufacturing, require scalable, traceable, and efficient design processes. In this research, a modular in-house automation platform using Autodesk Inventor’s Application Programming Interface (API) and Visual Basic for Applications (VBA) is developed to automate recurrent tasks such as CAD file generation, drawing production, structured archiving, and cost estimation. The proposed framework was implemented and tested on three real-world case studies in a turbocharger reconditioning unit with varying degrees of automation. Findings indicate remarkable time savings of up to 90% in certain documentation tasks with improved consistency, traceability, and reduced manual intervention. Moreover, the system also facilitated automatic generation of metadata-rich Excel and Word documents, allowing centralized documentation and access to data. In comparison with commercial automation software, the solution is flexible, cost-effective, and responsive to project changes and thus suitable for small and medium enterprises. Though automation reduced workload and rendered the system more reliable, some limitations remain, especially in fully removing engineering judgment, especially in complex design scenarios. Overall, this study investigates how API-based automation can significantly increase productivity and data integrity in CAD-intensive environments and explores future integration opportunities using AI and other CAD software. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

21 pages, 5436 KiB  
Article
Engine Optimization Model for Accurate Prediction of Friction Model in Marine Dual-Fuel Engine
by Mina Tadros
Algorithms 2025, 18(7), 415; https://doi.org/10.3390/a18070415 - 4 Jul 2025
Viewed by 368
Abstract
This paper presents an innovative engine optimization model integrated with a friction fitting tool to enhance the accuracy of computed performance for a marine dual-fuel engine. The focus is on determining the terms of the Chen–Flynn correlation—an empirical engine friction model—to improve the [...] Read more.
This paper presents an innovative engine optimization model integrated with a friction fitting tool to enhance the accuracy of computed performance for a marine dual-fuel engine. The focus is on determining the terms of the Chen–Flynn correlation—an empirical engine friction model—to improve the precision of friction and performance predictions. The developed model employs WAVE, a 1D engine simulation software, coupled with a nonlinear optimizer to identify the optimal configuration of key parameters, including the turbocharger, injection system, combustion behavior, and friction model. The optimization procedure maximizes the air–fuel ratio (AFR) within the engine while adhering to various predefined constraints. The model is applied to four operational points along the propeller curve, with the optimized results subsequently integrated into a friction fitting tool. This tool predicts the terms of the Chen–Flynn correlation through an updated procedure, achieving highly accurate results with a coefficient of determination (R2) value of 99.88%, eliminating the need for experimental testing. The optimized friction model provides a reliable foundation for future studies and applications, enabling precise friction predictions across various engine types and fuel compositions. Full article
Show Figures

Graphical abstract

17 pages, 4494 KiB  
Article
Experimental Investigation on the Erosion Resistance Characteristics of Compressor Impeller Coatings to Water Droplet Impact
by Richárd Takács, Ibolya Zsoldos, Norbert Kiss, Izolda Popa-Müller, István Barabás, Balázs Dobos, Miklós Zsolt Tabakov, Csaba Tóth-Nagy and Pavel Novotny
Coatings 2025, 15(7), 767; https://doi.org/10.3390/coatings15070767 - 28 Jun 2025
Viewed by 362
Abstract
This study presents a comparative analysis of the water droplet erosion resistance of three compressor wheels coated with Ni-P and Si-P layers. The tests were conducted using a custom-developed experimental apparatus in accordance with the ASTM G73-10 standard. The degree of erosion was [...] Read more.
This study presents a comparative analysis of the water droplet erosion resistance of three compressor wheels coated with Ni-P and Si-P layers. The tests were conducted using a custom-developed experimental apparatus in accordance with the ASTM G73-10 standard. The degree of erosion was monitored through continuous precision mass measurements, and structural changes on the surfaces of both the base materials and the coatings were examined using a Zeiss Crossbeam 350 scanning electron microscope (SEM). Hardness values were determined using a Vickers KB 30 hardness tester, while the chemical composition was analysed using a WAS Foundry Master optical emission spectrometer. Significant differences in erosion resistance were observed among the various compressor wheels, which can be attributed to differences in coating hardness values, as well as to the detachment of the Ni-P layer from the base material under continuous erosion. In all cases, water droplet erosion led to a reduction in the isentropic efficiency of the compressor—measured using a hot gas turbocharger testbench—with the extent of efficiency loss depending upon the type of coating applied. Although blade protection technologies for turbocharger compressor impellers used in the automotive industry have been the subject of only a limited number of studies, modern technologies, such as the application of certain alternative fuels and exhaust gas recirculation, have increased water droplet formation, thereby accelerating the erosion rate of the impeller. The aim of this study is to evaluate the resistance of three different coating layers to water droplet erosion through standardized tests conducted using a custom-designed experimental apparatus. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

16 pages, 4725 KiB  
Article
Fatigue Analysis and Solid Particle Erosion Behavior of Nozzle Ring for Marine Turbocharger
by Woo-Seok Jeon and Il-Cho Park
J. Mar. Sci. Eng. 2025, 13(7), 1230; https://doi.org/10.3390/jmse13071230 - 26 Jun 2025
Viewed by 321
Abstract
This study investigates the degradation characteristics of turbocharger nozzle rings in marine diesel engines by conducting numerical analysis and solid particle erosion (SPE) tests to examine their structural stability and morphological surface damage trends. The fatigue analysis was conducted under a load condition [...] Read more.
This study investigates the degradation characteristics of turbocharger nozzle rings in marine diesel engines by conducting numerical analysis and solid particle erosion (SPE) tests to examine their structural stability and morphological surface damage trends. The fatigue analysis was conducted under a load condition corresponding to 100% output of the main engine, using ANSYS software. The SPE test was conducted in accordance with ASTM G76-05 standards, and the weight loss and erosion rate were calculated. Surface damage was closely examined through 3D analysis and scanning electron microscopy (SEM). The flow analysis revealed that the loads were highly concentrated at the nozzle ring inlet and the leading edge of the blades, with a maximum pressure coefficient of 0.07678 MPa. The load decreased toward the trailing edge of the nozzle ring, and the surface pressure coefficients of the flange, inner hoop, and outer hoop—where the nozzle ring blades are fixed—were found to be nearly identical. The fatigue life of the nozzle ring under 100% engine load was calculated as 1.377e+7 cycles, with a fatigue damage value of 1.32e+32. Notably, the fatigue life in the regions near the inner and outer hoops of the nozzle ring approached zero. The results of the SPE test using spherical SiO2 particles confirmed that the surface damage of the nozzle ring material, 316L stainless steel, followed a typical ductile material damage mechanism. In addition, the surface damage characteristics were significantly influenced by SPE test parameters such as the shape of solid particles, nozzle diameter, and impact angle. Full article
Show Figures

Figure 1

22 pages, 6648 KiB  
Article
Conjugate Heat Transfer Modelling in a Centrifugal Compressor for Automotive Applications
by Carlo Cravero, Pierre-Alain Hoffer, Davide Marsano, Daniele Mattiello and Luigi Mosciaro
Energies 2025, 18(13), 3348; https://doi.org/10.3390/en18133348 - 26 Jun 2025
Viewed by 234
Abstract
In the automotive industry, the increasing stringent standards to reduce fuel consumption and pollutant emissions has driven significant advancements in turbocharging systems. The centrifugal compressor, as the most widely used power-absorbing machinery, plays a crucial role but remains one of the most complex [...] Read more.
In the automotive industry, the increasing stringent standards to reduce fuel consumption and pollutant emissions has driven significant advancements in turbocharging systems. The centrifugal compressor, as the most widely used power-absorbing machinery, plays a crucial role but remains one of the most complex components to study and design. While most numerical studies rely on adiabatic models, this work analyses several Computational Fluid Dynamics (CFD) models with conjugate heat transfer (CHT) of varying complexity, incorporating real solid components. This approach allowed a sensitivity analysis of the performance obtained from the different models compared to the adiabatic case, highlighting the effects of internal heat exchange losses. Moreover, an analysis of the temperature distribution of the wheel was conducted, along with a thermal assessment of the various heat flux contributions across the different components, to gain a deeper understanding of the performance differences. The impact of including the seal plate has been evaluated and different boundary conditions on the seal plate have been tested to assess the uncertainty in the results. Finally, the influence of heat exchange between the shroud and the external environment is also examined to further refine the model’s accuracy. One of the objectives of this work is to obtain a correct temperature profile of the rotor for a subsequent thermo-mechanical analysis. Full article
Show Figures

Figure 1

31 pages, 21407 KiB  
Article
Effect of Different Heat Sink Designs on Thermoelectric Generator System Performance in a Turbocharged Tractor
by Ali Gürcan and Gülay Yakar
Energies 2025, 18(13), 3267; https://doi.org/10.3390/en18133267 - 22 Jun 2025
Viewed by 764
Abstract
In this study, the effects of different heat sink designs on the cold side of the modules in a thermoelectric generator (TEG) system placed between the compressor and the intercooler of a turbocharged tractor on the system performance were numerically analyzed. In the [...] Read more.
In this study, the effects of different heat sink designs on the cold side of the modules in a thermoelectric generator (TEG) system placed between the compressor and the intercooler of a turbocharged tractor on the system performance were numerically analyzed. In the current literature, heat sinks used in TEG modules generally consist of plate fins. In this study, by using perforated and slotted fins, the thermal boundary layer behaviors were changed and there was an attempt to increase the heat transfer from the cold surface compared to plate fins. Thus, the performance of the TEG system was also increased. When looking at the literature, it is seen that there are studies which aim to increase the performance of TEG modules by changing the dimensions of p and n type semiconductors. However, there is no study aiming to increase the performance of TEG modules by making changes on the plate fins of the heat sinks used in these modules and thus increasing the heat transfer amount. In this respect, this study offers important results for the literature. According to the numerical analysis results, the total TEG output power, output voltage, and thermal efficiency obtained for S0.5H15 were 6.2%, about 3%, and about 5% higher than those for PF, respectively. In addition, the pressure drop values obtained for different heat sinks, except for aluminum foam, were approximately close to each other. In cases with TEG systems where different heat sinks were used, the intercooler inlet air temperatures decreased by approximately 3.4–3.5% compared to the case without the TEG system. This indicates that the use of TEG will positively affect the improvement in engine efficiency. Full article
Show Figures

Figure 1

19 pages, 9718 KiB  
Article
Structural Safety Assessment Based on Stress-Life Fatigue Analysis for T/C Nozzle Ring Blade
by Woo-Seok Jeon and Haechang Jeong
J. Mar. Sci. Eng. 2025, 13(6), 1174; https://doi.org/10.3390/jmse13061174 - 15 Jun 2025
Viewed by 935
Abstract
The performance of the turbocharger nozzle ring is a key factor in the overall operation of the main engine of the ship. Minimizing failure and damage caused by high exhaust gas temperature and pressure is essential. As a first step toward improving turbocharger [...] Read more.
The performance of the turbocharger nozzle ring is a key factor in the overall operation of the main engine of the ship. Minimizing failure and damage caused by high exhaust gas temperature and pressure is essential. As a first step toward improving turbocharger safety, this study performed 3D scanning of an aged nozzle ring to obtain its precise geometry and developed a corresponding numerical model. The boundary conditions of the numerical model were defined by the exhaust gas temperature and pressure at various engine output loads. Structural safety was assessed using static structural and stress-life fatigue analyses. A sharp increase in maximum equivalent stress and strain was observed at output loads of 85% and higher. At 25% load, the maximum fatigue life indicated 1.76 × 108 cycles, while at 100% load, the maximum damage index reached 1. A field performance test conducted at 85% of the main engine’s output load revealed severe damage under high-load conditions. Specifically, damage occurred at the contact area between the outer hoop and the tip of the blade’s trailing edge. This observed damage pattern closely aligned with the results predicted by the fatigue life analysis. The validity of the present study was confirmed through a comparative analysis of the fatigue life predictions and the field test results. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 8226 KiB  
Article
Effect of Improved Combustion Chamber Design and Biodiesel Blending on the Performance and Emissions of a Diesel Engine
by Ziming Wang, Yanlin Chen, Chao He, Dongge Wang, Yan Nie and Jiaqiang Li
Energies 2025, 18(11), 2956; https://doi.org/10.3390/en18112956 - 4 Jun 2025
Viewed by 535
Abstract
This study aims to investigate the impact of combustion chamber geometry and biodiesel on the performance of diesel engines under various load conditions. Simulations were conducted using AVL FIRE software, followed by experimental validation to compare the performance of the prototype Omega combustion [...] Read more.
This study aims to investigate the impact of combustion chamber geometry and biodiesel on the performance of diesel engines under various load conditions. Simulations were conducted using AVL FIRE software, followed by experimental validation to compare the performance of the prototype Omega combustion chamber with the optimized TCD combustion chamber (T for turbocharger, C for charger air cooling, and D for diesel particle filter). This study utilized four types of fuels: D100, B10, B20, and B50, and was conducted under different load conditions at a rated speed of 1800 revolutions per minute (rpm). The results demonstrate that the TCD combustion chamber outperforms the Omega chamber in terms of indicated thermal efficiency (ITE), in-cylinder pressure, and temperature, and also exhibits a lower indicated specific fuel consumption (ISFC). Additionally, the TCD chamber shows lower soot and carbon monoxide (CO) emissions compared to the Omega chamber, with further reductions as the load increases and the biodiesel blend ratio is raised. The high oxygen content in biodiesel helps to reduce soot and CO formation, while its lower sulfur content and heating value contribute to a decrease in combustion temperature and a reduction in nitrogen oxide (NOx) production. However, the NOx emissions from the TCD chamber are still higher than those from the Omega chamber, possibly due to the increased in-cylinder temperature resulting from its combustion chamber structure. The findings provide valuable insights into diesel engine system design and the application of oxygenated fuels, promoting the development of clean combustion technologies. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

19 pages, 3808 KiB  
Article
Dual Turbocharger and Synergistic Control Optimization for Low-Speed Marine Diesel Engines: Mitigating Black Smoke and Enhancing Maneuverability
by Cheng Meng, Kaiyuan Chen, Tianyu Chen and Jianfeng Ju
Energies 2025, 18(11), 2910; https://doi.org/10.3390/en18112910 - 2 Jun 2025
Viewed by 537
Abstract
Marine diesel engines face persistent challenges in balancing transient black smoke emissions and maneuverability under low-speed conditions due to inherent limitations of single turbocharger systems, such as high inertia and delayed intake response, compounded by control strategies prioritizing steady-state efficiency. To address this [...] Read more.
Marine diesel engines face persistent challenges in balancing transient black smoke emissions and maneuverability under low-speed conditions due to inherent limitations of single turbocharger systems, such as high inertia and delayed intake response, compounded by control strategies prioritizing steady-state efficiency. To address this gap, this study proposes a dual -turbocharger dynamic matching framework integrated with a speed–pitch synergistic control strategy—the first mechanical-control co-design solution for transient emission suppression. By establishing a λ-opacity correlation model and a multi-physics ship–engine–propeller simulation platform, we demonstrate that the Type-C dual turbocharger reduces rotational inertia by 80%, shortens intake pressure buildup time to 25.8 s (54.7% faster than single turbochargers), and eliminates high-risk black smoke regions (maintaining λ > 1.5). The optimized system reduces the fuel consumption rate by 12.9 g·(kW·h)−1 under extreme loading conditions and decreases the duration of high-risk zones by 74.4–100%. This study provides theoretical and practical support for resolving the trade-off between transient emissions and maneuverability in marine power systems through synergistic innovations in mechanical design and control strategies. Full article
Show Figures

Figure 1

28 pages, 3106 KiB  
Article
Integrated Control Strategies of EGR System and Fuel Injection Pressure to Reduce Emissions and Fuel Consumption in a DI Engine Fueled with Diesel-WCOME Blends and Neat Biodiesel
by Giorgio Zamboni and Massimo Capobianco
Energies 2025, 18(11), 2791; https://doi.org/10.3390/en18112791 - 27 May 2025
Viewed by 388
Abstract
A wide experimental campaign was developed on an automotive turbocharged diesel engine, using two blends between diesel oil and waste cooking oil methyl esters (WCOME) and neat biodiesel. A conventional B7 diesel oil was considered as a reference fuel. The two blends, respectively, [...] Read more.
A wide experimental campaign was developed on an automotive turbocharged diesel engine, using two blends between diesel oil and waste cooking oil methyl esters (WCOME) and neat biodiesel. A conventional B7 diesel oil was considered as a reference fuel. The two blends, respectively, included 40 and 70% of WCOME, on a volumetric basis. The influence of biodiesel was analyzed by testing the engine in two part-load operating conditions, applying proper control strategies to the exhaust gas recirculation (EGR) circuit and rail pressure, to assess the interactions between the engine management and the tested fuels. The variable nozzle turbine (VNT) was controlled to obtain a constant level of intake pressure in the two experimental points. Referring to biodiesel effects at constant operating mode, higher WCOME content generally resulted in better efficiency and soot emission, while NOX emission was negatively affected. EGR activation allowed for limited NO formation but with penalties in soot emission. Furthermore, interactions between the EGR circuit and turbocharger operations and control led to higher fuel consumption and lower efficiency. Finally, the increase in rail pressure corresponded to better soot emission and penalties in NOX emission. Combining all these effects, the selection of EGR rate and rail pressure values higher than the standard levels resulted in better efficiency, NOX, and soot emissions when comparing blends and neat biodiesel to conventional B7, granting advantages not only with regard to greenhouse gas emissions. Combustion parameters were also assessed, showing that combustion stability and combustion noise were not negatively affected by biodiesel use. Combustion duration was reduced when using WCOME and its blend, even if the center of combustion was slightly shifted along the expansion stroke. The main contribution of this investigation to the scientific and technical knowledge on biodiesel application to internal combustion engines is related to the development of tests on diesel–biodiesel blends with high WCOME content or neat WCOME, identifying their effects on NOX emissions, the definition of integrated strategies of HP EGR system, fuel rail pressure, and VNT for the simultaneous reduction in NOX and soot emissions, and the detailed assessment of the influence of biodiesel on a wide range of combustion parameters. Full article
(This article belongs to the Special Issue Performance and Emissions of Advanced Fuels in Combustion Engines)
Show Figures

Figure 1

17 pages, 2712 KiB  
Article
The Effect of ZnO and CNT Nanoparticles on the Combustion Characteristics and Emission Performance of a Common Rail Diesel Engine Fueled with Diesel and Biodiesel
by Vida Jokubynienė and Stasys Slavinskas
Energies 2025, 18(10), 2564; https://doi.org/10.3390/en18102564 - 15 May 2025
Viewed by 447
Abstract
This article presents the test results of a turbocharged Common Rail Direct Injection (CRDI) diesel engine operating on diesel fuel and methyl ester biodiesel with nanoparticle additives. The use of nanomaterials has been shown to improve the combustion process. In this study, various [...] Read more.
This article presents the test results of a turbocharged Common Rail Direct Injection (CRDI) diesel engine operating on diesel fuel and methyl ester biodiesel with nanoparticle additives. The use of nanomaterials has been shown to improve the combustion process. In this study, various nanoparticles, including zinc oxide and carbon plates, were investigated as additives to enhance the combustion performance of selected fuels. The fuel of choice was conventional diesel, and a methyl ester of rapeseed oil called biodiesel. A turbocharged Common Rail Direct Injection (CRDI) diesel engine, model FIAT 192A1000, was used for the experiments. The following engine parameters were measured and recorded: torque (Ms, Nm), fuel consumption (Bd, kg/h), carbon monoxide (CO, ppm), and nitrogen oxides (NOx, ppm). The results show that nanoparticles can improve the combustion performance of the fuels studied in the engine. However, the effect of nanoparticles on engine parameters varied. In summary, the influence of nanoparticles is noticeable: the ID is shorter with diesel fuel with carbon nanotubes at 50 ppm and 100 ppm concentration, the NOx is reduced with zinc oxide and D, and CO is diminished in all load modes when using RME with carbon nanotubes. Full article
Show Figures

Figure 1

15 pages, 77160 KiB  
Article
Measuring Device for More Precise Mistuning Identification of Integrated Bladed Discs
by Ondřej Kučera, Václav Píštěk, Oleksij Fomin, Pavel Kučera and Sergii Sagin
Symmetry 2025, 17(5), 717; https://doi.org/10.3390/sym17050717 - 7 May 2025
Viewed by 442
Abstract
In integrated turbine wheel designs, small deviations, known as mistuning, often occur in the modal properties of individual blades due to manufacturing tolerances and material inhomogeneity. During operation, this mistuning can cause some rotor blades to be subjected to significantly higher loads than [...] Read more.
In integrated turbine wheel designs, small deviations, known as mistuning, often occur in the modal properties of individual blades due to manufacturing tolerances and material inhomogeneity. During operation, this mistuning can cause some rotor blades to be subjected to significantly higher loads than predicted for an ideal rotor. The degree of rotor mistuning can only be determined using methods of experimental modal analysis. However, the manual use of the modal hammer cannot ensure precise repeatability of the force impulse’s location and timing, leading to inaccuracies. This article introduces a mechanism that replaces manual modal hammer operations, guaranteeing consistent impact location and timing while eliminating double strikes. The device was verified on bladed discs of various sizes, and its usability is demonstrated in this article on a turbine wheel of a marine engine turbocharger. The developed mechanism automates modal hammer strikes, ensuring precisely repeatable force courses and positioning for each impact. This automation reduces the measurement time and significantly improves the accuracy. The results of this research showed that even with careful manual operation of the modal hammer by an experienced operator, statistically significant differences arise in the repeated measurements of a bladed disc mistuning, whereas with the use of the presented measuring device, the results of the repeated measurements are practically identical. Full article
(This article belongs to the Special Issue Symmetry in Process Optimization)
Show Figures

Figure 1

Back to TopTop