Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,306)

Search Parameters:
Keywords = turbine loads

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 3672 KB  
Proceeding Paper
Diffraction Analysis of Two Semi-Submersible Platforms for Floating Offshore Wind Turbine Applications Using OrcaWave
by Olena Videnova, Nikita Dobin, Nick Markov, Silvia Kirilova and Rumen Kishev
Eng. Proc. 2026, 122(1), 29; https://doi.org/10.3390/engproc2026122029 - 26 Jan 2026
Abstract
This study presents a diffraction analysis of two semi-submersible platform configurations intended for floating offshore wind turbine applications. The first investigated configuration corresponds to a semi-submersible barge with a central moonpool, while the second configuration is a cross-shaped semi-submersible. Both hydrodynamic models were [...] Read more.
This study presents a diffraction analysis of two semi-submersible platform configurations intended for floating offshore wind turbine applications. The first investigated configuration corresponds to a semi-submersible barge with a central moonpool, while the second configuration is a cross-shaped semi-submersible. Both hydrodynamic models were developed and analyzed in OrcaWave. Simulations were performed for wave incidence directions ranging from 0° to 360°. The obtained hydrodynamic coefficients provide insights into the added mass, radiation damping, load response amplitude operators (RAOs) and two types of mean drift loads RAO of both platform types. The results highlight the influence of geometry and displacement on the diffraction performance, which is critical for the design of floating wind turbine support structures. Full article
Show Figures

Figure 1

22 pages, 42131 KB  
Article
Effect of Weld Surface Quality on the Fatigue Performance of Q420 Steel Used in Offshore Wind Tower Tube
by Jun Cao, Wubin Ren, Guodong Zhang, Shubiao Yin, Zhongzhu Liu and Xinjun Sun
Metals 2026, 16(2), 148; https://doi.org/10.3390/met16020148 - 25 Jan 2026
Abstract
The size of offshore wind turbine towers is increasing, and they are subjected to larger and more complex loads, which imposes more stringent requirements on the fatigue performance of welded plates in new offshore wind turbine towers. This study investigated the axial fatigue [...] Read more.
The size of offshore wind turbine towers is increasing, and they are subjected to larger and more complex loads, which imposes more stringent requirements on the fatigue performance of welded plates in new offshore wind turbine towers. This study investigated the axial fatigue performance of 25 mm thick welded plates made of the new Q420 steel grade. Fractures in the Q420 welded plates occurred at the junction of the coarse-grained zone of the filler metal and the heat-affected zone. By analyzing the fatigue striation spacing across multiple regions, it was found that the proportion of cycles in the crack propagation stage within the total fatigue life did not exceed 11%, indicating that the crack initiation stage is the decisive factor in the fatigue life of the specimens. Removing surface quality defects at the weld toe significantly increased both the fatigue life and the fatigue strength limit of the Q420 welded plates. Full article
(This article belongs to the Special Issue Feature Papers in Metal Failure Analysis)
Show Figures

Figure 1

35 pages, 24985 KB  
Article
From Blade Loads to Rotor Health: An Inverse Modelling Approach for Wind Turbine Monitoring
by Attia Bibi, Chiheng Huang, Wenxian Yang, Oussama Graja, Fang Duan and Liuyang Zhang
Energies 2026, 19(3), 619; https://doi.org/10.3390/en19030619 - 25 Jan 2026
Abstract
Operational expenditure in wind farms is heavily influenced by unplanned maintenance, much of which stems from undetected rotor system faults. Although many fault-detection methods have been proposed, most remain confined to laboratory test. Blade-root bending-moment measurements are among the few techniques applied in [...] Read more.
Operational expenditure in wind farms is heavily influenced by unplanned maintenance, much of which stems from undetected rotor system faults. Although many fault-detection methods have been proposed, most remain confined to laboratory test. Blade-root bending-moment measurements are among the few techniques applied in the field, yet their reliability is limited by strong sensitivity to varying operational and environmental conditions. This study presents a data-driven rotor health-monitoring framework that enhances the diagnostic value of blade bending-moments. Assuming that the wind speed profile remains approximately stationary over short intervals (e.g., 20 s), a machine-learning model is trained on bending-moment data from healthy blades to predict the incident wind-speed profile under a wide range of conditions. During operation, real-time bending-moment signals from each blade are independently processed by the trained model. A healthy rotor yields consistent wind-speed profile predictions across all three blades, whereas deviations for an individual blade indicate rotor asymmetry. In this study, the methodology is verified using high-fidelity OpenFAST simulations with controlled blade pitch misalignment as a representative fault case, providing simulation-based verification of the proposed framework. Results demonstrate that the proposed inverse-modeling and cross-blade consistency framework enables sensitive and robust detection and localization of pitch-related rotor faults. While only pitch misalignment is explicitly investigated here, the approach is inherently applicable to other rotor asymmetry mechanisms such as mass imbalance or aerodynamic degradation, supporting reliable condition monitoring and earlier maintenance interventions. Using OpenFAST simulations, the proposed framework reconstructs height-resolved wind profiles with RMSE below 0.15 m/s (R² > 0.997) under healthy conditions, and achieves up to 100% detection accuracy for moderate-to-severe pitch misalignment faults. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
26 pages, 2450 KB  
Article
Fault Detection in Axial Deformation Sensors for Hydraulic Turbine Head-Cover Fastening Bolts Using Analytical Redundancy
by Eddy Yujra Rivas, Alexander Vyacheslavov, Kirill Gogolinskiy, Kseniia Sapozhnikova and Roald Taymanov
Sensors 2026, 26(3), 801; https://doi.org/10.3390/s26030801 - 25 Jan 2026
Abstract
This study proposes an analytical redundancy method that combines empirical models with a Kalman filter to ensure the reliability of measurements from axial deformation sensors in a turbine head-cover bolt-monitoring system. This integration enables the development of predictive models that optimally estimate the [...] Read more.
This study proposes an analytical redundancy method that combines empirical models with a Kalman filter to ensure the reliability of measurements from axial deformation sensors in a turbine head-cover bolt-monitoring system. This integration enables the development of predictive models that optimally estimate the dynamic deformation of each bolt during turbine operation at full and partial load. The test results of the models under conditions of outliers, measurement noise, and changes in turbine operating mode, evaluated using accuracy and sensitivity metrics, confirmed their high accuracy (Acc ≈ 0.146 µm) and robustness (SA < 0.001). The evaluation of the models’ responses to simulated sensor faults (offset, drift, precision degradation, stuck-at) revealed characteristic residual patterns for faults with magnitudes > 5 µm. These findings establish the foundation for developing a fault detection and isolation algorithm for continuous monitoring of these sensors’ operational health. For practical implementation, the models require validation across all operational modes, and maximum admissible deformation thresholds must be defined. Full article
Show Figures

Figure 1

31 pages, 13508 KB  
Article
Dynamic Analysis of the Mooring System Installation Process for Floating Offshore Wind Turbines
by Yao Zhong, Jinguang Wang, Yingjie Chen, Ning Yu, Mingsheng Chen and Yichang Tang
Sustainability 2026, 18(3), 1199; https://doi.org/10.3390/su18031199 - 24 Jan 2026
Viewed by 113
Abstract
Floating offshore wind turbines (FOWTs) constitute a pivotal offshore renewable energy technology, offering a sustainable and eco-friendly solution for large-scale marine power generation. Their low-carbon emission characteristics are highly aligned with global sustainable development goals, playing a crucial role in promoting energy structure [...] Read more.
Floating offshore wind turbines (FOWTs) constitute a pivotal offshore renewable energy technology, offering a sustainable and eco-friendly solution for large-scale marine power generation. Their low-carbon emission characteristics are highly aligned with global sustainable development goals, playing a crucial role in promoting energy structure transformation and reducing reliance on fossil fuels. This paper presents a numerical study on the coupled dynamic behavior of a semi-submersible FOWT during its mooring system installation. The proposed methodology incorporates environmental loads from incident waves, wind, and currents. Those forces act on not only the floating platform but also on the three tugboats employed throughout the installation procedure. Detailed evaluations of forces and motion responses are conducted across successive stages of the operation. The findings demonstrated the feasibility of the proposed mooring installation process for FOWTs while offering critical insights into suitable installation weather windows and motion responses of both the platform and tugboats. Furthermore, the novel installation scheme presented herein offers practical guidance for future engineering applications. Full article
(This article belongs to the Special Issue Renewable Energy and Sustainable Energy Systems—2nd Edition)
Show Figures

Figure 1

23 pages, 1480 KB  
Article
Intelligent Control and Automation of Small-Scale Wind Turbines Using ANFIS for Rural Electrification in Uzbekistan
by Botir Usmonov, Ulugbek Muinov, Nigina Muinova and Mira Chitt
Energies 2026, 19(3), 601; https://doi.org/10.3390/en19030601 - 23 Jan 2026
Viewed by 79
Abstract
This paper examines the application of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for voltage regulation in a small-scale wind turbine (SWT) system intended for off-grid rural electrification in Uzbekistan. The proposed architecture consists of a wind turbine, a permanent-magnet DC generator, and a [...] Read more.
This paper examines the application of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for voltage regulation in a small-scale wind turbine (SWT) system intended for off-grid rural electrification in Uzbekistan. The proposed architecture consists of a wind turbine, a permanent-magnet DC generator, and a buck converter supplying a regulated 48 V DC load. While ANFIS-based control has been reported previously for wind energy systems, the novelty of this work lies in its focused application to a DC-generator-based SWT topology using real wind data from the Bukhara region, together with a rigorous quantitative comparison against a conventional PI controller under both constant- and reconstructed variable-wind conditions. Dynamic performance was evaluated through MATLAB/Simulink simulations incorporating IEC-compliant wind turbulence modeling. Quantitative results show that the ANFIS controller achieves faster settling, reduced voltage ripple, and improved disturbance rejection compared to PI control. The findings demonstrate the technical feasibility of ANFIS-based voltage regulation for decentralized DC wind energy systems, while recognizing that economic viability and environmental benefits require further system-level and experimental assessment. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
20 pages, 2736 KB  
Article
Operational Optimization of Steam Turbine Systems for Time Series in Hourly Resolution: A Systematic Comparison of Linear, Quadratic and Nonlinear Approaches
by Louisa Zaubitzer, Maurice Görgen and Frank Alsmeyer
Energies 2026, 19(3), 589; https://doi.org/10.3390/en19030589 - 23 Jan 2026
Viewed by 90
Abstract
Computer-aided modeling and mathematical optimization of energy systems are essential for improving operational efficiency and achieving emission reductions, particularly for steam turbine systems with part-load-dependent efficiency characteristics. Mixed-Integer Linear Programming (MILP) is the state of the art, due to its short computational times [...] Read more.
Computer-aided modeling and mathematical optimization of energy systems are essential for improving operational efficiency and achieving emission reductions, particularly for steam turbine systems with part-load-dependent efficiency characteristics. Mixed-Integer Linear Programming (MILP) is the state of the art, due to its short computational times and reliable convergence. However, its simplifications often reduce model accuracy. Mixed-Integer Nonlinear Programming (MINLP) offers high accuracy but faces long computational times and potential convergence issues. Recent advancements in Mixed-Integer Quadratically Constrained Programming (MIQCP) offer a promising approach for more accurate energy system modeling by enabling quadratic and bilinear representations while avoiding the full complexity of nonlinear programs. This study compares the optimization methods MILP, MINLP and MIQCP for the operational optimization of a steam turbine system. The parameterization of the models is based on hourly measurement data of two real-world steam turbines. Key evaluation criteria include accuracy, computational time, implementation complexity and the deviation in the calculated optimum. The results show that MIQCP improves accuracy compared with MILP while requiring lower computational time than MINLP. Overall, the results demonstrate that MIQCP provides a suitable compromise between model accuracy and computational efficiency for the operational optimization of steam turbine systems. Full article
Show Figures

Figure 1

24 pages, 2224 KB  
Article
Parametric Investigation of p-y Curves for Improving the Design of Large Diameter Monopiles for Offshore Renewable Energy Applications
by Fatma Dulger Canogullari and Ozgur Lutfi Ertugrul
Appl. Sci. 2026, 16(3), 1156; https://doi.org/10.3390/app16031156 - 23 Jan 2026
Viewed by 62
Abstract
This study establishes a direct and quantitative link between field-scale monopile behavior, three-dimensional finite element (FE) modeling, and practical p-y curve formulations for large-diameter offshore monopiles. A validated three-dimensional FE model, benchmarked against a full-scale monopile field test, was employed to derive depth-dependent [...] Read more.
This study establishes a direct and quantitative link between field-scale monopile behavior, three-dimensional finite element (FE) modeling, and practical p-y curve formulations for large-diameter offshore monopiles. A validated three-dimensional FE model, benchmarked against a full-scale monopile field test, was employed to derive depth-dependent p-y curves under monotonic lateral loading and to evaluate the applicability of classical formulations proposed by Matlock and Reese. A systematic parametric analysis was performed to investigate the influence of pile diameter, embedment depth, and undrained shear strength of the surrounding soil. The results demonstrate that pile diameter and soil shear strength exert a dominant control on lateral stiffness and ultimate soil reaction, whereas embedment depth has only a minor influence on near-surface p-y behavior within the deep embedment range considered. Increasing the pile diameter leads to a transition from bending-dominated response to rigid-body rotation accompanied by three-dimensional soil wedge formation. Quantitative comparisons show that, at depths of 1–4 m and for working displacement levels of approximately 5–10 mm, FE-derived soil reactions are typically 3.0–4.8 times higher than those predicted by the Matlock formulation, as well as Reese curves. These findings demonstrate that classical p-y methods can significantly underestimate lateral soil resistance for modern large-diameter monopiles and highlight the necessity of calibrated three-dimensional FE analyses or FE-informed p-y modifications for reliable offshore wind turbine foundation design. Full article
32 pages, 6496 KB  
Article
An Optimization Method for Distribution Network Voltage Stability Based on Dynamic Partitioning and Coordinated Electric Vehicle Scheduling
by Ruiyang Chen, Wei Dong, Chunguang Lu and Jingchen Zhang
Energies 2026, 19(2), 571; https://doi.org/10.3390/en19020571 - 22 Jan 2026
Viewed by 31
Abstract
The integration of high-penetration renewable energy sources (RESs) and electric vehicles (EVs) increases the risk of voltage fluctuations in distribution networks. Traditional static partitioning strategies struggle to handle the intermittency of wind turbine (WT) and photovoltaic (PV) generation, as well as the spatiotemporal [...] Read more.
The integration of high-penetration renewable energy sources (RESs) and electric vehicles (EVs) increases the risk of voltage fluctuations in distribution networks. Traditional static partitioning strategies struggle to handle the intermittency of wind turbine (WT) and photovoltaic (PV) generation, as well as the spatiotemporal randomness of EV loads. Furthermore, existing scheduling methods typically optimize EV active power or reactive compensation independently, missing opportunities for synergistic regulation. The main novelty of this paper lies in proposing a spatiotemporally coupled voltage-stability optimization framework. This framework, based on an hourly updated electrical distance matrix that accounts for RES uncertainty and EV spatiotemporal transfer characteristics, enables hourly dynamic network partitioning. Simultaneously, coordinated active–reactive optimization control of EVs is achieved by regulating the power factor angle of three-phase six-pulse bidirectional chargers. The framework is embedded within a hierarchical model predictive control (MPC) architecture, where the upper layer performs hourly dynamic partition updates and the lower layer executes a five-minute rolling dispatch for EVs. Simulations conducted on a modified IEEE 33-bus system demonstrate that, compared to uncoordinated charging, the proposed method reduces total daily network losses by 4991.3 kW, corresponding to a decrease of 3.9%. Furthermore, it markedly shrinks the low-voltage area and generally raises node voltages throughout the day. The method effectively enhances voltage uniformity, reduces network losses, and improves renewable energy accommodation capability. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

25 pages, 10702 KB  
Article
Load-Bearing Performance of Segmental Prestressed Concrete-Filled Steel Tube Chords in Lattice Wind Turbine Towers
by Jiawei Zhang, Junlin Li, Dongliang Zhang, Hao Wen, Yuhang Wang, Kun Fu and Cirong Huang
J. Compos. Sci. 2026, 10(1), 54; https://doi.org/10.3390/jcs10010054 - 19 Jan 2026
Viewed by 163
Abstract
To address the combined demands of lightweighting, modular construction, and durability in ultra-tall wind-turbine towers, a segmental prestressed concrete-filled steel-tube (PCFST) chord for lattice towers is investigated in this study. A finite-element approach is validated against published tests on CFST columns, showing close [...] Read more.
To address the combined demands of lightweighting, modular construction, and durability in ultra-tall wind-turbine towers, a segmental prestressed concrete-filled steel-tube (PCFST) chord for lattice towers is investigated in this study. A finite-element approach is validated against published tests on CFST columns, showing close agreement in load–displacement response and failure modes. Based on this validation, a finite-element model of the segmental PCFST chord is developed to clarify load-bearing mechanisms and parameters under axial compression and tension. The results show that, in compression, the concrete core governs the response; after steel yielding, the tube undergoes multiaxial stress redistribution—rising hoop stress and falling axial stress—consistent with von Mises yielding and dilation of confined concrete. In tension, load sharing is dominated by the steel tube and tendons, with limited concrete contribution. Parametric analyses indicate that end stiffeners markedly improve tensile behavior: with eight stiffeners, initial stiffness and peak tensile load increase by 1.8 times and 1.3 times relative to no stiffener, while effects in compression are minor. Increasing initial prestress improves tensile performance but shows diminishing returns beyond a moderate level and reduces compressive yield capacity. Increasing flange thickness enhances tensile performance with negligible compressive effect, whereas greater tube thickness increases both capacities and the initial stiffness. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

28 pages, 5111 KB  
Article
A Novel Parallel-Preheating Supercritical CO2 Brayton Cycle for Waste Heat Recovery from Offshore Gas Turbines: Energy, Exergy, and Economic Analysis Under Variable Loads
by Dianli Qu, Jia Yan, Xiang Xu and Zhan Liu
Entropy 2026, 28(1), 106; https://doi.org/10.3390/e28010106 - 16 Jan 2026
Viewed by 131
Abstract
Supercritical carbon dioxide (SC-CO2) power cycles offer a promising solution for offshore platforms’ gas turbine waste heat recovery due to their compact design and high thermal efficiency. This study proposes a novel parallel-preheating recuperated Brayton cycle (PBC) using SC-CO2 for [...] Read more.
Supercritical carbon dioxide (SC-CO2) power cycles offer a promising solution for offshore platforms’ gas turbine waste heat recovery due to their compact design and high thermal efficiency. This study proposes a novel parallel-preheating recuperated Brayton cycle (PBC) using SC-CO2 for waste heat recovery on offshore gas turbines. An integrated energy, exergy, and economic (3E) model was developed and showed good predictive accuracy (deviations < 3%). The comparative analysis indicates that the PBC significantly outperforms the simple recuperated Brayton cycle (SBC). Under 100% load conditions, the PBC achieves a net power output of 4.55 MW, while the SBC reaches 3.28 MW, representing a power output increase of approximately 27.9%. In terms of thermal efficiency, the PBC reaches 36.7%, compared to 21.5% for the SBC, marking an improvement of about 41.4%. Additionally, the electricity generation cost of the PBC is 0.391 CNY/kWh, whereas that of the SBC is 0.43 CNY/kWh, corresponding to a cost reduction of approximately 21.23%. Even at 30% gas turbine load, the PBC maintains high thermoelectric and exergy efficiencies of 30.54% and 35.43%, respectively, despite a 50.8% reduction in net power from full load. The results demonstrate that the integrated preheater effectively recovers residual flue gas heat, enhancing overall performance. To meet the spatial constraints of offshore platforms, we maintained a pinch-point temperature difference of approximately 20 K in both the preheater and heater by adjusting the flow split ratio. This approach ensures a compact system layout while balancing cycle thermal efficiency with economic viability. This study offers valuable insights into the PBC’s variable-load performance and provides theoretical guidance for its practical optimization in engineering applications. Full article
(This article belongs to the Special Issue Thermodynamic Optimization of Energy Systems)
Show Figures

Figure 1

23 pages, 4797 KB  
Article
Rotor–Stator Interaction-Induced Pressure Pulsation Propagation and Dynamic Stress Response in an Ultra-High-Head Pump-Turbine
by Feng Jin, Le Gao, Dawei Zheng, Xingxing Huang, Zebin Lai, Meng Liu, Zhengwei Wang and Jian Liu
Processes 2026, 14(2), 311; https://doi.org/10.3390/pr14020311 - 15 Jan 2026
Viewed by 197
Abstract
Unsteady flow-induced pressure fluctuations and the consequent dynamic stresses in pump-turbines are critical determinants of their operational reliability and fatigue resistance. This investigation systematically examines the spatiotemporal propagation of Rotor–Stator Interaction (RSI)-induced pressure pulsations and evaluates the corresponding dynamic stress mechanisms based on [...] Read more.
Unsteady flow-induced pressure fluctuations and the consequent dynamic stresses in pump-turbines are critical determinants of their operational reliability and fatigue resistance. This investigation systematically examines the spatiotemporal propagation of Rotor–Stator Interaction (RSI)-induced pressure pulsations and evaluates the corresponding dynamic stress mechanisms based on a phase-resolved fluid–structure interaction strategy. The results reveal a significant hydrodynamic duality: RSI pressure waves manifest as convective traveling waves on the pressure side but as modal standing waves on the suction side. Crucially, a severe spanwise phase mismatch is identified between the hub and shroud streamlines, which induces a periodic hydrodynamic torsional moment on the blade. Due to the rigid constraint at the blade–crown junction, this torsional tendency is restricted, resulting in high-amplitude constrained tensile stresses at the root. This explains why the stress concentration at the crown inlet is significantly higher than in other regions. Additionally, the stress spectrum shows strong load dependence, characterized by low-frequency modulations on the suction side under high-load conditions. Full article
(This article belongs to the Special Issue CFD Simulation of Fluid Machinery)
Show Figures

Figure 1

19 pages, 7841 KB  
Article
Research on Lateral Loading Behavior of Embedded Rock-Socketed Jacket Offshore Wind Turbines
by Ronghua Zhu, Yuning Zhang, Feipeng Zou, Jiajun Hu, Zijian Tao and Yong Chen
J. Mar. Sci. Eng. 2026, 14(2), 183; https://doi.org/10.3390/jmse14020183 - 15 Jan 2026
Viewed by 126
Abstract
As an innovative foundation type specifically developed for seabed conditions characterized by shallow overburden overlying bedrock, driven embedded rock-socketed jacket offshore wind turbines achieve high bearing capacity by embedding the pile tips into the bedrock. However, the mechanical behavior of this foundation system [...] Read more.
As an innovative foundation type specifically developed for seabed conditions characterized by shallow overburden overlying bedrock, driven embedded rock-socketed jacket offshore wind turbines achieve high bearing capacity by embedding the pile tips into the bedrock. However, the mechanical behavior of this foundation system has not yet been fully clarified. In this study, based on the engineering conditions of an offshore wind power project in Fujian, a 1:100 scaled physical model test is conducted to validate Plaxis 3D finite-element model. On this basis, a parametric sensitivity analysis is conducted to investigate the influences of key geotechnical properties, pile rock-socketed depth, and geometric parameters, with the aim of elucidating the mechanisms governing the lateral loading behavior of the jacket foundation. The results show that the numerical simulations are in good agreement with the experimental measurements. Among all piles, the front-row pile exhibits the most significant displacement at the pile top at the mudline, reflecting the asymmetry in load transfer and deformation of the pile foundation system. The ultimate bearing capacity varies by about 91.7% among different bedrock types, while the influence of rock weathering degree on the lateral bearing performance of the foundation is about 4.7%. The effects of Pile rock-socketed depth and geometric parameters on the lateral bearing capacity of the foundation are approximately 15.2% and 80.8%, respectively. A critical threshold for rock-socket depth exists at about 6D (where D is the pile diameter), beyond which further improvements in embedment depth result in diminishing improvements in lateral bearing capacity. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 3803 KB  
Article
Enhanced Frequency Dynamic Support for PMSG Wind Turbines via Hybrid Inertia Control
by Jian Qian, Yina Song, Gengda Li, Ziyao Zhang, Yi Wang and Haifeng Yang
Electronics 2026, 15(2), 373; https://doi.org/10.3390/electronics15020373 - 14 Jan 2026
Viewed by 137
Abstract
High penetration of wind farms into the power grid lowers system inertia and compromises stability. This paper proposes a grid-forming control strategy for Permanent Magnet Synchronous Generator (PMSG) wind turbines based on DC-link voltage matching and virtual inertia. First, a relationship between grid [...] Read more.
High penetration of wind farms into the power grid lowers system inertia and compromises stability. This paper proposes a grid-forming control strategy for Permanent Magnet Synchronous Generator (PMSG) wind turbines based on DC-link voltage matching and virtual inertia. First, a relationship between grid frequency and DC-link voltage is established, replacing the need for a phase-locked loop. Then, DC voltage dynamics are utilized to trigger a real-time switching of the power tracking curve, releasing the rotor’s kinetic energy for inertia response. This is further coordinated with a de-loading control that maintains active power reserves through over-speeding or pitch control. Finally, the MATLAB/Simulink simulation results and RT-LAB hardware-in-the-loop experiments demonstrate the capability of the proposed control strategy to provide rapid active power support during grid disturbances. Full article
(This article belongs to the Special Issue Stability Analysis and Optimal Operation in Power Electronic Systems)
Show Figures

Figure 1

37 pages, 9537 KB  
Article
Fixed-Gain and Adaptive Pitch Control for Constant-Speed, Constant-Power Operation of a Horizontal-Axis Wind Turbine
by Florențiu Deliu, Ciprian Popa, Iancu Ciocioi, Petrică Popov, Andrei Darius Deliu, Adelina Bordianu and Emil Cazacu
Energies 2026, 19(2), 394; https://doi.org/10.3390/en19020394 - 13 Jan 2026
Viewed by 145
Abstract
This paper addresses Region-3 control of a 2.5 MW three-bladed HAWT using a data-driven workflow that links empirical modeling to implementable pitch control. To focus on fundamental regulation dynamics, the turbine is modeled as a rigid single-mass drivetrain driven by identified quasi-steady aerodynamics. [...] Read more.
This paper addresses Region-3 control of a 2.5 MW three-bladed HAWT using a data-driven workflow that links empirical modeling to implementable pitch control. To focus on fundamental regulation dynamics, the turbine is modeled as a rigid single-mass drivetrain driven by identified quasi-steady aerodynamics. First, we identify a compact shaft-power surface P(ω,V,β) and recover the associated MPP condition, which clarifies why the optimal rotor speed rises with wind and motivates a comparison between capped-MPP operation and constant-speed regulation. We then synthesize a practical Region-3 loop—PI in rate with a first-order pitch servo and saturation handling—and evaluate proportional (P), PI, and PI + servo controllers under sinusoidal and Kaimal-turbulent inflow. Finally, we propose an adaptive PI variant that keeps a fixed acceleration feed-through but retunes the integral path online via ARX(1,1) + RLS to maintain a target closed-loop bandwidth. Performance metrics computed over the full simulation window (t ∈ [0, 50] s) show that P-only control exhibits large steady bias and cap violations; PI recenters speed and power around their targets; adding a pitch servo further trims peaks and ripple. In steady-state turbulent tests, PI + servo achieves tight regulation, Δωpeak ≈ 0.033% (0.079 rad/s), PRMS ≈ 0.62%, while the adaptive PI maintains similar tightness with the lowest variability overall Δωpeak ≈ 0.0104% (0.025 rad/s), PRMS ≈ 0.17. The workflow yields a practically implementable β(V) schedule and a lightweight adaptation mechanism that compensates for slow aerodynamic performance drift without changing the control structure. While structural loads and aeroelastic modes are not explicitly modeled, the proposed controller enforces strict speed and power constraints via a rigid-body dynamic analysis. Extensions to IPC, preview/forecast augmentation, and validation on higher-fidelity aeroelastic/drivetrain models are identified as future work. Full article
Show Figures

Figure 1

Back to TopTop