Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (580)

Search Parameters:
Keywords = tunnels crossing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1701 KiB  
Article
Aromatase Inhibitor-Induced Carpal Tunnel Syndrome Immunohistochemical Analysis and Clinical Evaluation: An Observational, Cross-Sectional, Case–Control Study
by Iakov Molayem, Lucian Lior Marcovici, Roberto Gradini, Massimiliano Mancini, Silvia Taccogna and Alessia Pagnotta
J. Clin. Med. 2025, 14(15), 5513; https://doi.org/10.3390/jcm14155513 - 5 Aug 2025
Abstract
Background/Objectives: Breast cancer was the leading cause of malignant tumors among women in 2022. About two-thirds of breast cancer cases are hormone-receptor-positive. In these patients, aromatase inhibitors are a mainstay of treatment, but associated musculoskeletal symptoms can negatively affect patient compliance. Aromatase-inhibitor-induced [...] Read more.
Background/Objectives: Breast cancer was the leading cause of malignant tumors among women in 2022. About two-thirds of breast cancer cases are hormone-receptor-positive. In these patients, aromatase inhibitors are a mainstay of treatment, but associated musculoskeletal symptoms can negatively affect patient compliance. Aromatase-inhibitor-induced carpal tunnel syndrome represents one of the main causes of aromatase inhibitor discontinuation, with a non-compliance rate of up to 67%, potentially leading to increased cancer mortality. This study investigates estrogen receptor expression in aromatase-inhibitor-induced carpal tunnel syndrome tissues, in order to better define its etiopathogenesis and derive preventive or therapeutic measures that can improve aromatase inhibitor patient compliance. To our knowledge, there is no study on this subject in the literature. Methods: Between 2023 and 2024, we recruited 14 patients at the Jewish Hospital of Rome, including seven patients with aromatase-inhibitor-induced carpal tunnel syndrome (study group) and seven with postmenopausal idiopathic carpal tunnel syndrome (control group). Each patient was evaluated based on a clinical visit, a questionnaire, instrumental exams, and serum hormone dosages and were treated with open carpal tunnel release surgery, during which transverse carpal ligament and flexor tenosynovium samples were collected. For immunohistochemical experiments, sections were treated with anti-estrogen receptor α and anti-estrogen receptor β antibodies. Results: The immunohistochemical features in the study and control groups were similar, demonstrating that tissues affected by aromatase-inhibitor-induced carpal tunnel syndrome are targets of direct estrogen action and that estrogen deprivation is correlated with disease etiogenesis. Surgery was effective in patient treatment. Conclusions: Aromatase-inhibitor-induced carpal tunnel syndrome represents a newly defined form of the disease. This syndrome represents one of the main causes of aromatase inhibitor discontinuation, due to its negative impact on the patient’s quality of life. The identification by clinicians of aromatase inhibitor use as a possible risk factor for carpal tunnel syndrome development is of essential importance, as early diagnosis and prompt management can improve patient compliance and overall breast cancer treatment outcomes. Full article
(This article belongs to the Section General Surgery)
Show Figures

Figure 1

18 pages, 4883 KiB  
Article
Analytical Solution for Longitudinal Response of Tunnel Structures Under Strike-Slip Fault Dislocation Considering Tangential Soil–Tunnel Contact Effect and Fault Width
by Helin Zhao, Qingzi Wu, Yao Zeng, Liangkun Zhou and Yumin Wen
Buildings 2025, 15(15), 2748; https://doi.org/10.3390/buildings15152748 - 4 Aug 2025
Viewed by 11
Abstract
The existence of fault zones in high-intensity earthquake areas has a serious impact on engineering structures, and the longitudinal response of tunnels crossing faults needs further in-depth research. To analyze the tangential contact effect between the surrounding rock and the tunnel lining, and [...] Read more.
The existence of fault zones in high-intensity earthquake areas has a serious impact on engineering structures, and the longitudinal response of tunnels crossing faults needs further in-depth research. To analyze the tangential contact effect between the surrounding rock and the tunnel lining, and the axial deformation characteristics of the tunnel structure, tangential foundation springs were introduced and a theoretical model for the longitudinal response of the tunnel under fault dislocation was established. Firstly, the tunnel was simplified as a finite-length beam. The normal and tangential springs were taken to represent the interaction between the soil and the lining. The fault’s free-field displacement was applied at the end of the normal foundation spring to simulate fault dislocation, and the differential equation for the longitudinal response of the tunnel structure was obtained. The analytical solution of the structural response was obtained using the Green’s function method. Then, the three-dimensional finite difference method was used to verify the effectiveness of the analytical model in this paper. The results show that the tangential contact effect between the surrounding rock and the lining has a significant impact on the longitudinal response of the tunnel structure. Ignoring this effect leads to an error of up to 35.33% in the peak value of the structural bending moment. Finally, the influences of the width of the fault zone, the soil stiffness of the fault zone, and the stiffness of the tunnel lining on the longitudinal response of the tunnel were explored. As the fault width increases, the internal force of the tunnel structure decreases. Increasing the lining concrete grade leads to an increase in the internal force of the structure. The increase in the elastic modulus of the surrounding rock in the fault area reduces the bending moment and shear force of the structure and increases the axial force. The research results can provide a theoretical basis for the anti-dislocation design of tunnels crossing faults. Full article
(This article belongs to the Special Issue New Challenges of Underground Structures in Earthquake Engineering)
Show Figures

Figure 1

25 pages, 5914 KiB  
Article
Numerical Simulation of Surrounding Rock Vibration and Damage Characteristics Induced by Blasting Construction in Bifurcated Small-Spacing Tunnels
by Mingshe Sun, Yantao Wang, Guangwei Dai, Kezhi Song, Xuyang Xie and Kejia Yu
Buildings 2025, 15(15), 2737; https://doi.org/10.3390/buildings15152737 - 3 Aug 2025
Viewed by 177
Abstract
The stability of the intermediate rock wall in the blasting construction of bifurcated small-spacing tunnels directly affects the construction safety of the tunnel structure. Clarifying the damage characteristics of the intermediate rock wall has significant engineering value for ensuring the safe and efficient [...] Read more.
The stability of the intermediate rock wall in the blasting construction of bifurcated small-spacing tunnels directly affects the construction safety of the tunnel structure. Clarifying the damage characteristics of the intermediate rock wall has significant engineering value for ensuring the safe and efficient construction of bifurcated tunnels. Based on the Tashan North Road Expressway Tunnel Project, this paper investigated the damage characteristics of the intermediate rock wall in bifurcated tunnels under different blasting construction schemes, using numerical simulation methods to account for the combined effects of in situ stress and blasting loads. The results were validated using comparisons with the measured damage depth of the surrounding rock in the ramp tunnels. The results indicate that the closer the location is to the starting point of the bifurcated tunnel, the thinner the intermediate rock wall and the more severe the damage to the surrounding rock. When the thickness of the intermediate rock wall exceeds 4.2 m, the damage zone does not penetrate through the wall. The damage to the intermediate rock wall exhibits an asymmetric “U”-shaped distribution, with greater damage on the side of the trailing tunnel at the section of the haunch and sidewall, while the opposite is true at the section of the springing. During each excavation step of the ramp and main-line tunnels, the damage to the intermediate rock wall is primarily induced by blasting loads. As construction progresses, the damage to the rock wall increases progressively under the combined effects of blasting loads and the excavation space effect. In the construction of bifurcated tunnels, the greater the distance between the headings of the leading and trailing tunnels is, the less damage will be inflicted on the intermediate rock wall. Constructing the tunnel with a larger cross-sectional area first will cause more damage to the intermediate rock wall. When the bench method is employed, an increase in the bench length leads to a reduction in the damage to the intermediate rock wall. The findings provide valuable insights for the selection of construction schemes and the protection of the intermediate rock wall when applying the bench method in the construction of bifurcated small-spacing tunnels. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

17 pages, 3061 KiB  
Article
Model-Agnostic Meta-Learning in Predicting Tunneling-Induced Surface Ground Deformation
by Wei He, Guan-Bin Chen, Wenlian Qian, Wen-Li Chen, Liang Tang and Xiangxun Kong
Symmetry 2025, 17(8), 1220; https://doi.org/10.3390/sym17081220 - 2 Aug 2025
Viewed by 195
Abstract
The present investigation presents the field measurement and prediction of tunneling-induced surface ground settlement in Tianjin Metro Line 7, China. The cross-section of a metro tunnel exhibits circular symmetry, thereby making it suitable for tunneling with a circular shield machine. The ground surface [...] Read more.
The present investigation presents the field measurement and prediction of tunneling-induced surface ground settlement in Tianjin Metro Line 7, China. The cross-section of a metro tunnel exhibits circular symmetry, thereby making it suitable for tunneling with a circular shield machine. The ground surface may deform during the tunneling stage. In the early stage of tunneling, few measurement data can be collected. To obtain a better usable prediction model, two kinds of neural networks according to the model-agnostic meta-learning (MAML) scheme are presented. One kind of deep learning strategy is a combination of the Back-Propagation Neural Network (BPNN) and the MAML model, named MAML-BPNN. The other prediction model is a mixture of the MAML model and the Long Short-Term Memory (LSTM) model, named MAML-LSTM. Founded on several measurement datasets, the prediction models of the MAML-BPNN and MAML-LSTM are successfully trained. The results show the present models possess good prediction ability for tunneling-induced surface ground settlement. Based on the coefficient of determination, the prediction result using MAML-LSTM is superior to that of MAML-BPNN by 0.1. Full article
Show Figures

Figure 1

21 pages, 8015 KiB  
Article
Differential Mechanism of 3D Motions of Falling Debris in Tunnels Under Extreme Wind Environments Induced by a Single Train and by Trains Crossing
by Wei-Chao Yang, Hong He, Yi-Kang Liu and Lun Zhao
Appl. Sci. 2025, 15(15), 8523; https://doi.org/10.3390/app15158523 (registering DOI) - 31 Jul 2025
Viewed by 105
Abstract
The extended operation of high-speed railways has led to an increased incidence of tunnel lining defects, with falling debris posing a significant safety threat. Within tunnels, single-train passage and trains-crossing events constitute the most frequent operational scenarios, both generating extreme aerodynamic environments that [...] Read more.
The extended operation of high-speed railways has led to an increased incidence of tunnel lining defects, with falling debris posing a significant safety threat. Within tunnels, single-train passage and trains-crossing events constitute the most frequent operational scenarios, both generating extreme aerodynamic environments that alter debris trajectories from free fall. To systematically investigate the aerodynamic differences and underlying mechanisms governing falling debris behavior under these two distinct conditions, a three-dimensional computational fluid dynamics (CFD) model (debris–air–tunnel–train) was developed using an improved delayed detached eddy simulation (IDDES) turbulence model. Comparative analyses focused on the translational and rotational motions as well as the aerodynamic load coefficients of the debris in both single-train and trains-crossing scenarios. The mechanisms driving the changes in debris aerodynamic behavior are elucidated. Findings reveal that under single-train operation, falling debris travels a greater distance compared with trains-crossing conditions. Specifically, at train speeds ranging from 250–350 km/h, the average flight distances of falling debris in the X and Z directions under single-train conditions surpass those under trains crossing conditions by 10.3 and 5.5 times, respectively. At a train speed of 300 km/h, the impulse of CFx and CFz under single-train conditions is 8.6 and 4.5 times greater than under trains-crossing conditions, consequently leading to the observed reduction in flight distance. Under the conditions of trains crossing, the falling debris is situated between the two trains, and although the wind speed is low, the flow field exhibits instability. This is the primary factor contributing to the reduced flight distance of the falling debris. However, it also leads to more pronounced trajectory deviations and increased speed fluctuations under intersection conditions. The relative velocity (CRV) on the falling debris surface is diminished, resulting in smaller-scale vortex structures that are more numerous. Consequently, the aerodynamic load coefficient is reduced, while the fluctuation range experiences an increase. Full article
(This article belongs to the Special Issue Transportation and Infrastructures Under Extreme Weather Conditions)
Show Figures

Figure 1

21 pages, 3822 KiB  
Article
Mechanisms of Tunnel Rockburst Development Under Complex Geostress Conditions in Plateau Regions
by Can Yang, Jinfeng Li, Yuan Qian, Wu Bo, Gen Zhang, Cheng Zhao and Kunming Zhao
Appl. Sci. 2025, 15(15), 8517; https://doi.org/10.3390/app15158517 (registering DOI) - 31 Jul 2025
Viewed by 135
Abstract
The Qinghai–Xizang Plateau and its surrounding regions have experienced intense tectonic activity, resulting in complex geostress environments that cause frequent and distinctive rockburst disasters in plateau tunnel engineering. In this study, numerical simulations were conducted to investigate the distribution characteristics and patterns of [...] Read more.
The Qinghai–Xizang Plateau and its surrounding regions have experienced intense tectonic activity, resulting in complex geostress environments that cause frequent and distinctive rockburst disasters in plateau tunnel engineering. In this study, numerical simulations were conducted to investigate the distribution characteristics and patterns of tunnel rockbursts in high-altitude regions, using geostress orientation, lateral pressure coefficient, and tunnel depth as the primary independent variables. Secondary development of FLAC3D 7.00.126 was carried out using FISH language to enable the recording and visualization of tangential stress, the Russense rockburst criterion, and elastic strain energy. Based on this, the influence mechanisms of these key geostress parameters on the location, extent, and intensity of rockbursts within tunnel cross sections were analyzed. Results indicate that geostress orientation predominantly affects the location of rockbursts, with the surrounding rock in the direction of the minimum principal stress on the tunnel cross section being particularly prone to rockburst risks. The lateral pressure coefficient primarily influences the rockburst intensity and pit range within local stress concentration zones, with higher values leading to greater rockburst intensity. Notably, when structural stress is sufficiently large, rockbursts may occur even in tunnels with shallow burial depths. Tunnel depth determines the magnitude of geostress, mainly affecting the overall risk and potential extent of rockbursts within the cross section, with greater depths leading to higher rockburst intensities and a wider affected area. Full article
Show Figures

Figure 1

21 pages, 3510 KiB  
Article
An Improved Optimal Cloud Entropy Extension Cloud Model for the Risk Assessment of Soft Rock Tunnels in Fault Fracture Zones
by Shuangqing Ma, Yongli Xie, Junling Qiu, Jinxing Lai and Hao Sun
Buildings 2025, 15(15), 2700; https://doi.org/10.3390/buildings15152700 - 31 Jul 2025
Viewed by 187
Abstract
Existing risk assessment approaches for soft rock tunnels in fault-fractured zones typically employ single weighting schemes, inadequately integrate subjective and objective weights, and fail to define clear risk. This study proposes a risk-grading methodology that integrates an enhanced game theoretic weight-balancing algorithm with [...] Read more.
Existing risk assessment approaches for soft rock tunnels in fault-fractured zones typically employ single weighting schemes, inadequately integrate subjective and objective weights, and fail to define clear risk. This study proposes a risk-grading methodology that integrates an enhanced game theoretic weight-balancing algorithm with an optimized cloud entropy extension cloud model. Initially, a comprehensive indicator system encompassing geological (surrounding rock grade, groundwater conditions, fault thickness, dip, and strike), design (excavation cross-section shape, excavation span, and tunnel cross-sectional area), and support (support stiffness, support installation timing, and construction step length) parameters is established. Subjective weights obtained via the analytic hierarchy process (AHP) are combined with objective weights calculated using the entropy, coefficient of variation, and CRITIC methods and subsequently balanced through a game theoretic approach to mitigate bias and reconcile expert judgment with data objectivity. Subsequently, the optimized cloud entropy extension cloud algorithm quantifies the fuzzy relationships between indicators and risk levels, yielding a cloud association evaluation matrix for precise classification. A case study of a representative soft rock tunnel in a fault-fractured zone validates this method’s enhanced accuracy, stability, and rationality, offering a robust tool for risk management and design decision making in complex geological settings. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

25 pages, 10205 KiB  
Article
RTLS-Enabled Bidirectional Alert System for Proximity Risk Mitigation in Tunnel Environments
by Fatima Afzal, Farhad Ullah Khan, Ayaz Ahmad Khan, Ruchini Jayasinghe and Numan Khan
Buildings 2025, 15(15), 2667; https://doi.org/10.3390/buildings15152667 - 28 Jul 2025
Viewed by 267
Abstract
Tunnel construction poses significant safety challenges due to confined spaces, limited visibility, and the dynamic movement of labourers and machinery. This study addresses a critical gap in real-time, bidirectional proximity monitoring by developing and validating a prototype early-warning system that integrates real-time location [...] Read more.
Tunnel construction poses significant safety challenges due to confined spaces, limited visibility, and the dynamic movement of labourers and machinery. This study addresses a critical gap in real-time, bidirectional proximity monitoring by developing and validating a prototype early-warning system that integrates real-time location systems (RTLS) with long-range (LoRa) wireless communication and ultra-wideband (UWB) positioning. The system comprises Arduino nano microcontrollers, organic light-emitting diode (OLED) displays, and piezo buzzers to detect and signal proximity breaches between workers and equipment. Using an action research approach, three pilot case studies were conducted in a simulated tunnel environment to test the system’s effectiveness in both static and dynamic risk scenarios. The results showed that the system accurately tracked proximity and generated timely alerts when safety thresholds were crossed, although minor delays of 5–8 s and slight positional inaccuracies were noted. These findings confirm the system’s capacity to enhance situational awareness and reduce reliance on manual safety protocols. The study contributes to the tunnel safety literature by demonstrating the feasibility of low-cost, real-time monitoring solutions that simultaneously track labour and machinery. The proposed RTLS framework offers practical value for safety managers and informs future research into automated safety systems in complex construction environments. Full article
(This article belongs to the Special Issue AI in Construction: Automation, Optimization, and Safety)
Show Figures

Figure 1

13 pages, 3887 KiB  
Article
Exploring 3D Roadway Modeling Techniques Using CAD and Unity3D
by Yingbing Yang, Yunchuan Sun and Yuhong Wang
Processes 2025, 13(8), 2399; https://doi.org/10.3390/pr13082399 - 28 Jul 2025
Viewed by 231
Abstract
To tackle the inefficiencies in 3D mine tunnel modeling and the tedious task of drawing centerlines, this study introduces a faster method for generating centerlines using CAD secondary development. Starting with the tunnel centerline, the research then dives into techniques for creating detailed [...] Read more.
To tackle the inefficiencies in 3D mine tunnel modeling and the tedious task of drawing centerlines, this study introduces a faster method for generating centerlines using CAD secondary development. Starting with the tunnel centerline, the research then dives into techniques for creating detailed 3D tunnel models. The team first broke down the steps and logic behind tunnel modeling, designing a 3D tunnel framework and its data structure—complete with key geometric components like traverse points, junctions, nodes, and centerlines. By refining older centerline drawing techniques, they built a CAD-powered tool that slashes time and effort. The study also harnessed advanced algorithms, such as surface fitting and curve lofting, to swiftly model tricky tunnel sections like curves and crossings. This method fixes common problems like warped or incomplete surfaces in linked tunnel models, delivering precise and lifelike 3D scenes for VR-based mining safety drills and simulations. Full article
Show Figures

Figure 1

20 pages, 3560 KiB  
Article
Study on Vibration Effects and Optimal Delay Time for Tunnel Cut-Blasting Beneath Existing Railways
by Ruifeng Huang, Wenqing Li, Yongxiang Zheng and Zhong Li
Appl. Sci. 2025, 15(15), 8365; https://doi.org/10.3390/app15158365 - 28 Jul 2025
Viewed by 181
Abstract
With the development of underground space in urban areas, the demand for tunneling through existing railways is increasing. The adverse effects of cut-blasting during the construction of tunnels under crossing existing railways are investigated. Combined with the principle of blasting seismic wave superposition, [...] Read more.
With the development of underground space in urban areas, the demand for tunneling through existing railways is increasing. The adverse effects of cut-blasting during the construction of tunnels under crossing existing railways are investigated. Combined with the principle of blasting seismic wave superposition, LS-DYNA numerical simulation is used to analyze the seismic wave superposition law under different superposition methods. This study also investigates the vibration reduction effect of millisecond blasting for cut-blasting under the different classes of surrounding rocks. The results show that the vibration reduction forms of millisecond blasting can be divided into separation and interference of waveform. Based on the principle of superposition of blasting seismic waves, vibration reduction through wave interference is further divided. At the same time, a new vibration reduction mode is proposed. This vibration reduction mode can significantly improve construction efficiency while improving damping efficiency. The new vibration reduction mode can increase the vibration reduction to 80% while improving construction efficiency. Additionally, there is a significant difference in the damping effect of different classes of surrounding rock on the blasting seismic wave. Poor-quality surrounding rock enhances the attenuation of seismic wave velocity and peak stress in the surrounding rock. In the Zhongliangshan Tunnel, a tunnel cut-blasting construction at a depth of 42 m, the best vibration reduction plan of Class III is 3 ms millisecond blasting, in which the surface points achieve separation vibration reduction. The best vibration reduction plan of Class V is 1 ms millisecond blasting, in which the surface points achieve a new vibration reduction mode. During the tunnel blasting construction process, electronic detonators are used for millisecond blasting of the cut-blasting. This method can reduce the vibration effects generated by blasting. The stability of the existing railway is ultimately guaranteed. This can improve construction efficiency while ensuring construction safety. This study can provide significant guidance for the blasting construction of the tunnel through the railway. Full article
Show Figures

Figure 1

18 pages, 3895 KiB  
Article
Long-Term Mechanical Response of Jinping Ultra-Deep Tunnels Considering Pore Pressure and Engineering Disturbances
by Ersheng Zha, Mingbo Chi, Jianjun Hu, Yan Zhu, Jun Guo, Xinna Chen and Zhixin Liu
Appl. Sci. 2025, 15(15), 8166; https://doi.org/10.3390/app15158166 - 23 Jul 2025
Viewed by 185
Abstract
As the world’s deepest hydraulic tunnels, the Jinping ultra-deep tunnels provide world-class conditions for research on deep rock mechanics under extreme conditions. This study analyzed the time-dependent behavior of different tunneling sections in the Jinping tunnels using the Nishihara creep model implemented in [...] Read more.
As the world’s deepest hydraulic tunnels, the Jinping ultra-deep tunnels provide world-class conditions for research on deep rock mechanics under extreme conditions. This study analyzed the time-dependent behavior of different tunneling sections in the Jinping tunnels using the Nishihara creep model implemented in Abaqus. Validated numerical simulations of representative cross-sections at 1400 m and 2400 m depths in the diversion tunnel reveal that long-term creep deformations (over a 20-year period) substantially exceed instantaneous excavation-induced displacements. The stress concentrations and strain magnitudes exhibit significant depth dependence. The maximum principal stress at a 2400 m depth reaches 1.71 times that at 1400 m, while the vertical strain increases 1.46-fold. Based on this, the long-term mechanical behavior of the surrounding rock during the expansion of the Jinping auxiliary tunnel was further calculated and predicted. It was found that the stress concentration at the top and bottom of the left sidewall increases from 135 MPa to 203 MPa after expansion, identifying these as critical areas requiring focused monitoring and early warnings. The total deformation of the rock mass increases by approximately 5 mm after expansion, with the cumulative deformation reaching 14 mm. Post-expansion deformation converges within 180 days, with creep deformation of 2.5 mm–3.5 mm observed in both sidewalls, accounts for 51.0% of the total deformation during expansion. The surrounding rock reaches overall stability three years after the completion of expansion. These findings establish quantitative relationships between the excavation depth, time-dependent deformation, and stress redistribution and support the stability design, risk management, and infrastructure for ultra-deep tunnels in a stress state at a 2400 m depth. These insights are critical to ensuring the long-term stability of ultra-deep tunnels and operational safety assessments. Full article
Show Figures

Figure 1

25 pages, 8466 KiB  
Article
Influence on Existing Underlying Metro Tunnel Deformation from Small Clear-Distance Rectangular Box Jacking: Monitoring and Simulation
by Chong Ma, Hao Zhou and Baosong Ma
Buildings 2025, 15(14), 2547; https://doi.org/10.3390/buildings15142547 - 19 Jul 2025
Viewed by 278
Abstract
Rectangular box jacking is widely used in densely developed urban areas. However, when conducted with limited clear distance near existing metro tunnels, it introduces considerable structural safety risks. This study investigates a large-section rectangular box jacking project in Suzhou that crosses a double-line [...] Read more.
Rectangular box jacking is widely used in densely developed urban areas. However, when conducted with limited clear distance near existing metro tunnels, it introduces considerable structural safety risks. This study investigates a large-section rectangular box jacking project in Suzhou that crosses a double-line metro tunnel with minimal vertical clear distance. Integrated field monitoring and finite element simulations were conducted to analyze the tunnel’s deformation behavior during various jacking phases. The results show that the upline tunnel experienced greater uplift than the downline tunnel, with maximum vertical displacement occurring directly beneath the jacking axis. The affected zone extended approximately 20 m beyond the pipe gallery boundaries. Both the tunnel vault and ballast bed exhibited vertical uplift, while the hance displaced laterally toward the launching shaft. These deformations showed clear stage-dependent patterns strongly influenced by the relative position of the jacking machine. Numerical simulations demonstrated that doubling the pipe–tunnel clearance reduced the vault displacement by 58.87% (upline) and 51.95% (downline). Increasing the pipe–slurry friction coefficient from 0.1 to 0.3 caused the hance displacement difference to rise from 0.12 mm to 0.36 mm. Further sensitivity analysis reveals that when the jacking machine is positioned directly above the tunnel, grouting pressure is the greatest influence on the structural response and must be carefully controlled. The proposed methodology and findings offer valuable insights for future applications in similar tunnelling projects. Full article
Show Figures

Figure 1

13 pages, 6867 KiB  
Article
A Closed-Form Solution for Water Inflow into Deeply Buried Arched Tunnels
by Yunbo Wei, Qiang Chang and Kexun Zheng
Water 2025, 17(14), 2121; https://doi.org/10.3390/w17142121 - 16 Jul 2025
Viewed by 213
Abstract
The analytical solutions for groundwater inflow into tunnels are usually developed under the condition of circular tunnels. However, real-world tunnels often have non-circular cross-sections, such as arched, lens-shaped, or egg-shaped profiles. Accurately assessing water inflow for these diverse tunnel shapes remains challenging. To [...] Read more.
The analytical solutions for groundwater inflow into tunnels are usually developed under the condition of circular tunnels. However, real-world tunnels often have non-circular cross-sections, such as arched, lens-shaped, or egg-shaped profiles. Accurately assessing water inflow for these diverse tunnel shapes remains challenging. To address this gap, this study developed a closed-form analytical solution for water inflow into a deeply buried arched tunnel using the conformal mapping method. When the tunnel circumference degenerates to a circle, the analytical solution degenerates to the widely used Goodman’s equation. The solution also showed excellent agreement with numerical simulations carried out using COMSOL. Based on the analytical solution, the impact of various factors on water inflow Q was further discussed: (1) Q decreases as the boundary distance D increases. And the boundary inclination angle (απ/2) significantly affects Q only when the boundary is close to the tunnel (D<20); (2) Q increases quickly with the upper arc radius r1, while it shows minimal variation with the change in the lower arc radius r2. The findings provide a theoretical foundation for characterizing water inflow into arched tunnels, thereby supporting improved tunnel planning and grouting system design. Full article
(This article belongs to the Topic Water Management in the Age of Climate Change)
Show Figures

Figure 1

20 pages, 5486 KiB  
Article
SE-TransUNet-Based Semantic Segmentation for Water Leakage Detection in Tunnel Secondary Linings Amid Complex Visual Backgrounds
by Renjie Song, Yimin Wu, Li Wan, Shuai Shao and Haiping Wu
Appl. Sci. 2025, 15(14), 7872; https://doi.org/10.3390/app15147872 - 14 Jul 2025
Viewed by 263
Abstract
Traditional manual inspection methods for tunnel lining leakage are subjective and inefficient, while existing models lack sufficient recognition accuracy in complex scenarios. An intelligent leakage identification model adaptable to complex backgrounds is therefore needed. To address these issues, a Vision Transformer (ViT) was [...] Read more.
Traditional manual inspection methods for tunnel lining leakage are subjective and inefficient, while existing models lack sufficient recognition accuracy in complex scenarios. An intelligent leakage identification model adaptable to complex backgrounds is therefore needed. To address these issues, a Vision Transformer (ViT) was integrated into the UNet architecture, forming an SE-TransUNet model by incorporating SE-Block modules at skip connections between the encoder-decoder and the ViT output. Using a hybrid leakage dataset partitioned by k-fold cross-validation, the roles of SE-Block and ViT modules were examined through ablation experiments, and the model’s attention mechanism for leakage features was analyzed via Score-CAM heatmaps. Results indicate: (1) SE-TransUNet achieved mean values of 0.8318 (IoU), 0.8304 (Dice), 0.9394 (Recall), 0.8480 (Precision), 0.9733 (AUC), 0.8562 (MCC), 0.9218 (F1-score), and 6.53 (FPS) on the hybrid dataset, demonstrating robust generalization in scenarios with dent shadows, stain interference, and faint leakage traces. (2) Ablation experiments confirmed both modules’ necessity: The baseline model’s IoU exceeded the variant without the SE module by 4.50% and the variant without both the SE and ViT modules by 7.04%. (3) Score-CAM heatmaps showed the SE module broadened the model’s attention coverage of leakage areas, enhanced feature continuity, and improved anti-interference capability in complex environments. This research may provide a reference for related fields. Full article
Show Figures

Figure 1

10 pages, 1194 KiB  
Proceeding Paper
Wind Tunnel Investigation of Wake Characteristics of a Wing with Winglets
by Stanimir Penchev, Hristian Panayotov and Martin Zikyamov
Eng. Proc. 2025, 100(1), 35; https://doi.org/10.3390/engproc2025100035 - 14 Jul 2025
Viewed by 166
Abstract
Aircraft performance metrics such as range and endurance are highly dependent on induced and vortex drag. There is a close relationship between wake structure and aerodynamic performance. In the present paper, the velocity field behind the model of a wing with winglet is [...] Read more.
Aircraft performance metrics such as range and endurance are highly dependent on induced and vortex drag. There is a close relationship between wake structure and aerodynamic performance. In the present paper, the velocity field behind the model of a wing with winglet is studied. The methodology and equipment for study in a low-speed wind tunnel ULAK–1 are presented. The pressure field was obtained using a five-hole pressure probe, which was positioned in a cross plane at 300 mm behind the wing trailing edge. The acquired experimental data are used to calculate the cross flow velocity and vorticity fields at an angle of attack of 6 degrees—around the maximum lift-to-drag ratio. The results are compared to the data of a model with planar wing. During the subsequent processing, coefficients of lift and induced drag can be obtained. Full article
Show Figures

Figure 1

Back to TopTop