Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (345)

Search Parameters:
Keywords = tungsten coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4701 KiB  
Article
Investigation of the Wear Resistance of Hard Anodic Al2O3/IF-WS2 Coatings Deposited on Aluminium Alloys
by Joanna Korzekwa, Adam Jarząbek, Marek Bara, Mateusz Niedźwiedź, Krzysztof Cwynar and Dariusz Oleszak
Materials 2025, 18(15), 3471; https://doi.org/10.3390/ma18153471 - 24 Jul 2025
Viewed by 262
Abstract
The anodic oxide layer’s porosity is considered a functional feature, acting as a reservoir of lubricants. This feature enables the design of self-lubricating systems that effectively reduce friction and wear. To improve the tribological performance of Al2O3 anodic coatings on [...] Read more.
The anodic oxide layer’s porosity is considered a functional feature, acting as a reservoir of lubricants. This feature enables the design of self-lubricating systems that effectively reduce friction and wear. To improve the tribological performance of Al2O3 anodic coatings on EN AW 5251 aluminium alloys, this paper presents a modification of the coating with tungsten disulfide (IF-WS2) nanopowder and its effect on coating resistance. The wear properties of Al2O3/IF-WS2 coatings in contact with a cast iron pin were investigated. The results include the analysis of the friction coefficient in the reciprocating motion without oil lubrication at two loads, the analysis of the wear intensity of the cast iron pin, the characterisation of wear scars, and the analysis of SGP parameters. Two-level factorial analysis showed that load and nanomodification significantly affected the load-bearing parameter Rk. Incorporation of the modifier, especially under higher loads, reduced the Rk value, thus improving the tribological durability of the contact pair. Both load and nanomodification had a notable impact on the coefficient of friction. The use of IF-WS2-modified coatings reduced the coefficient, and higher loads further enhanced this effect, by approximately 9% at a load of 0.3 MPa and 15% at a load of 0.6 MPa, indicating improved lubricating conditions under greater contact stress. Full article
(This article belongs to the Special Issue Surface Engineering in Materials (2nd Edition))
Show Figures

Figure 1

14 pages, 4651 KiB  
Article
Thermal-Induced Oxygen Vacancy Enhancing the Thermo-Chromic Performance of W-VO2−x@AA/PVP Nanoparticle Composite-Based Smart Windows
by Jiran Liang, Tong Wu, Chengye Zhang, Yunfei Bai, Dequan Zhang and Dangyuan Lei
Nanomaterials 2025, 15(14), 1084; https://doi.org/10.3390/nano15141084 - 12 Jul 2025
Viewed by 302
Abstract
Tungsten-doped vanadium dioxide (W-VO2) shows semiconductor-to-metal phase transition properties at room temperature, which is an ideal thermo-chromic smart window material. However, low visual transmittance and solar modulation limit its application in building energy saving. In this paper, a W-VO2−x@AA [...] Read more.
Tungsten-doped vanadium dioxide (W-VO2) shows semiconductor-to-metal phase transition properties at room temperature, which is an ideal thermo-chromic smart window material. However, low visual transmittance and solar modulation limit its application in building energy saving. In this paper, a W-VO2−x@AA core-shell nanoparticle is proposed to improve the thermo-chromic performance of W-VO2. Oxygen vacancies were used to promote the connection of W-VO2−x nanoparticles with L-ascorbic acid (AA) molecules. Oxygen vacancies were tuned in W-VO2 nanoparticles by thermal annealing temperatures in vacuum, and W-VO2−x@AA nanoparticles were synthesized by the hydrothermal method. A smart window was formed by dispersing W-VO2−x@AA core-shell nanoparticles into PVP evenly and spin-coating them on the surface of glass. The visual transmittance of this smart window reaches up to 67%, and the solar modulation reaches up to 12.1%. This enhanced thermo-chromic performance is related to the electron density enhanced by the AA surface molecular coordination effect through W dopant and oxygen vacancies. This work provides a new strategy to enhance the thermo-chromic performance of W-VO2 and its application in the building energy-saving field. Full article
(This article belongs to the Special Issue Nano Surface Engineering: 2nd Edition)
Show Figures

Figure 1

18 pages, 12442 KiB  
Article
Properties of Diamond-like Coatings in Tribological Systems Lubricated with Ionic Liquid
by Krystyna Radoń-Kobus and Monika Madej
Coatings 2025, 15(7), 799; https://doi.org/10.3390/coatings15070799 - 8 Jul 2025
Viewed by 358
Abstract
The paper shows the effect of using a lubricant in the form of an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6), on the tribological properties of a hydrogenated diamond-like coating (DLC) doped with tungsten a-C:H:W. The coatings were deposited on 100Cr6 steel by [...] Read more.
The paper shows the effect of using a lubricant in the form of an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6), on the tribological properties of a hydrogenated diamond-like coating (DLC) doped with tungsten a-C:H:W. The coatings were deposited on 100Cr6 steel by plasma-enhanced chemical vapor deposition PECVD. Tribological tests were carried out on a TRB3 tribometer in a rotary motion in a ball–disc combination. 100Cr6 steel balls were used as a counter-sample. Friction and wear tests were carried out for discs made of 100Cr6 steel and 100Cr6 steel discs with a DLC coating. They were performed under friction conditions with and without lubrication under 10 N and 15 N loads. The ionic liquid BMIM-PF6 was used as a lubricant. Coating thickness was observed on a scanning microscope, and the linear analysis of chemical composition on the cross-section was analyzed using the EDS analyzer. The confocal microscope with an interferometric mode was used for analysis of the geometric structure of the surface before and after the tribological tests. The contact angle of the samples for distilled water, diiodomethane and ionic liquid was tested on an optical tensiometer. The test results showed good cooperation of the DLC coating with the lubricant. It lowered the coefficient of friction in comparison to steel about 20%. This indicates the synergistic nature of the interaction: DLC coating–BMIM-PF6 lubricant–100Cr6 steel. Full article
(This article belongs to the Special Issue Tribological and Mechanical Properties of Coatings)
Show Figures

Figure 1

31 pages, 4803 KiB  
Review
Advanced HVOF-Sprayed Carbide Cermet Coatings as Environmentally Friendly Solutions for Tribological Applications: Research Progress and Current Limitations
by Basma Ben Difallah, Yamina Mebdoua, Chaker Serdani, Mohamed Kharrat and Maher Dammak
Technologies 2025, 13(7), 281; https://doi.org/10.3390/technologies13070281 - 3 Jul 2025
Viewed by 526
Abstract
Thermally sprayed carbide cermet coatings, particularly those based on tungsten carbide (WC) and chromium carbide (Cr3C2) and produced with the high velocity oxygen fuel (HVOF) process, are used in tribological applications as environmentally friendly alternatives to electroplated hard chrome [...] Read more.
Thermally sprayed carbide cermet coatings, particularly those based on tungsten carbide (WC) and chromium carbide (Cr3C2) and produced with the high velocity oxygen fuel (HVOF) process, are used in tribological applications as environmentally friendly alternatives to electroplated hard chrome coatings. These functional coatings are especially prevalent in the automotive industry, offering excellent wear resistance. However, their mechanical and tribological performances are highly dependent on factors such as feedstock powders, spray parameters, and service conditions. This review aims to gain deeper insights into the above elements. It also outlines emerging advancements in HVOF technology—including in situ powder mixing, laser treatment, artificial intelligence integration, and the use of novel materials such as rare earth elements or transition metals—which can further enhance coating performance and broaden their applications to sectors such as the aerospace and hydro-machinery industries. Finally, this literature review focuses on process optimization and sustainability, including environmental and health impacts, critical material use, and operational limitations. It uses a life cycle assessment (LCA) as a tool for evaluating ecological performance and addresses current challenges such as exposure risks, process control constraints, and the push toward safer, more sustainable alternatives to traditional WC and Cr3C2 cermet coatings. Full article
Show Figures

Figure 1

11 pages, 1699 KiB  
Article
Optimization of the LIBS Technique in Air, He, and Ar at Atmospheric Pressure for Hydrogen Isotope Detection on Tungsten Coatings
by Salvatore Almaviva, Lidia Baiamonte and Marco Pistilli
J. Nucl. Eng. 2025, 6(3), 22; https://doi.org/10.3390/jne6030022 - 1 Jul 2025
Viewed by 326
Abstract
In current and future fusion devices, detecting hydrogen isotopes, particularly tritium and deuterium, implanted or redeposited on the surface of Plasma-Facing Components (PFCs) will be increasingly important to ensure safe machine operations. The Laser-Induced Breakdown Spectroscopy (LIBS) technique has proven capable of performing [...] Read more.
In current and future fusion devices, detecting hydrogen isotopes, particularly tritium and deuterium, implanted or redeposited on the surface of Plasma-Facing Components (PFCs) will be increasingly important to ensure safe machine operations. The Laser-Induced Breakdown Spectroscopy (LIBS) technique has proven capable of performing this task directly in situ, without handling or removing PFCs, thus limiting analysis times and increasing the machine’s duty cycle. To increase sensitivity and the ability to discriminate between isotopes, LIBS analysis can be performed under different background gases at atmospheric pressure, such as air, He, and Ar. In this work, we present the results obtained on tungsten coatings enriched with deuterium and/or hydrogen as a deuterium–tritium nuclear fuel simulant, measured with the LIBS technique in air, He, and Ar at atmospheric pressure, and discuss the pros and cons of their use. The results obtained demonstrate that both He and Ar can improve the LIBS signal resolution of the hydrogen isotopes compared to air. However, using Ar has the additional advantage that the same procedure can also be used to detect He implanted in PFCs as a product of fusion reactions without any interference. Finally, the LIBS signal in an Ar atmosphere increases in terms of the signal-to-noise ratio (SNR), enabling the use of less energetic laser pulses to improve performance in depth profiling analyses. Full article
(This article belongs to the Special Issue Fusion Materials with a Focus on Industrial Scale-Up)
Show Figures

Graphical abstract

13 pages, 6653 KiB  
Article
Microstructure and Mechanical Properties of Tungsten Zircaloy-4 Diffusion Welding Interface
by Shaohong Wei, Yan Li, Ruiqiang Zhang, Bingfeng Wang, Tianjiao Liang and Wen Yin
Materials 2025, 18(12), 2823; https://doi.org/10.3390/ma18122823 - 16 Jun 2025
Viewed by 362
Abstract
The tungsten target block is widely used as a target material in spallation neutron sources. However, due to the poor corrosion resistance of tungsten, a corrosion-resistant metal layer needs to be coated on the surface. In this study, Zircaloy-4 coating on tungsten was [...] Read more.
The tungsten target block is widely used as a target material in spallation neutron sources. However, due to the poor corrosion resistance of tungsten, a corrosion-resistant metal layer needs to be coated on the surface. In this study, Zircaloy-4 coating on tungsten was prepared by hot isostatic pressure diffusion welding in the temperature range of 900 °C to 1400 °C. The microstructure and mechanical properties of the zirconium–tungsten interface were studied. The results show that a clear intermediate diffusion layer was formed at the interfaces, and no obvious defects were found. As the HIP temperature increased from 900 °C to 1400 °C, the thickness of the diffusion layer gradually increased from 0.28 μm to 10.74 μm. Composition and phase structure analysis of the intermediate diffusion layer showed that the main phase of the diffusion layer is ZrW2. The nanoindentation hardness results near the interface showed that the hardness of the ZrW2 diffusion layer was significantly higher than that of W and the zirconium alloy, reaching around 17.96 GPa. As the HIP temperature increased, the bonding strength between Zry-4 and W matrix first increased and then decreased, with the highest bonding strength of 83.9 MPa when the HIP temperature was 1000 °C. Full article
Show Figures

Figure 1

20 pages, 6335 KiB  
Article
Electroplating Composite Coatings of Nickel with Dispersed WO3 and MoO3 on Al Substrate to Increase Wear Resistance
by Petr Osipov, Roza Shayakhmetova, Danatbek Murzalinov, Azamat Sagyndykov, Ainur Kali, Anar Mukhametzhanova, Galymzhan Maldybayev and Konstantin Mit
Materials 2025, 18(12), 2781; https://doi.org/10.3390/ma18122781 - 13 Jun 2025
Viewed by 490
Abstract
Investigations of the synthesis of multicomponent coatings and their subsequent application to metal substrates to increase the wear resistance of materials is relevant for industry. Nickel compounds obtained from oxidized magnesia-iron nickel ores with a desorption rate of more than 94% were used [...] Read more.
Investigations of the synthesis of multicomponent coatings and their subsequent application to metal substrates to increase the wear resistance of materials is relevant for industry. Nickel compounds obtained from oxidized magnesia-iron nickel ores with a desorption rate of more than 94% were used to create Ni-MoO3-WO3 electroplating. Such composite samples formed from an aqueous alcohol solution reduced the content of sodium and ammonium chlorides. The annealing and dehydration of samples at a temperature of 725 °C in an air atmosphere made it possible to achieve the highest level of crystallinity. In this case, an isomorphic substitution of W atoms by Mo occurs, which is confirmed by electron paramagnetic resonance (EPR) spectroscopy studies. The invariance of the shape of the EPR spectrum with a sequential increase in microwave radiation power revealed the stability of the bonds between the particles. The surface morphology of Ni-MoO3-WO3 films deposited on an Al substrate is smooth and has low roughness. In this case, an increased degree of wear resistance has been achieved. Thus, a recipe for the formation of an electroplating with stable bonds between the components and increased wear resistance was obtained. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

15 pages, 2890 KiB  
Article
The Interface of Additive Manufactured Tungsten–Diamond Composites
by Xuehao Gao, Dongxu Cheng, Zhe Sun, Yihe Huang, Wentai Ouyang, Cunxiao Lan, Zhaoqing Li and Lin Li
Materials 2025, 18(11), 2574; https://doi.org/10.3390/ma18112574 - 30 May 2025
Viewed by 450
Abstract
Tungsten–diamond metal matrix composites (MMCs) fabricated via L-PBF show potential for applications in nuclear facility shielding, heat sinks, precision cutting/grinding tools, and aerospace hot-end components. In this paper, tungsten (W), diamond (D), and diamond with Ni coating (D-Ni) powders are used to fabricate [...] Read more.
Tungsten–diamond metal matrix composites (MMCs) fabricated via L-PBF show potential for applications in nuclear facility shielding, heat sinks, precision cutting/grinding tools, and aerospace hot-end components. In this paper, tungsten (W), diamond (D), and diamond with Ni coating (D-Ni) powders are used to fabricate W+D and W+(D-Ni) composites by L-PBF technology. The results show that at the interface of the W+D sample, the W powder melts while the D powder remains in a solid state during L-PBF processing, and W and C elements gradually diffuse into each other. Due to the high cooling rate of L-PBF processing, the C phase forms a diamond-like carbon (DLC) phase with an amorphous structure, and the W phase becomes a supersaturated solid solution of the C element. At the interface of the W+(D-Ni) sample, the diffusion capacity of Ni and W elements in the solid state is weaker than in the molten state. C and W elements diffuse into the Ni melt, forming a rich Ni area of the DLC phase, while Ni and W elements diffuse into the solid D powder, forming a lean Ni area of the DLC phase. In the rich Ni area of the DLC phase, Ni segregation leads to the precipitation of nanocrystals (several hundred nanometers), whereas in the lean Ni area of the DLC phase, the diffusion capacity of Ni and W elements in the solid D powder is limited, resulting in nanocrystalline sizes of only about tens of nanometers. During W dendrite growth, the addition of the Ni coating and the expelling of the C phenomenon leads to W grain refinement at the interface, which reduces the number and length of cracks in the W+(D-Ni) sample. This paper contributes to the theoretical development and engineering applications of tungsten–diamond MMCs fabricated by L-PBF. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

12 pages, 1878 KiB  
Article
Photocatalytic Properties of ZnO/WO3 Coatings Formed by Plasma Electrolytic Oxidation of a Zinc Substrate in a Tungsten-Containing Electrolyte
by Stevan Stojadinović, Dejan Pjević and Nenad Radić
Coatings 2025, 15(6), 657; https://doi.org/10.3390/coatings15060657 - 29 May 2025
Viewed by 485
Abstract
ZnO/WO3 coatings were synthesized by the plasma electrolytic oxidation of zinc in an alkaline phosphate electrolyte (supporting electrolyte, SE) with the addition of WO3 particles or tungstosilicic acid (WSiA, H4SiW12O40) at concentrations of up to [...] Read more.
ZnO/WO3 coatings were synthesized by the plasma electrolytic oxidation of zinc in an alkaline phosphate electrolyte (supporting electrolyte, SE) with the addition of WO3 particles or tungstosilicic acid (WSiA, H4SiW12O40) at concentrations of up to 1.0 g/L. These coatings were intended for the decomposition of methyl orange (MO) through photocatalysis. The morphology, chemical composition, crystal structure and absorption properties of the coatings were investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, wavelength-dispersive X-ray spectroscopy, X-ray diffraction, photoelectron spectroscopy and diffuse reflectance spectroscopy. Under artificial sunlight, the PA of the coatings was investigated using MO decomposition. The photocatalytic activity (PA) of the ZnO/WO3 coatings was higher than that of the ZnO obtained in SE. The decrease in the recombination rate of photo-generated electron/hole pairs due to the coupling of ZnO and WO3 is related to the increased PA. The PA for ZnO and the most photocatalytically active ZnO/WO3 was around 72% and 96%, respectively, after 8 h of irradiation. A mechanism for MO photo-degradation by the ZnO/WO3 photocatalyst was also proposed. Full article
Show Figures

Figure 1

26 pages, 4568 KiB  
Article
Optimization of ATIG Weld Based on a Swarm Intelligence Approach: Application to the Design of Welding in Selected Manufacturing Processes
by Kamel Touileb and Sahbi Boubaker
Crystals 2025, 15(6), 523; https://doi.org/10.3390/cryst15060523 - 29 May 2025
Viewed by 434
Abstract
Tungsten Inert Gas (TIG) welding is a widespread welding process used in the industry for high-quality joints. However, this welding process suffers from lower productivity. Activated Tungsten Inert Gas (ATIG) is a variant of the TIG that aims to increase the depth penetration [...] Read more.
Tungsten Inert Gas (TIG) welding is a widespread welding process used in the industry for high-quality joints. However, this welding process suffers from lower productivity. Activated Tungsten Inert Gas (ATIG) is a variant of the TIG that aims to increase the depth penetration capability of conventional TIG welding. This is achieved by applying a thin coating of activating flux material onto the workpiece surface before welding. This work investigates the effect of the thermophysical properties of individual metallic oxide fluxes on 316L stainless steel weld morphology. Four levels of current intensity (120, 150, 180, 200 A) are considered. The weld speed up to 15 cm/min and arc length of 2 mm are maintained constant. Thirteen oxides were tested under various levels of current intensity in addition to multiple thermophysical properties combinations, and the depth penetration (D) and the aspect ratio (R) were recorded. This process has provided 52 combinations (13 oxides * 4 currents). Based on the numerical observations, linear and nonlinear models for describing the effect of the thermophysical parameters on the weld characteristics were tuned using a particle swarm optimization algorithm. While the linear model provided good prediction accuracy, the nonlinear exponential model outperformed the linear one for the depth yielding a mean absolute percentage error of 17%, a coefficient of determination of 0.8266, and a root mean square error of 0.9665 mm. The inverse optimization process, where the depth penetration ranged from 1.5 mm to 12 mm, thus covering a large spectrum of industries, the automotive, power plants, and construction industries, was solved to determine the envelopes’ lower and upper limits of optimal oxide thermophysical properties. The results that allowed the design of the fluxes to be used in advance were promising since they provided the oxide designer with the numerical ranges of the oxide components to achieve the targeted depths. Future directions of this work can be built around investigating additional nonlinear models, including saturation and dead-zone, to efficiently estimate the effect of the thermophysical properties on the welding process of other materials. Full article
Show Figures

Figure 1

21 pages, 7218 KiB  
Article
Fabrication of Large-Aspect-Ratio Micro Tool Electrodes by Bipolar Pulsed Vertical Liquid Membrane Method
by Xiujuan Wu, Li Wang, Weijing Kong, Tao Yang, Yusen Hang and Yongbin Zeng
Micromachines 2025, 16(6), 636; https://doi.org/10.3390/mi16060636 - 28 May 2025
Viewed by 333
Abstract
To achieve efficient preparation of microfine tool electrodes with a large aspect ratio, a bipolar pulse vertical liquid membrane electrochemical etching technique was proposed. The difference in current density distribution on the surface of tungsten rods under single-ended and double-ended vertical liquid membrane [...] Read more.
To achieve efficient preparation of microfine tool electrodes with a large aspect ratio, a bipolar pulse vertical liquid membrane electrochemical etching technique was proposed. The difference in current density distribution on the surface of tungsten rods under single-ended and double-ended vertical liquid membrane methods was analyzed using COMSOL software. The effects of negative voltage and pulse width on the distribution of electrolytic products and electrode preparation were investigated. It was found that when a large number of hydrogen bubbles were generated on the surface of the electrode, the electrode lost the protection of the diffusion layer, and the length was drastically shortened. When the pulse width was large, the electrode surface was covered with a coating layer of insoluble electrolysis product, and the shortening of electrode length was suppressed. Subsequently, the effects of forward voltage and bias on electrode preparation were investigated for large pulse widths. The optimal parameters are as follows: electrolyte concentration of 0.5 M, forward voltage of 4 V, negative voltage of −2 V, pulse period of 50 microseconds, and pulse width of 40 microseconds. Finally, the tool electrode with an average diameter of about 23.8 μm and an aspect ratio of 91.2 was prepared. Full article
Show Figures

Figure 1

19 pages, 6709 KiB  
Article
Influence of Cutting Parameters and MQL on Surface Finish and Work Hardening of Inconel 617
by Rachel Lai, Andres Hurtado Carreon, Jose M. DePaiva and Stephen C. Veldhuis
Appl. Sci. 2025, 15(11), 5869; https://doi.org/10.3390/app15115869 - 23 May 2025
Viewed by 444
Abstract
Inconel 617 is a nickel-based superalloy that is a primary candidate for use in next-generation nuclear applications such as the Gen IV Molten Salt Reactor (MSR) and Very-High-Temperature Reactor (VHTR) due to its corrosion and oxidation resistance and high strength in elevated temperatures. [...] Read more.
Inconel 617 is a nickel-based superalloy that is a primary candidate for use in next-generation nuclear applications such as the Gen IV Molten Salt Reactor (MSR) and Very-High-Temperature Reactor (VHTR) due to its corrosion and oxidation resistance and high strength in elevated temperatures. However, Inconel 617 machinability is poor due to its hardness and tendency to work harden during manufacturing. While the machinability of its sister grade, Inconel 718, has been widely studied and understood due to its applications in aerospace, there is a lack of knowledge regarding the behaviour of Inconel 617 in machining. To address this gap, this paper investigates the influence of cutting parameters in the turning of Inconel 617 and compares the impact of Minimum Quantity Lubrication (MQL) turning against conventional coolant. This investigation was performed through three distinct studies: Study A compared the performance of commercial coatings, Study B investigated the influence of cutting parameters on the surface finish, and Study C compared the performance of MQL to flood coolant. This work demonstrated that AlTiN coatings performed the best and doubled the tool life of a standard tungsten carbide insert compared to its uncoated form. Additionally, the feed rate had the largest impact on the surface roughness, especially at high feeds, with the best surface quality found at the lowest feed rate of 0.075 mm/rev. The utilization of MQL had mixed results compared to a conventional flood coolant in the machining of Inconel 617. Surface finish was improved as high as 47% under MQL conditions compared to the flood coolant; however, work hardening at the surface was also shown to increase by 10–20%. Understanding this, it is possible that MQL can completely remove the need for a conventional coolant in the machining of Inconel 617 components for the manufacturing of next-generation reactors. Full article
(This article belongs to the Special Issue Advances in Manufacturing and Machining Processes)
Show Figures

Figure 1

12 pages, 1455 KiB  
Article
Hydrothermal Synthesis of Nanocomposites Combining Tungsten Trioxide and Zinc Oxide Nanosheet Arrays for Improved Photocatalytic Degradation of Organic Dye
by Chien-Yie Tsay, Tao-Ying Hsu, Gang-Juan Lee, Chin-Yi Chen, Yu-Cheng Chang, Jing-Heng Chen and Jerry J. Wu
Nanomaterials 2025, 15(10), 772; https://doi.org/10.3390/nano15100772 - 21 May 2025
Viewed by 414
Abstract
Both tungsten trioxide (WO3) nanosheet arrays and tungsten trioxide/zinc oxide (WO3/ZnO) nanocomposites were grown on fluorine-doped tin oxide (FTO) coated glass slides using a hydrothermal method to develop a visible-light-driven photocatalyst with easy reusability. Field emission scanning electron microscopy [...] Read more.
Both tungsten trioxide (WO3) nanosheet arrays and tungsten trioxide/zinc oxide (WO3/ZnO) nanocomposites were grown on fluorine-doped tin oxide (FTO) coated glass slides using a hydrothermal method to develop a visible-light-driven photocatalyst with easy reusability. Field emission scanning electron microscopy (FE-SEM) observations confirmed the formation of irregular oxide nanosheet arrays on the FTO surfaces. X-ray diffraction (XRD) analysis revealed the presence of hexagonal WO3 and wurtzite ZnO crystal phases. UV-Vis diffuse reflectance spectroscopy showed that integrating ZnO nanostructures with WO3 nanosheets resulted in a blue shift of the absorption edge and a reduced absorption capacity in the visible-light region. Photoluminescence (PL) spectra indicated that the WO 0.5/ZnO 2.0 sample exhibited the lowest electron-hole recombination rate among the WO3/ZnO nanocomposite sample. Photocatalytic degradation tests demonstrated that all WO3/ZnO nanocomposite samples had higher photodegradation rates for a 10 ppm methylene blue (MB) aqueous solution under visible-light irradiation compared to pristine WO3 nanosheet arrays. Among them, the WO 0.5/ZnO 2.0 sample showed the highest photocatalytic efficiency. Furthermore, it exhibited excellent recyclability and high photodegradation stability over three cycles. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

18 pages, 15634 KiB  
Article
Investigations on Cavitation Erosion and Wear Resistance of High-Alloy WC Coatings Manufactured by Electric Arc Spraying
by Edmund Levărdă, Dumitru-Codrin Cîrlan, Daniela Lucia Chicet, Marius Petcu and Stefan Lucian Toma
Materials 2025, 18(10), 2259; https://doi.org/10.3390/ma18102259 - 13 May 2025
Viewed by 401
Abstract
Due to the low hardness of carbon steels, their low resistance to wear, and erosion by cavitation and corrosion, it is necessary to protect the surfaces of parts with layers capable of ensuring the properties listed above. In this paper, we started from [...] Read more.
Due to the low hardness of carbon steels, their low resistance to wear, and erosion by cavitation and corrosion, it is necessary to protect the surfaces of parts with layers capable of ensuring the properties listed above. In this paper, we started from the premise that adding tungsten carbide (WC) powders during the electric arc spraying process of stainless steel would lead to obtaining a composite material coating resistant to wear and erosion at high temperatures, with relatively lower manufacturing costs. Thus, our research compared the following two types of coatings: a highly alloyed layer with WC, Cr, and TiC (obtained from 97MXC core wires) and a 60T/WC coating (obtained from a 60T solid-section wire to which WC was added), in terms of microstructure, mechanical properties, dry friction wear, and behaviour at erosion by cavitation (EC). The results of our research demonstrated that although the 60T/WC coating had lower erosion by cavitation behaviour than the 97MXC one, it can still be considered as a relatively good and inexpensive solution for protecting C15 steel parts. Full article
(This article belongs to the Special Issue Friction, Corrosion and Protection of Material Surfaces)
Show Figures

Figure 1

13 pages, 8592 KiB  
Article
Magnetron-Sputtered Amorphous Carbon Films for Aluminium Proton-Exchange-Membrane Fuel Cell Bipolar Plates
by Parnia Navabpour, Kun Zhang, Giuseppe Sanzone, Susan Field and Hailin Sun
Physchem 2025, 5(2), 18; https://doi.org/10.3390/physchem5020018 - 4 May 2025
Viewed by 2782
Abstract
Aluminium is an attractive material for proton-exchange-membrane fuel cell bipolar plates as it has a much lower density than steel and is easier to form than both steel and graphite. This work focused on the development of amorphous carbon films deposited using closed-field [...] Read more.
Aluminium is an attractive material for proton-exchange-membrane fuel cell bipolar plates as it has a much lower density than steel and is easier to form than both steel and graphite. This work focused on the development of amorphous carbon films deposited using closed-field unbalanced magnetron sputtering (CFUBMS) in order to improve the corrosion resistance of aluminium bipolar plates and to enhance fuel cell performance and durability. Chromium and tungsten adhesion layers were used for the coatings. It was possible to achieve good electrical conductivity and high electrochemical corrosion resistance up to 70 °C on polished Aluminium alloy 6082 by tuning the deposition parameters. Coatings with a tungsten adhesion layer showed better corrosion resistance than those with a chromium adhesion layer. In situ, accelerated stress testing of single cells was performed using uncoated and coated Al6082 bipolar plates. Both coatings resulted in improved fuel cell performance compared to uncoated aluminium when used on the cathode side of the fuel cell. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

Back to TopTop