Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = tunable fano resonances

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2760 KB  
Article
Interpretation of Mode-Coupled Localized Plasmon Resonance and Sensing Properties
by Daisuke Tanaka, Yudai Kawano, Akinori Ikebe and Tien Thanh Pham
Photonics 2026, 13(1), 68; https://doi.org/10.3390/photonics13010068 - 12 Jan 2026
Viewed by 83
Abstract
Plasmonic nanostructures support localized surface plasmon resonances (LSPRs) which exhibit intense light–matter interactions, producing unique optical features such as high near-field enhancements and sharp spectral signatures. Among these, plasmon hybridization (PH) and Fano resonance (FR) are two key phenomena that enable tunable spectral [...] Read more.
Plasmonic nanostructures support localized surface plasmon resonances (LSPRs) which exhibit intense light–matter interactions, producing unique optical features such as high near-field enhancements and sharp spectral signatures. Among these, plasmon hybridization (PH) and Fano resonance (FR) are two key phenomena that enable tunable spectral responses, yet their classification is often ambiguous when based only on geometry or extinction spectra. In this study, we systematically investigate four representative nanostructures: a simple nanogap dimer (i-type structure), a dolmen structure, a heptamer nanodisk cluster, and a nanoshell particle. We utilize discrete dipole approximation (DDA) to analyze these structures. By separating scattering and absorption spectra and introducing quantitative spectral metrics together with near-field electric-field vector mapping, we provide a unified procedure to interpret resonance origins beyond intensity-only near-field plots. The results show that PH-like behavior can emerge in a dolmen structure commonly regarded as a Fano resonator, while FR-like characteristics can appear in the i-type structure under specific conditions, underscoring the importance of scattering/absorption decomposition and vector-field symmetry. We further evaluate refractive-index sensitivities and discuss implications for plasmonic sensing design. Full article
(This article belongs to the Special Issue Optical Metasurface: Applications in Sensing and Imaging)
Show Figures

Figure 1

11 pages, 2536 KB  
Communication
Nonlinearly Tunable Fano Resonance in One-Dimensional Light Tunneling Heterostructure
by Wenzhe He, Wei Huang, Lei Yang, Fei Wang, Quanying Wu and Yongqiang Chen
Photonics 2026, 13(1), 14; https://doi.org/10.3390/photonics13010014 - 24 Dec 2025
Viewed by 290
Abstract
In this paper, we theoretically investigate nonlinearly tunable Fano resonance by employing a light tunneling heterostructure with one-dimensional defective photonic crystals and a lossy metallic film. We find that the phenomenon of Fano resonance can be created by coupling the Fabry–Pérot cavity mode [...] Read more.
In this paper, we theoretically investigate nonlinearly tunable Fano resonance by employing a light tunneling heterostructure with one-dimensional defective photonic crystals and a lossy metallic film. We find that the phenomenon of Fano resonance can be created by coupling the Fabry–Pérot cavity mode with the topological optical Tamm state. We emphasize that the local field confinement induced by Fano resonance can ensure that the large nonlinear permittivity of metal can be utilized sufficiently. We show that the Fano-type transmission spectrum can be actively modulated by altering the input power intensity of light. We also illustrate that the hysteresis effects and nonreciprocal transmission behaviors can be obtained directly by using the Fano resonant heterostructure, allowing for the realization of high-performance all-optical switches and diodes. Our findings may open up new prospects for the nonlinear topological photonic systems with classical analogue–quantum phenomena. Full article
(This article belongs to the Special Issue Photonic Crystals: Physics and Devices, 2nd Edition)
Show Figures

Figure 1

18 pages, 3322 KB  
Article
Refractive Index Sensing Properties of Metal–Dielectric Yurt Tetramer Metasurface
by Shuqi Lv, Paerhatijiang Tuersun, Shuyuan Li, Meng Wang and Bojun Pu
Nanomaterials 2025, 15(20), 1570; https://doi.org/10.3390/nano15201570 - 15 Oct 2025
Viewed by 659
Abstract
The metal–dielectric hybrid tetramer metasurface has received a lot of attention in the field of optical sensing owing to the excellent refractive index sensing performance. However, achieving simultaneous high-quality Q-factor, polarization insensitivity, multi-band tunability across visible to near-infrared spectra, and ultra-narrow linewidth [...] Read more.
The metal–dielectric hybrid tetramer metasurface has received a lot of attention in the field of optical sensing owing to the excellent refractive index sensing performance. However, achieving simultaneous high-quality Q-factor, polarization insensitivity, multi-band tunability across visible to near-infrared spectra, and ultra-narrow linewidth is an urgent problem to be solved. To overcome this challenge, we proposed a metal–dielectric yurt tetramer metasurface. The finite-difference time-domain method was used to simulate the sensing properties. We explored the physical mechanism of different resonance modes, optimized the structure parameters of the metasurface, and investigated the influence of incident light and environmental parameters on the sensing properties. The results show that the proposed structure not only possesses a high Q-factor but also exhibits excellent wavelength tunability in the visible to near-infrared band and has polarization insensitivity. By skillfully introducing the structural size perturbation, the surface plasmon resonance mode and two Fano resonance modes are successfully excited at the wavelengths of 737.43 nm, 808.99 nm, and 939.50 nm. The light–matter interaction at the Fano resonance frequencies is highly enhanced so that a maximum refractive index sensitivity, figures of merit (FOM), and Q-factor of 500.94 nm/RIU, 491.12 RIU−1, and 793.13 are obtained. The narrowest full width at half maximum (FWHM) is 1.02 nm, respectively. This work provides a theoretical basis for the realization of a high-performance metasurface refractive index sensor. Full article
(This article belongs to the Special Issue Theoretical Calculation Study of Nanomaterials: 2nd Edition)
Show Figures

Figure 1

16 pages, 2223 KB  
Article
Plasmonic Sensing Design for Measuring the Na+/K+ Concentration in an Electrolyte Solution Based on the Simulation of Optical Principles
by Hongfu Chen, Shubin Yan, Yi Sun, Youbo Hu, Taiquan Wu and Yuntang Li
Photonics 2025, 12(8), 758; https://doi.org/10.3390/photonics12080758 - 28 Jul 2025
Viewed by 1234
Abstract
Based on the theory of optical sensing, we propose a high-precision plasmonic refractive index nanosensor, which consists of a symmetric rectangular waveguide and a circular ring containing a rectangular cavity. The designed novel tunable micro-resonant circular cavity filter based on surface plasmon excitations [...] Read more.
Based on the theory of optical sensing, we propose a high-precision plasmonic refractive index nanosensor, which consists of a symmetric rectangular waveguide and a circular ring containing a rectangular cavity. The designed novel tunable micro-resonant circular cavity filter based on surface plasmon excitations is able to confine light to sub-wavelength dimensions. The data show that different geometrical factors have different effects on sensing, with the geometry of the rectangular cavity and the radius of the circular ring being the key factors affecting the Fano resonance. Furthermore, the resonance bifurcation enables the structure to achieve a tunable dual Fano resonance system. The structure was tuned to obtain optimal sensitivity (S) and figure of merit values up to 3066 nm/RIU and 78. The designed structure has excellent sensing performance with sensitivities of 0.4767 nm·(mg/dL1) and 0.6 nm·(mg/dL1) in detecting Na+ and K+ concentrations in the electrolyte solution, respectively, and can be easily achieved by the spectrometer. The wavelength accuracy of 0.001 nm can be easily achieved by a spectrum analyzer, which has a broad application prospect in the field of optical integration. Full article
Show Figures

Figure 1

14 pages, 2681 KB  
Article
Waveguide-Assisted Magneto-Optical Effects in 1D Garnet/Co/Au Plasmonic Crystals
by Tatiana Murzina, Andrey Dotsenko, Irina Kolmychek, Vladimir Novikov, Nikita Gusev, Ilya Fedotov and Sergei Gusev
Photonics 2025, 12(7), 728; https://doi.org/10.3390/photonics12070728 - 17 Jul 2025
Viewed by 655
Abstract
Magneto-plasmonic structures have been a subject of tremendous attention of researchers in recent decades as they provide unique approaches regarding the efficient control of optical, magneto-optical, and nonlinear-optical effects. Among others, magneto-plasmonic crystals (MPCs) have become one of the most studied structures, known [...] Read more.
Magneto-plasmonic structures have been a subject of tremendous attention of researchers in recent decades as they provide unique approaches regarding the efficient control of optical, magneto-optical, and nonlinear-optical effects. Among others, magneto-plasmonic crystals (MPCs) have become one of the most studied structures, known for their high-quality tunable resonant optical properties. Here, we present the results of experimental and numerical studies on the functional magneto-optical (MO) response of planar 1D plasmonic crystals composed of Co/Au stripes of submicron period on the surface of a 3 μm thick rare-earth garnet layer. The experimental and numerical studies confirm that the wavelength–angular spectra of such structures contain a set of tunable resonant features in their optical and magneto-optical response, associated with the excitation of (i) surface plasmon polaritons at the Co/Au grating–garnet interface, as well as (ii) waveguide (WG) modes propagating in the garnet slab. A comparison of the MO effects in the transversal and longitudinal magnetization of the plasmonic structures is presented. We show that the most efficient Fano-type MPC magneto-optical response is realized for the WG modes of the first order for the longitudinal magnetization of the structure. Further perspectives regarding the optimization of this type of plasmonic crystal are discussed. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

10 pages, 5339 KB  
Article
Plasmonic Nanosensors Based on Highly Tunable Multiple Fano Resonances Induced in Metal–Insulator–Metal Waveguide Systems
by Ping Jiang and Yilin Wang
Nanomaterials 2025, 15(9), 686; https://doi.org/10.3390/nano15090686 - 30 Apr 2025
Cited by 3 | Viewed by 1824
Abstract
We designed and investigated a plasmonic nanosensor with ultra-high sensitivity and tunability, which is composed of a metal–insulator–metal (MIM) waveguide integrated with a side-coupled resonator (SR) and metal baffle. Its high performance is derived from Fano resonance, which is generated by the interaction [...] Read more.
We designed and investigated a plasmonic nanosensor with ultra-high sensitivity and tunability, which is composed of a metal–insulator–metal (MIM) waveguide integrated with a side-coupled resonator (SR) and metal baffle. Its high performance is derived from Fano resonance, which is generated by the interaction between the modes of the SR and the baffle, and it can be precisely tuned by adjusting the parameters of the SR. Further investigation based on the incorporation of a side-coupled rectangular-ring resonator (SRR) generates three distinct Fano resonances, and the Fano resonance can be accurately tuned by manipulating the parameters of the resonators within the system. Our proposed plasmonic system can serve as a highly sensitive refractive index nanosensor, achieving a sensitivity up to 1150 nm/RIU. The plasmonic structures featuring independently tunable triple Fano resonances open new avenues for applications in nanosensing, bandstop filtering, and slow-light devices. Full article
(This article belongs to the Special Issue Photonics and Plasmonics of Low-Dimensional Materials)
Show Figures

Figure 1

13 pages, 2953 KB  
Article
Voltage Tunable Spoof Surface Plasmon Polariton Waveguide Loaded with Ferroelectric Resonators
by Jiaxiong Shen, Shun Lei, Mingzhe Hu, Chaobiao Zhou, Shengyun Luo and Chuanbin Wang
Coatings 2025, 15(4), 378; https://doi.org/10.3390/coatings15040378 - 23 Mar 2025
Viewed by 1942
Abstract
A real-time tunable planar plasmonic waveguide based on a voltage-adjustable ferroelectric resonator is designed and investigated. The laminated ferroelectric compound resonator is composed of a ferroelectric Ba0.85Ca0.15Zr0.9Ti0.1O3 (BCZT) layer, a PCB layer, as well [...] Read more.
A real-time tunable planar plasmonic waveguide based on a voltage-adjustable ferroelectric resonator is designed and investigated. The laminated ferroelectric compound resonator is composed of a ferroelectric Ba0.85Ca0.15Zr0.9Ti0.1O3 (BCZT) layer, a PCB layer, as well as a localized spoof plasmonic metal layer, where the BCZT layer is beneficial for enhancing the voltage tunability in the spoof surface plasmon polariton (SSPP) waveguide. The simulated results show that the tuning range of the notch in the transmission curve, generated by the coupling between the ferroelectric compound resonator and the plasmonic waveguide, can achieve a variation of up to 8.8% thanks to the large tunability value in the BCZT ferroelectric layer. In addition, the notches consist of Fano resonant frequencies, the generation mechanism of which is elaborately discussed in terms of the temporal coupled mode theory. Full article
Show Figures

Figure 1

10 pages, 2457 KB  
Article
Angle-Controlled Nanospectrum Switching from Lorentzian to Fano Lineshapes
by Fu Tang, Qinyang Zhong, Xiaoqiuyan Zhang, Yuxuan Zhuang, Tianyu Zhang, Xingxing Xu and Min Hu
Nanomaterials 2024, 14(23), 1932; https://doi.org/10.3390/nano14231932 - 30 Nov 2024
Viewed by 1286
Abstract
The tunability of spectral lineshapes, ranging from Lorentzian to Fano profiles, is essential for advancing nanoscale photonic technologies. Conventional far-field techniques are insufficient for studying nanoscale phenomena, particularly within the terahertz (THz) range. In this work, we use a U-shaped resonant ring on [...] Read more.
The tunability of spectral lineshapes, ranging from Lorentzian to Fano profiles, is essential for advancing nanoscale photonic technologies. Conventional far-field techniques are insufficient for studying nanoscale phenomena, particularly within the terahertz (THz) range. In this work, we use a U-shaped resonant ring on a waveguide substrate to achieve precise modulation of Lorentzian, Fano, and antiresonance profiles. THz scattering scanning near-field optical microscopy (s-SNOM) reveals the underlying physical mechanism of these transitions, driven by time-domain phase shifts between the background excitation from the waveguide and the resonance of the U-shaped ring. Our approach reveals a pronounced asymmetry in the near-field response, which remains undetectable in far-field systems. The ability to control spectral lineshapes at the nanoscale presents promising applications in characterizing composite nanoresonators and developing nanoscale phase sensors. Full article
Show Figures

Figure 1

8 pages, 3430 KB  
Communication
Fano Resonance-Associated Plasmonic Circular Dichroism in a Multiple-Dipole Interaction Born–Kuhn Model
by Wanlu Bian, Guodong Zhu, Fengcai Ma, Tongtong Zhu and Yurui Fang
Sensors 2024, 24(23), 7517; https://doi.org/10.3390/s24237517 - 25 Nov 2024
Viewed by 1340
Abstract
Plasmon chirality has garnered significant interest in sensing application due to its strong electromagnetic field localization and highly tunable optical properties. Understanding the effects of mode coupling in chiral structures on chiral optical activity is particularly important for advancing this field. In this [...] Read more.
Plasmon chirality has garnered significant interest in sensing application due to its strong electromagnetic field localization and highly tunable optical properties. Understanding the effects of mode coupling in chiral structures on chiral optical activity is particularly important for advancing this field. In this work, we numerically investigate the circular dichroism (CD) of elliptical nanodisk dimers arranged in an up-and-down configuration with a specific rotation angle. By adjusting the inter-particle distance and geometric parameters, we introduce the coupling between dipole and electric hexapole modes, forming an extended Born–Kuhn model that achieves strong CD. Our findings show that the coupling of dipole modes with electric hexapole modes in elliptical nanodisks can also show obvious Fano resonance and a strong CD effect, and the structure with the largest Fano asymmetry factor shows the highest CD. In addition, CD spectroscopy is highly sensitive to changes in the refractive index of the surrounding medium, especially in the visible and near-infrared regions, highlighting its potential for application in high-sensitivity refractive index sensors. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

10 pages, 3124 KB  
Communication
Multipolar Analysis in Symmetrical Meta-Atoms Sustaining Fano Resonances
by Vittorio Bonino and Angelo Angelini
Optics 2024, 5(2), 238-247; https://doi.org/10.3390/opt5020017 - 15 Apr 2024
Cited by 2 | Viewed by 1736
Abstract
We present an optical metasurface with symmetrical individual elements sustaining Fano resonances with high Q-factors. This study combines plane-wave illumination and modal analysis to investigate the resonant behavior that results in a suppression of the forward scattering, and we investigate the role of [...] Read more.
We present an optical metasurface with symmetrical individual elements sustaining Fano resonances with high Q-factors. This study combines plane-wave illumination and modal analysis to investigate the resonant behavior that results in a suppression of the forward scattering, and we investigate the role of the lattice constant on the excited multipoles and on the spectral position and Q-factor of the Fano resonances, revealing the nonlocal nature of the resonances. The results show that the intrinsic losses play a crucial role in modulating the resonance amplitude in specific conditions and that the optical behavior of the device is extremely sensitive to the pitch of the metasurface. The findings highlight the importance of near-neighbor interactions to achieve high Q resonances and offer an important tool for the design of spectrally tunable metasurfaces using simple geometries. Full article
Show Figures

Figure 1

13 pages, 2027 KB  
Article
Multi-Wavelength Selective and Broadband Near-Infrared Plasmonic Switches in Anisotropic Plasmonic Metasurfaces
by Yan Li, Yaojie Zhou, Qinke Liu, Zhendong Lu, Xiao-Qing Luo, Wu-Ming Liu and Xin-Lin Wang
Nanomaterials 2023, 13(24), 3141; https://doi.org/10.3390/nano13243141 - 15 Dec 2023
Cited by 12 | Viewed by 2423
Abstract
Anisotropic plasmonic metasurfaces have attracted broad research interest since they possess novel optical properties superior to natural materials and their tremendous design flexibility. However, the realization of multi-wavelength selective plasmonic metasurfaces that have emerged as promising candidates to uncover multichannel optical devices remains [...] Read more.
Anisotropic plasmonic metasurfaces have attracted broad research interest since they possess novel optical properties superior to natural materials and their tremendous design flexibility. However, the realization of multi-wavelength selective plasmonic metasurfaces that have emerged as promising candidates to uncover multichannel optical devices remains a challenge associated with weak modulation depths and narrow operation bandwidth. Herein, we propose and numerically demonstrate near-infrared multi-wavelength selective passive plasmonic switching (PPS) that encompasses high ON/OFF ratios and strong modulation depths via multiple Fano resonances (FRs) in anisotropic plasmonic metasurfaces. Specifically, the double FRs can be fulfilled and dedicated to establishing tailorable near-infrared dual-wavelength PPS. The multiple FRs mediated by in-plane mirror asymmetries cause the emergence of triple-wavelength PPS, whereas the multiple FRs governed by in-plane rotational asymmetries avail the implementation of the quasi-bound states in the continuum-endowed multi-wavelength PPS with the ability to unfold a tunable broad bandwidth. In addition, the strong polarization effects with in-plane anisotropic properties further validate the existence of the polarization-resolved multi-wavelength PPS. Our results provide an alternative approach to foster the achievement of multifunctional meta-devices in optical communication and information processing. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

9 pages, 2257 KB  
Article
Plasmonic Coupled Modes in a Metal–Dielectric Periodic Nanostructure
by Victor Coello, Mas-ud A. Abdulkareem, Cesar E. Garcia-Ortiz, Citlalli T. Sosa-Sánchez, Ricardo Téllez-Limón and Marycarmen Peña-Gomar
Micromachines 2023, 14(9), 1713; https://doi.org/10.3390/mi14091713 - 31 Aug 2023
Cited by 10 | Viewed by 2829
Abstract
In this study we investigate the optical properties of a 2D-gap surface plasmon metasurface composed of gold nanoblocks (nanoantennas) arranged in a metal–dielectric configuration. This novel structure demonstrates the capability of generating simultaneous multi-plasmonic resonances and offers tunability within the near-infrared domain. Through [...] Read more.
In this study we investigate the optical properties of a 2D-gap surface plasmon metasurface composed of gold nanoblocks (nanoantennas) arranged in a metal–dielectric configuration. This novel structure demonstrates the capability of generating simultaneous multi-plasmonic resonances and offers tunability within the near-infrared domain. Through finite difference time domain (FDTD) simulations, we analyze the metasurface’s reflectance spectra for various lattice periods and identify two distinct dips with near-zero reflectance, indicative of resonant modes. Notably, the broader dip at 1150 nm exhibits consistent behavior across all lattice periodicities, attributed to a Fano-type hybridization mechanism originating from the overlap between localized surface plasmons (LSPs) of metallic nanoblocks and surface plasmon polaritons (SPPs) of the underlying metal layer. Additionally, we investigate the influence of dielectric gap thickness on the gap surface plasmon resonance and observe a blue shift for smaller gaps and a spectral red shift for gaps larger than 100 nm. The dispersion analysis of resonance wavelengths reveals an anticrossing region, indicating the hybridization of localized and propagating modes at wavelengths around 1080 nm with similar periodicities. The simplicity and tunability of our metasurface design hold promise for compact optical platforms based on reflection mode operation. Potential applications include multi-channel biosensors, second-harmonic generation, and multi-wavelength surface-enhanced spectroscopy. Full article
(This article belongs to the Special Issue Nanomaterials Photonics)
Show Figures

Figure 1

14 pages, 4239 KB  
Article
A Mid-Infrared Multifunctional Optical Device Based on Fiber Integrated Metasurfaces
by Weikang Yao, Qilin Zhou, Chonglu Jing and Ai Zhou
Nanomaterials 2023, 13(17), 2440; https://doi.org/10.3390/nano13172440 - 28 Aug 2023
Cited by 5 | Viewed by 2492
Abstract
A metasurface is a two-dimensional structure with a subwavelength thickness that can be used to control electromagnetic waves. The integration of optical fibers and metasurfaces has received much attention in recent years. This integrated device has high flexibility and versatility. We propose an [...] Read more.
A metasurface is a two-dimensional structure with a subwavelength thickness that can be used to control electromagnetic waves. The integration of optical fibers and metasurfaces has received much attention in recent years. This integrated device has high flexibility and versatility. We propose an optical device based on fiber-integrated metasurfaces in the mid-infrared, which uses a hollow core anti-resonant fiber (HC-ARF) to confine light transmission in an air core. The integrated bilayer metasurfaces at the fiber end face can achieve transmissive modulation of the optical field emitted from the HC-ARF, and the Fano resonance excited by the metasurface can also be used to achieve refractive index (RI) sensing with high sensitivity and high figure of merit (FOM) in the mid-infrared band. In addition, we introduce a polydimethylsiloxane (PDMS) layer between the two metasurfaces; thus, we can achieve tunable function through temperature. This provides an integrated fiber multifunctional optical device in the mid-infrared band, which is expected to play an important role in the fields of high-power mid-infrared lasers, mid-infrared laser biomedicine, and gas trace detection. Full article
(This article belongs to the Special Issue Advances in Photonic Metasurfaces and Metastructures)
Show Figures

Figure 1

13 pages, 4996 KB  
Article
Dual-Function Meta-Grating Based on Tunable Fano Resonance for Reflective Filter and Sensor Applications
by Feifei Liu, Haoyu Jia, Yuxue Chen, Xiaoai Luo, Meidong Huang, Meng Wang and Xinping Zhang
Sensors 2023, 23(14), 6462; https://doi.org/10.3390/s23146462 - 17 Jul 2023
Cited by 2 | Viewed by 2298
Abstract
Localized surface plasmon resonance (LSPR)-based sensors exhibit enormous potential in the areas of medical diagnosis, food safety regulation and environmental monitoring. However, the broadband spectral lineshape of LSPR hampers the observation of wavelength shifts in sensing processes, thus preventing its widespread applications in [...] Read more.
Localized surface plasmon resonance (LSPR)-based sensors exhibit enormous potential in the areas of medical diagnosis, food safety regulation and environmental monitoring. However, the broadband spectral lineshape of LSPR hampers the observation of wavelength shifts in sensing processes, thus preventing its widespread applications in sensors. Here, we describe an improved plasmonic sensor based on Fano resonances between LSPR and the Rayleigh anomaly (RA) in a metal–insulator–metal (MIM) meta-grating, which is composed of silver nanoshell array, an isolation grating mask and a continuous gold film. The MIM configuration offers more freedom to control the optical properties of LSPR, RA and the Fano resonance between them. Strong couplings between LSPR and RA formed a series of narrowband reflection peaks (with a linewidth of ~20 nm in full width at half maximum (FWHM) and a reflectivity nearing 100%) within an LSPR-based broadband extinction window in the experiment, making the meta-grating promising for applications of high-efficiency reflective filters. A Fano resonance that is well optimized between LSPR and RA by carefully adjusting the angles of incident light can switch such a nano-device to an improved biological/chemical sensor with a figure of merit (FOM) larger than 57 and capability of detecting the local refractive index changes caused by the bonding of target molecules on the surface of the nano-device. The figure of merit of the hybrid sensor in the detection of target molecules is 6 and 15 times higher than that of the simple RA- and LSPR-based sensors, respectively. Full article
(This article belongs to the Special Issue Nano Optical Sensing Techniques, Devices, and Applications)
Show Figures

Figure 1

12 pages, 7656 KB  
Communication
Multiple Fano Resonances in a Metal–Insulator–Metal Waveguide for Nano-Sensing of Multiple Biological Parameters and Tunable Slow Light
by Ruiqi Zhang, He Tian, Yang Liu and Shihang Cui
Photonics 2023, 10(7), 703; https://doi.org/10.3390/photonics10070703 - 21 Jun 2023
Cited by 9 | Viewed by 2335
Abstract
A surface plasmonic waveguide made of metal–insulator–metal (MIM) capable of generating triple Fano resonances is proposed and numerically investigated for multi-biological parameter sensing as well as tunable slow light. The waveguide is made up of a bus waveguide with a silver baffle, a [...] Read more.
A surface plasmonic waveguide made of metal–insulator–metal (MIM) capable of generating triple Fano resonances is proposed and numerically investigated for multi-biological parameter sensing as well as tunable slow light. The waveguide is made up of a bus waveguide with a silver baffle, a square split-ring cavity with a square center (SSRCSC), and a circular ring cavity with a square center (CRCSC). Based on the triple Fano resonances, human blood temperature and plasma concentration are measured simultaneously at different locations in the waveguide, and the maximum sensitivities were 0.25 nm/°C and 0.2 nm·L/g, respectively. Furthermore, the two biological parameters can be used to achieve tunable slow light, and it was found that the group delay responses to human blood temperature and plasma concentration all conformed to cubic functions. The MIM waveguide may have great applications in future nano-sensing of multiple biological parameters and information processing of optical chips or bio-optical chips. Full article
Show Figures

Figure 1

Back to TopTop