Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = tunable FBG

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1124 KB  
Article
Pulsed Raman Lasing in Diode-Pumped Multimode Graded-Index Fiber with Tuned Femtosecond-Laser-Inscribed Bragg Grating
by Alexey G. Kuznetsov, Vadim S. Terentyev, Alexander V. Dostovalov, Ilya N. Nemov and Sergey A. Babin
Micromachines 2025, 16(12), 1315; https://doi.org/10.3390/mi16121315 - 24 Nov 2025
Viewed by 373
Abstract
Raman lasers based on multimode graded-index (GRIN) fibers directly pumped by laser diodes are the object of intensive research, promising to produce high-power, high-quality beams at new wavelengths. In this paper, we demonstrate a pulsed operation of such a laser based on a [...] Read more.
Raman lasers based on multimode graded-index (GRIN) fibers directly pumped by laser diodes are the object of intensive research, promising to produce high-power, high-quality beams at new wavelengths. In this paper, we demonstrate a pulsed operation of such a laser based on a 1 km 100/140 GRIN fiber in which a resonator is formed by a pair of FBGs: a high-reflective broadband input FBG and a tunable narrowband output FBG inscribed by fs laser pulses in the fundamental mode area of the core. In addition to beam quality improvement, the output FBG modulated by a piezoelectric nanopositioner with a frequency of 20–180 Hz generates laser pulses with a duration of 23–1.2 ms, respectively. The maximum power reached is 22 watts, and the signal spectrum widens significantly with increased pumping (>2 nm from the central wavelength of 976 nm). The pulse generation method used in this work introduces wavelength chirp in the individual pulse, which can be used in sensing and other applications. Full article
(This article belongs to the Special Issue Fiber-Optic Technologies for Communication and Sensing)
Show Figures

Figure 1

20 pages, 1079 KB  
Review
Research Progress on Narrow-Linewidth Broadband Tunable External Cavity Diode Lasers
by Jie Chen, Wei Luo, Yue Lou, Shenglan Li, Enning Zhu, Xinyi Wu, Shaoyi Yu, Xiaofei Gao, Zaijin Li, Dongxin Xu, Yi Qu and Lin Li
Coatings 2025, 15(9), 1035; https://doi.org/10.3390/coatings15091035 - 4 Sep 2025
Viewed by 4384
Abstract
Narrow-linewidth broadband tunable external cavity diode lasers (NBTECDLs), with their broadband tuning range, narrow linewidth, high side-mode suppression ratio (SMSR), and high output power, have become important laser sources in many fields such as optical communication, spectral analysis, wavelength division multiplexing systems, coherent [...] Read more.
Narrow-linewidth broadband tunable external cavity diode lasers (NBTECDLs), with their broadband tuning range, narrow linewidth, high side-mode suppression ratio (SMSR), and high output power, have become important laser sources in many fields such as optical communication, spectral analysis, wavelength division multiplexing systems, coherent detection, and ultra-high-speed optical interconnection. This paper briefly describes the basic theory of NBTECDLs, introduces NBTECDLs with diffraction grating type, fiber Bragg grating (FBG) type, and waveguide type, and conducts an in-depth analysis on the working principles and performance characteristics of NBTECDLs based on different NBTECDL types. Then, it reviews the latest research progress on Littrow-type, Littman-type, FBG-type, and waveguide-type NBTECDLs in detail and compares and summarizes the characteristics of Littrow-type NBTECDLs, Littman-type NBTECDLs, FBG-type NBTECDLs, and waveguide-type NBTECDLs. Finally, it looks at the structural features, key technologies, optical performance, and application fields of the most cutting-edge research in recent years and summarizes the challenges and future development directions of NBTECDLs. Full article
(This article belongs to the Special Issue Research in Laser Welding and Surface Treatment Technology)
Show Figures

Figure 1

16 pages, 1951 KB  
Article
Real-Time Damage Detection in an Airplane Wing During Wind Tunnel Testing Under Realistic Flight Conditions
by Yoav Ofir, Uri Ben-Simon, Shay Shoham, Iddo Kressel, Bernardino Galasso, Umberto Mercurio, Antonio Concilio, Gianvito Apuleo, Jonathan Bohbot and Moshe Tur
Sensors 2025, 25(14), 4423; https://doi.org/10.3390/s25144423 - 16 Jul 2025
Viewed by 3568
Abstract
A real-time structural health monitoring (SHM) system of an airplane composite wing with adjustable damage is reported, where testing under realistic flight conditions is carried out in the controllable and repeatable environment of an industrial wind tunnel. An FBG-based sensing array monitors a [...] Read more.
A real-time structural health monitoring (SHM) system of an airplane composite wing with adjustable damage is reported, where testing under realistic flight conditions is carried out in the controllable and repeatable environment of an industrial wind tunnel. An FBG-based sensing array monitors a debonded region, whose compromised structural strength is regained by a set of lockable fasteners. Damage tunability is achieved by loosening some of or all these fasteners. Real-time analysis of the data collected involves Principal Component Analysis, followed by Hotelling’s T-squared and Q measures. With previously set criteria, real-time data collection and processing software can declare the structural health status as normal or abnormal. During testing, the system using the Q measure successfully identified the initiation of the damage and its extent, while the T-squared one returned limited outcomes. Full article
Show Figures

Figure 1

12 pages, 5092 KB  
Article
Design of Real-Time Demodulation for FBG Sensing Signals Based on All-Dielectric Subwavelength Gratings Edge Filters
by Jingliang Lin, Ping Tang, Kaihao Chen, Jiancai Xue, Ziming Meng and Jinyun Zhou
Nanomaterials 2025, 15(7), 536; https://doi.org/10.3390/nano15070536 - 1 Apr 2025
Cited by 1 | Viewed by 1441
Abstract
Accurate real-time temperature measurement under extreme thermal-pressure conditions remains challenging in aerospace. Sapphire fiber Bragg gratings (FBGs), exhibiting temperature measurement capabilities up to 1900 °C, demonstrate suitability for such extreme environments. However, the development of a high-performance demodulation system capable of processing sapphire [...] Read more.
Accurate real-time temperature measurement under extreme thermal-pressure conditions remains challenging in aerospace. Sapphire fiber Bragg gratings (FBGs), exhibiting temperature measurement capabilities up to 1900 °C, demonstrate suitability for such extreme environments. However, the development of a high-performance demodulation system capable of processing sapphire FBG signals over wide spectral ranges at elevated speeds remains a technical challenge. This study presents a real-time FBG signal demodulation system that incorporates an all-dielectric subwavelength grating edge filter. The designed grating, comprising a TiO2/Si3N4 subwavelength unit array, modulates Mie-type electric and magnetic multipole resonances to achieve precisely tailored transmission and reflection spectra. Simulation results indicate that the grating exhibits low ohmic loss, excellent linearity, complementary transmission/reflection characteristics, a wide linear range, and angular-dependent tunability. The designed edge-filter-based demodulation system incorporates dual single-point detectors to simultaneously monitor the transmitted and reflected signals. Leveraging the functional relationship between the center wavelength of the FBG and the detected signals, this system enables high-speed, wide-range interrogation of the center wavelength, thus facilitating real-time demodulation for wide-range temperature sensing. The proposed method and system are validated through theoretical modeling, offering an innovative approach for sapphire FBG signal demodulation under extreme thermal-pressure conditions. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

18 pages, 6225 KB  
Article
An Energy Modulation Interrogation Technique for Monitoring the Adhesive Joint Integrity Using the Full Spectral Response of Fiber Bragg Grating Sensors
by Chow-Shing Shin, Tzu-Chieh Lin and Shun-Hsuan Huang
Sensors 2025, 25(1), 36; https://doi.org/10.3390/s25010036 - 25 Dec 2024
Cited by 1 | Viewed by 4543
Abstract
Adhesive joining has the severe limitation that damages/defects developed in the bondline are difficult to assess. Conventional non-destructive examination (NDE) techniques are adequate to reveal disbonding defects in fabrication and delamination near the end of service life but are not helpful in detecting [...] Read more.
Adhesive joining has the severe limitation that damages/defects developed in the bondline are difficult to assess. Conventional non-destructive examination (NDE) techniques are adequate to reveal disbonding defects in fabrication and delamination near the end of service life but are not helpful in detecting and monitoring in-service degradation of the joint. Several techniques suitable for long-term joint integrity monitoring are proposed. Fiber Bragg grating (FBG) sensors embedded in the joint are one of the promising candidates. It has the advantages of being close to the damage and immune to environmental attack and electromagnetic interference. Damage and disbonding inside an adhesive joint will give rise to a non-uniform strain field that may bring about peak splitting and chirping of the FBG spectrum. It is shown that the evolution of the full spectral responses can closely reveal the development of damages inside the adhesive joints during tensile and fatigue failures. However, recording and comparing the successive full spectra in the course of damage is tedious and can be subjective. An energy modulation interrogation technique is proposed using a pair of tunable optical filters. Changes in the full FBG spectral responses are modulated by the filters and converted into a conveniently measurable voltage output by photodiodes. Monitoring damage development can then be easily automated, and the technique is well-suited for practical applications. Filter spectrum width of 5 nm and initial overlap with the FBG spectrum to give 40% of the maximum output voltage is found to be optimal for measurement. The technique is tested on embedded FBGs from different adhesive lap-joint specimens and successfully reflected the severity of changes in the full spectral shapes during the course of tensile failure. Moreover, the trends in these PD outputs corroborate with the V value previously proposed to describe the qualitative change in FBG spectral shape. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2024)
Show Figures

Figure 1

18 pages, 2226 KB  
Article
Optically Delaying a Radio Frequency–Linear Frequency-Modulated (RF-LFM) Pulse Using Kerr Comb Carriers and Off-the-Shelf Concatenation of a Linearly Chirped Fiber Bragg Grating and a Chirped-and-Sampled Fiber Bragg Grating
by Ahmed Almaiman, Yinwen Cao, Peicheng Liao, Alan Willner and Moshe Tur
Photonics 2024, 11(9), 823; https://doi.org/10.3390/photonics11090823 - 31 Aug 2024
Viewed by 1609
Abstract
We demonstrate a low latency delay of a radio frequency (RF)–linear frequency-modulated (LFM) pulse by modulating it onto optical carriers from a Kerr comb and sending the signal through a concatenation of off-the-shelf linearly chirped fiber Bragg gratings (LC-FBGs) and chirped-and-sampled FBG (CS-FBG). [...] Read more.
We demonstrate a low latency delay of a radio frequency (RF)–linear frequency-modulated (LFM) pulse by modulating it onto optical carriers from a Kerr comb and sending the signal through a concatenation of off-the-shelf linearly chirped fiber Bragg gratings (LC-FBGs) and chirped-and-sampled FBG (CS-FBG). We characterize the frequency response and latency of the LC-FBG and CS-FBG. Then, experimentally, the LFM pulse performance is characterized by measuring the peak sidelobe level (PSL) at the output of the tunable delay system. The experiment, performed with an LFM pulse of 1 GHz bandwidth at a 10 GHz center frequency, shows a PSL better than 34.4 dB, attesting to the high quality of the buffer RF transfer function. Thus, the proposed optical memory buffer architecture, utilizing compact devices based on a Kerr comb and FBGs, offers several benefits for delaying LFM pulses, including (i) a larger tunable delay range, (ii) low latency, (iii) wide bandwidth, and (iv) high PSL. Full article
Show Figures

Figure 1

17 pages, 6834 KB  
Article
A Novel Inserting Pilot Radio over Fiber System without the Bit Walk-Off Effect for the Generation and Distribution of Frequency 16-Tupling Millimeter Waves by Mach–Zehnder Modulators
by Xu Chen, Xinqiao Chen, Siyuan Dai, Bin Li and Ling Wang
Photonics 2024, 11(5), 410; https://doi.org/10.3390/photonics11050410 - 28 Apr 2024
Cited by 4 | Viewed by 1857
Abstract
A novel inserting pilot scheme to generate and distribute a frequency 16-tupling millimeter wave (MMW) radio over fiber (ROF) system without the bit walk-off effect via Mach–Zehnder modulators (MZMs) is proposed. The operation principle is analyzed and the feasibility of our proposed scheme [...] Read more.
A novel inserting pilot scheme to generate and distribute a frequency 16-tupling millimeter wave (MMW) radio over fiber (ROF) system without the bit walk-off effect via Mach–Zehnder modulators (MZMs) is proposed. The operation principle is analyzed and the feasibility of our proposed scheme is verified by simulation test. The main part of our scheme is a ±8th-order sidebands generator (SG), which is constructed by four MZMs connected in parallel. In the back-to-back (BTB) transmission case, by properly adjusting the voltage and initial phase of the radio frequency (RF) drive signals of the MZMs, ±8th-order sidebands are generated by the SG. In the data transmission case, the data signal is first split into two beams, one of which modulates the RF drive signal with an electrical phase modulator (PM) while the other is amplified by an electrical gainer (EG), and then the two beams are combined into one and used as the composite RF drive signal of the MZMs. By adjusting the modulation index of the PM and the gain of the EG, the data signal can only be modulated to the +8th-order sideband of the output of the SG. The optical carrier from the continuous wave (CW) laser is split into two paths: one is sent into the SG, and the other is used as a pilot signal. The output signal of SG is combined with the pilot signal and is transmitted to the base station (BS) via optical fiber. At the BS, the pilot signal is filtered out by a fiber Bragg grating (FBG) and used as the carrier for the uplink for carrier reuse. After filtering out the pilot, the signal from the FBG, which is composed of ±8th-order sidebands, is injected into a photodetector, and a frequency 16-tupling MMW with downlink data is generated. The key parameters’ influence on the bit error rate (BER) and Q factor in the system is also analyzed. Our scheme can not only effectively overcome the bit walk-off effect caused by optical fiber chromatic dispersion and greatly increase the fiber transmission distance but can also effectively improve the performance and the tunability of system. Therefore, it has important application prospects in ROF systems. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

10 pages, 2454 KB  
Communication
Optical Tunable Frequency-Doubling OEO Using a Chirped FBG Based on Orthogonally Polarized Double Sideband Modulation
by Haiyang Wang, Beilei Wu, Haoran Zhou, Wensheng Wang and Guangluan Xu
Photonics 2023, 10(9), 1002; https://doi.org/10.3390/photonics10091002 - 1 Sep 2023
Cited by 4 | Viewed by 2009
Abstract
We propose and experimentally demonstrate a tunable frequency-doubling optoelectronic oscillator (FD-OEO) based on a single-bandpass dispersion-induced microwave photonic filter (MPF) consisting of a Mach–Zehnder modulator (MZM), a linearly chirped fiber Bragg grating and polarization-multiplexed dual-loop. Thanks to the polarization dependence of the MZM, [...] Read more.
We propose and experimentally demonstrate a tunable frequency-doubling optoelectronic oscillator (FD-OEO) based on a single-bandpass dispersion-induced microwave photonic filter (MPF) consisting of a Mach–Zehnder modulator (MZM), a linearly chirped fiber Bragg grating and polarization-multiplexed dual-loop. Thanks to the polarization dependence of the MZM, a special double sideband modulation is implemented where the optical carrier (OC) and subcarriers are orthogonally polarized. By simply tuning the PC in the OEO loop, the phase difference between the orthogonal polarization carrier and two sidebands can be controlled, and thus the center frequency of the fundamental OEO can be tuned. Furthermore, a PC and a polarizer are placed outside the OEO to achieve optical carrier suppression (OCS) modulation, which ensures that a frequency-tunable microwave signal at the second-harmonic frequency is generated. In the experiment, a fundamental frequency signal with tunable frequency from 3.6 to 6.85 GHz and FD-OEO with a tunable frequency range from 7.2 to 13.7 GHz are generated. Full article
(This article belongs to the Special Issue High-Power Solid-State Laser Technology and Its Applications)
Show Figures

Figure 1

20 pages, 6284 KB  
Article
Investigation of Hybrid Remote Fiber Optic Sensing Solutions for Railway Applications
by Serhat Boynukalin, Selçuk Paker and Ahmad Atieh
Photonics 2023, 10(8), 864; https://doi.org/10.3390/photonics10080864 - 25 Jul 2023
Cited by 1 | Viewed by 2024
Abstract
Fiber optic sensing (FOS) has become a well-known technology in response to the rising demands of the railway transportation field despite the abundance of electronic sensing systems in the market. FOS application boasts an all-in-one solution that is both efficient and versatile. In [...] Read more.
Fiber optic sensing (FOS) has become a well-known technology in response to the rising demands of the railway transportation field despite the abundance of electronic sensing systems in the market. FOS application boasts an all-in-one solution that is both efficient and versatile. In order to enhance the understanding of the capabilities of FOS, this paper presents a hybrid fiber optic sensing system with an improved sensing ability to facilitate transportation applications for primary or secondary security interfaces. The hybrid sensing scheme incorporates two different sensing systems designed for long-distance applications. The first system employs a coding technique for the transmitted pulses, which provide information on train location through cross-correlation with the reflected pulses from fiber Bragg grating (FBG) sensors located along the railway. The proposed system can accurately predict the train’s location up to a precision of one cm. The second system examines the wavelength drift of the reflected signal from the FBG sensor affected by the train using a tunable optical filter and photodetector. It determines essential parameters such as the train’s location, speed, and direction by measuring the Bragg wavelength shift and its direction. The effect of the train movement and speed on the applied strain on the FBG sensor is calculated in this work and applied to the simulation to determine the train’s location, speed, and direction. A calibration table facilitates the correlation between the train speed and the shift in the FBG center wavelength, which helps ensure accurate results. The hybrid fiber optic sensing system is designed to facilitate railway transportation applications’ sustainability and security. Full article
(This article belongs to the Special Issue Advanced Photonic Sensing and Measurement)
Show Figures

Figure 1

10 pages, 1770 KB  
Article
All-Fiber Narrow-Bandwidth Mode-Locked Laser Based on Polarization-Dependent Helical Long-Period Grating
by Ying Wan, Chen Jiang, Zuxing Zhang, Yaya Mao, Jianxin Ren, Jianxiang Wen and Yunqi Liu
Photonics 2023, 10(7), 842; https://doi.org/10.3390/photonics10070842 - 21 Jul 2023
Cited by 5 | Viewed by 4569
Abstract
As a crucial component of nonlinear polarization rotation (NPR) mode locking, optical fiber gratings offer advantages such as polarization modulation capability, stability, fiber compatibility, and preparation maturity, making them a vital technological foundation for achieving NPR mode locking. Here, a polarization-maintaining fiber helical [...] Read more.
As a crucial component of nonlinear polarization rotation (NPR) mode locking, optical fiber gratings offer advantages such as polarization modulation capability, stability, fiber compatibility, and preparation maturity, making them a vital technological foundation for achieving NPR mode locking. Here, a polarization-maintaining fiber helical long-period grating (PMF-HLPG) was designed and fabricated as a polarizer using the CO2-laser direct-write technique to realize the NPR effect. A homemade fiber Bragg grating (FBG) was also introduced into the laser system to enable a narrow-bandwidth lasing output and wavelength tunability. Based on the PMF-HLPG and FBG mentioned above, an all-fiber mode-locked laser with a spectra bandwidth of 0.15 nm was constructed to generate stable short pulses with a fundamental repetition rate of 12.7122 MHz and a pulse duration of 30.08 ps. In particular, its signal-to-noise ratio is up to 84.5 dB, showing the high stability of the laser. Further, the operating wavelength of the laser can be tuned from 1559.65 nm to 1560.29 nm via heating the FBG while maintaining its mode-locked state with stability. The results indicate that the PMF-HLPG could be used as a polarizer to meet the NPR mechanism for ultrashort pulse laser applications in optical communication, optical sensing, and biomedical imaging. Full article
Show Figures

Figure 1

15 pages, 5951 KB  
Article
Embedded Fiber Bragg Grating Sensors for Monitoring Temperature and Thermo-Elastic Deformations in a Carbon Fiber Optical Bench
by Ana Fernández-Medina, Malte Frövel, Raquel López Heredero, Tomás Belenguer, Antonia de la Torre, Carolina Moravec, Ricardo San Julián, Alejandro Gonzalo, María Cebollero and Alberto Álvarez-Herrero
Sensors 2023, 23(14), 6499; https://doi.org/10.3390/s23146499 - 18 Jul 2023
Cited by 12 | Viewed by 4554
Abstract
A composite optical bench made up of Carbon Fiber Reinforced Polymer (CFRP) skin and aluminum honeycomb has been developed for the Tunable Magnetograph instrument (TuMag) for the SUNRISE III mission within the NASA Long Duration Balloon Program. This optical bench has been designed [...] Read more.
A composite optical bench made up of Carbon Fiber Reinforced Polymer (CFRP) skin and aluminum honeycomb has been developed for the Tunable Magnetograph instrument (TuMag) for the SUNRISE III mission within the NASA Long Duration Balloon Program. This optical bench has been designed to meet lightweight and low sensitivity to thermal gradient requirements, resulting in a low Coefficient of Thermal Expansion (CTE). In addition to the flight model, a breadboard model identical to the flight one has been manufactured, including embedded fiber Bragg temperature and strain sensors. The aim of this is to explore if the use of distributed fiber Bragg gratings (FBGs) can provide valuable information for strain and temperature mapping of an optical instrument on board a space mission during its operation as well as its on-ground testing. Furthermore, surface-mounted strain FBG sensors and thermocouples have been installed in the optical bench for intercomparison purposes. This paper presents the results obtained from a thermal vacuum test consisting of three thermal cycles with stabilization steps at 100 °C, 60 °C, 20 °C and −20 °C. Experimental results provide information about how FBG embedded temperature sensors can provide a proper and quick response to the temperature changes of the optical bench and that embedded FBG strain sensors are able to measure micro-deformation induced in a close-to-zero CTE optical bench. Full article
(This article belongs to the Special Issue Optical Fiber Sensors: New Trends and Applications)
Show Figures

Figure 1

13 pages, 7077 KB  
Article
Wavelength-Tunable Single-Longitudinal-Mode Narrow-Linewidth Thulium/Holmium Co-Doped Fiber Laser with Phase-Shifted Fiber Bragg Grating and Dual-Coupler-Ring Filter
by Dongyuan Li, Ting Feng, Shaoheng Guo, Shengbao Wu, Fengping Yan, Qi Li and Xiaotian Steve Yao
Photonics 2023, 10(6), 693; https://doi.org/10.3390/photonics10060693 - 19 Jun 2023
Cited by 3 | Viewed by 3506
Abstract
A wavelength-tunable single-longitudinal-mode (SLM) narrow-linewidth thulium/holmium co-doped fiber laser (THDFL) was developed in this study. The lasing wavelength was determined by combining a phase-shifted fiber Bragg grating (PS-FBG) and a uniform FBG (UFBG). SLM oscillation was achieved by incorporating a dual-coupler ring filter [...] Read more.
A wavelength-tunable single-longitudinal-mode (SLM) narrow-linewidth thulium/holmium co-doped fiber laser (THDFL) was developed in this study. The lasing wavelength was determined by combining a phase-shifted fiber Bragg grating (PS-FBG) and a uniform FBG (UFBG). SLM oscillation was achieved by incorporating a dual-coupler ring filter with the PS-FBG. At a pump power of 2.0 W, the THDFL exhibited excellent SLM lasing performance with a stable optical spectrum. It operated at an output wavelength of ~2050 nm with an optical signal-to-noise ratio of >81 dB, an output power fluctuation of 0.15 dB, a linewidth of 8.468 kHz, a relative intensity noise of ≤−140.32 dB/Hz@≥5 MHz, a slope efficiency of 2.15%, and a threshold power of 436 mW. The lasing wavelength tunability was validated experimentally by stretching the PS-FBG and UFBG simultaneously. The proposed THDFL had significant potential for application in many fields, including free-space optical communication, LiDAR, and high-precision spectral measurement. Full article
(This article belongs to the Special Issue Single Frequency Fiber Lasers and Their Applications)
Show Figures

Figure 1

11 pages, 7493 KB  
Communication
Tunable Random Fiber Laser Based on Dual-Grating Structure
by Yanan Niu, Pinggang Jia, Jianhui Su, Jingyi Wang, Guowen An, Qianyu Ren and Jijun Xiong
Photonics 2023, 10(6), 644; https://doi.org/10.3390/photonics10060644 - 2 Jun 2023
Cited by 11 | Viewed by 3728
Abstract
In order to reduce the pumping threshold and achieve a short-cavity single-mode transmission with a narrow-linewidth random fiber laser, we propose a tunable random fiber laser based on the combination of random grating and highly reflective fiber Bragg grating (FBG). Theoretical modeling of [...] Read more.
In order to reduce the pumping threshold and achieve a short-cavity single-mode transmission with a narrow-linewidth random fiber laser, we propose a tunable random fiber laser based on the combination of random grating and highly reflective fiber Bragg grating (FBG). Theoretical modeling of a random refractive index-modulated fiber grating was carried out. Random grating is regarded as a linear combination of uniform fiber gratings with different periods. Simulation calculations were performed using the transfer matrix method to determine the preparation parameters. Under the premise of satisfying light localization, a point-by-point method was used to write a random grating in a single-mode fiber using a femtosecond laser according to the simulated parameters. We constructed a random fiber laser with a linewidth of 1.68 kHz and a threshold of 29.2 mW using a random grating and a highly reflective FBG combined with an erbium-doped fiber. Due to the broad scattered wavelength range of the random grating, by changing the central wavelength of the high-reflection FBG, the tunable wavelength of the output laser was realized, and the tunable range was 0.847 nm (1549.110–1549.957 nm). Moreover, the laser’s central wavelength and output power are stable for a long time. Compared with other lasers, the proposed laser has the advantages of a lower threshold, shorter cavity length, narrower linewidth, and a relatively simple structure. Full article
(This article belongs to the Special Issue Optical Fiber Lasers)
Show Figures

Figure 1

15 pages, 2529 KB  
Article
Linewidth Narrowing of a Dual Wavelength-Selectable, Ring Cavity Erbium-Doped Fiber Laser Using a Saturable Absorber
by Ebuka E. Okafor, Frank N. Igboamalu, Khmaies Ouahada and Habib Hamam
Photonics 2023, 10(5), 522; https://doi.org/10.3390/photonics10050522 - 2 May 2023
Cited by 2 | Viewed by 3408
Abstract
The narrow linewidth fiber laser is useful in applications such as fiber sensing, optical communications, and spectroscopy. This paper presents an investigation of the model and an experiment of a stable, wavelength-selective, narrow linewidth, ring cavity erbium-doped fiber laser incorporating two fiber Bragg [...] Read more.
The narrow linewidth fiber laser is useful in applications such as fiber sensing, optical communications, and spectroscopy. This paper presents an investigation of the model and an experiment of a stable, wavelength-selective, narrow linewidth, ring cavity erbium-doped fiber laser incorporating two fiber Bragg gratings (FBG) at 1530.18 nm and 1550.08 nm, respectively. An F-P tunable filter was used to select a specific wavelength after optimizing the spectral output from the two FBGs to measure their respective linewidths. The erbium-doped ring fiber laser was optimized by adjusting the optical cavity loss using a variable optical coupler at a coupling ratio of 95%. The variable coupler was set to an optimal coupling ratio of 95%, where the spectral output powers of 3.4 mW at 1530.18 nm and 3.1 mW at 1550.08 nm were achieved as the optimal fiber laser output powers. The balanced output power had an optical signal-to-noise ratio of (OSNR) of 61 dB for each wavelength. The linewidth was measured for both wavelengths without saturable absorbers, and 27.7 kHz and 28.3 kHz for 1530.18 nm and 1550.08 nm were obtained. Using the saturable absorber, the linewidths were narrowed to 25.3 KHz and 21.1 kHz for 1530.18 nm and 1550.08 nm, respectively. Full article
(This article belongs to the Topic Advance and Applications of Fiber Optic Measurement)
Show Figures

Figure 1

11 pages, 2104 KB  
Article
Femtosecond Inscription of a Fiber Bragg Grating Spectral Array in the Same Spatial Location
by Aviran Halstuch and Amiel A. Ishaaya
Sensors 2023, 23(8), 4064; https://doi.org/10.3390/s23084064 - 18 Apr 2023
Cited by 6 | Viewed by 3299
Abstract
A five fiber Bragg grating (FBG) array is inscribed at the same spot with a single uniform phase-mask (PM). The inscription setup consists of a near-infrared femtosecond laser, a PM, a defocusing spherical lens and a cylindrical focusing lens. The tunability of the [...] Read more.
A five fiber Bragg grating (FBG) array is inscribed at the same spot with a single uniform phase-mask (PM). The inscription setup consists of a near-infrared femtosecond laser, a PM, a defocusing spherical lens and a cylindrical focusing lens. The tunability of the center Bragg wavelength is achieved by a defocusing lens, and by translating the PM, which results in a different magnification of the PM. A first FBG is inscribed, followed by four cascading FBGs, which are inscribed exactly at the same spot only after the translation of the PM. The transmission and reflection spectra of this array are measured, showing a second-order Bragg wavelength at ~1.56 µm with a transmission dip of ~−8 dB. The spectral wavelength shift between each consecutive FBG is ~2.9 nm, and the total wavelength shift is ~11.7 nm. The reflection spectrum of the third-order Bragg wavelength is measured at ~1.04 µm, showing a wavelength separation of ~1.97 nm between neighboring FBGs, and the total spectral span between the first FBG and the last one is ~8 nm. Finally, the wavelength sensitivity to strain and temperature is measured. Full article
(This article belongs to the Special Issue New Technology and Applications of Fiber Bragg Grating Sensors)
Show Figures

Figure 1

Back to TopTop