All-Fiber Narrow-Bandwidth Mode-Locked Laser Based on Polarization-Dependent Helical Long-Period Grating
Abstract
:1. Introduction
2. Polarization-Dependent Helical Long-Period Grating and Mode-Locked Fiber Laser Construction
3. Evaluation of the Narrow Bandwidth and Wavelength-Tunable Mode-Locked Fiber Laser
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, C.; Wise, F. Recent advances in fibre lasers for nonlinear microscopy. Nat. Photonics 2013, 7, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Bogusławski, J.; Soboń, G.; Zybała, R.; Sotor, J. Towards an optimum saturable absorber for the multi-gigahertz harmonic mode locking of fiber lasers. Photonics Res. 2019, 7, 1094–1100. [Google Scholar] [CrossRef]
- Hasegawa, A. Soliton-based optical communications: An overview. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 1161–1172. [Google Scholar] [CrossRef]
- Tang, G.; Qian, G.; Lin, W.; Wang, W.; Shi, Z.; Yang, Y.; Dai, N.; Qian, Q.; Yang, Z. Broadband 2 µm amplified spontaneous emission of Ho/Cr/Tm: YAG crystal derived all-glass fibers for mode-locked fiber laser applications. Opt. Lett. 2019, 44, 3290–3293. [Google Scholar] [CrossRef]
- Martinez, A.; Sun, Z. Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photonics 2013, 7, 842–845. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, Y.; Liu, X. Dynamics of carbon nanotube-based mode-locking fiber lasers. Nanophotonics 2020, 9, 2731–2761. [Google Scholar] [CrossRef]
- Malfondet, A.; Parriaux, A.; Krupa, K.; Millot, G.; Tchofo-Dinda, P. Optimum design of NOLM-driven mode-locked fiber lasers. Opt. Lett. 2021, 46, 1289–1292. [Google Scholar] [CrossRef]
- Ma, X.; Lv, J.; Luo, J.; Liu, X.; Yao, P.; Xu, L. Pulse convergence analysis and pulse information calculation of NOLM fiber mode-locked lasers based on machine learning method. Opt. Laser Technol. 2023, 163, 109390. [Google Scholar] [CrossRef]
- Kim, D.; Kwon, D.; Lee, B.; Kim, J. Polarization-maintaining nonlinear-amplifying-loop-mirror mode-locked fiber laser based on a 3 × 3 coupler. Opt. Lett. 2019, 44, 1068–1071. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, Q.; Zhang, Y.; Li, X.; Zhang, H.; Xia, W. All-fiber passively mode-locked laser using nonlinear multimode interference of step-index multimode fiber. Photonics Res. 2018, 6, 1033–1039. [Google Scholar] [CrossRef]
- Alamgir, I.; Rochette, M. Thulium-doped fiber laser mode-locked by nonlinear polarization rotation in a chalcogenide tapered fiber. Opt. Express 2022, 30, 14300–14310. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Cheng, P.; Zhao, R.; Cai, J.; Shen, M.; Shu, X. Mode-locked fiber laser based on a small-period long-period fiber grating inscribed by femtosecond laser. Opt. Lett. 2023, 48, 2241–2244. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Boscolo, S.; Zhao, Z.; Zeng, H. Breathing dissipative solitons in mode-locked fiber lasers. Sci. Adv. 2019, 5, eaax1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Liu, Y.g.; Wang, Z.; Wang, Z.; Zhang, H. All-fiber mode-locked cylindrical vector beam laser using broadband long period grating. Laser Phys. Lett. 2018, 15, 085108. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Z.; Kobayashi, Y. Wavelength-spacing controllable, dual-wavelength synchronously mode locked Er: Fiber laser oscillator based on dual-branch nonlinear polarization rotation technique. Opt. Express 2016, 24, 28228–28238. [Google Scholar] [CrossRef]
- Wang, Z.; Zhan, L.; Fang, X.; Gao, C.; Qian, K. Generation of sub-60 fs similaritons at 1.6 µm from an all-fiber Er-doped laser. J. Light. Technol. 2016, 34, 4128–4134. [Google Scholar] [CrossRef]
- Panasenko, D.; Polynkin, P.; Polynkin, A.; Moloney, J.V.; Mansuripur, M.; Peyghambarian, N. Er-Yb femtosecond ring fiber oscillator with 1.1-W average power and GHz repetition rates. IEEE Photonics Technol. Lett. 2006, 18, 853–855. [Google Scholar] [CrossRef]
- Zhang, Z.; Gan, J.; Yang, T.; Wu, Y.; Li, Q.; Xu, S.; Yang, Z. All-fiber mode-locked laser based on microfiber polarizer. Opt. Lett. 2015, 40, 784–787. [Google Scholar] [CrossRef]
- Zhou, X.; Qiu, M.; Qian, Y.; Chen, M.; Zhang, Z.; Zhang, L. Microfiber-based polarization beam splitter and its application for passively mode-locked all-fiber laser. IEEE J. Sel. Top. Quantum Electron. 2020, 27, 0900206. [Google Scholar] [CrossRef]
- Jiang, H.; Huang, Y.; Zhao, Z.; Shirahata, T.; Jin, L.; Yamashita, S.; Set, S.Y. Laser mode locking using a single-mode-fiber coil with enhanced polarization-dependent loss. Opt. Lett. 2020, 45, 2866–2869. [Google Scholar] [CrossRef]
- Mou, C.; Wang, H.; Bale, B.G.; Zhou, K.; Zhang, L.; Bennion, I. All-fiber passively mode-locked femtosecond laser using a 45º-tilted fiber grating polarization element. Opt. Express 2010, 18, 18906–18911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.; Huang, Q.; Theodosiou, A.; Cheng, X.; Zou, C.; Dai, L.; Kalli, K.; Mou, C. All-fiber passively mode-locked ultrafast laser based on a femtosecond-laser-inscribed in-fiber Brewster device. Opt. Lett. 2019, 44, 5177–5180. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Shu, X.; Xu, Z. All-fiber passively mode-locked laser based on a chiral fiber grating. Opt. Lett. 2016, 41, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Kanagaraj, N.; Theodosiou, A.; Aubrecht, J.; Peterka, P.; Kamradek, M.; Kalli, K.; Kasik, I.; Honzatko, P. All fiber mode-locked thulium-doped fiber laser using a novel femtosecond-laser-inscribed 45∘-plane-by-plane-tilted fiber grating. Laser Phys. Lett. 2019, 16, 095104. [Google Scholar] [CrossRef]
- Jiang, C.; Liu, Y.; Zhao, Y.; Mou, C.; Wang, T. Helical long-period gratings inscribed in polarization-maintaining fibers by CO2 laser. J. Light. Technol. 2018, 37, 889–896. [Google Scholar] [CrossRef]
- Shu, X.; Zhang, L.; Bennion, I. Sensitivity characteristics of long-period fiber gratings. J. Light. Technol. 2002, 20, 255. [Google Scholar]
- Iadicicco, A.; Ranjan, R.; Esposito, F.; Campopiano, S. Arc-induced long period gratings in polarization-maintaining panda fiber. IEEE Photonics Technol. Lett. 2017, 29, 1533–1536. [Google Scholar] [CrossRef]
- Jiang, C.; Liu, Y.; Mou, C. Polarization-maintaining fiber long-period grating based vector curvature sensor. IEEE Photonics Technol. Lett. 2021, 33, 358–361. [Google Scholar] [CrossRef]
- Jiang, C.; Liu, Y.; Wan, Y.; Lin, Y.; Mou, C.; Ma, Y.; Zhou, K. Broadband and stable linearly polarized mode converter based on polarization-maintaining fiber long-period grating. Opt. Laser Technol. 2022, 152, 108159. [Google Scholar] [CrossRef]
- Ortega, B.; Dong, L.; Liu, W.; De Sandro, J.; Reekie, L.; Tsypina, S.; Bagratashvili, V.; Laming, R. High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers. IEEE Photonics Technol. Lett. 1997, 9, 1370–1372. [Google Scholar] [CrossRef] [Green Version]
- Noda, J.; Okamoto, K.; Sasaki, Y. Polarization-maintaining fibers and their applications. J. Light. Technol. 1986, 4, 1071–1089. [Google Scholar] [CrossRef]
- Li, W.; Huang, Z.; Xiao, X.; Yan, Z.; Luo, S.; Song, Y.; Jiang, C.; Liu, Y.; Mou, C. 0.017 nm, 143 ps passively mode-locked fiber laser based on nonlinear polarization rotation. Opt. Lett. 2023, 48, 2676–2679. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lee, H.W.; Chiang, K.S.; Zhu, T.; Rao, Y.J. Glass Structure Changes in CO2-Laser Writing of Long-Period Fiber Gratings in Boron-Doped Single-Mode Fibers. J. Light. Technol. 2009, 27, 857–863. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, Y.; Jiang, C.; Zhang, Z.; Mao, Y.; Ren, J.; Wen, J.; Liu, Y. All-Fiber Narrow-Bandwidth Mode-Locked Laser Based on Polarization-Dependent Helical Long-Period Grating. Photonics 2023, 10, 842. https://doi.org/10.3390/photonics10070842
Wan Y, Jiang C, Zhang Z, Mao Y, Ren J, Wen J, Liu Y. All-Fiber Narrow-Bandwidth Mode-Locked Laser Based on Polarization-Dependent Helical Long-Period Grating. Photonics. 2023; 10(7):842. https://doi.org/10.3390/photonics10070842
Chicago/Turabian StyleWan, Ying, Chen Jiang, Zuxing Zhang, Yaya Mao, Jianxin Ren, Jianxiang Wen, and Yunqi Liu. 2023. "All-Fiber Narrow-Bandwidth Mode-Locked Laser Based on Polarization-Dependent Helical Long-Period Grating" Photonics 10, no. 7: 842. https://doi.org/10.3390/photonics10070842
APA StyleWan, Y., Jiang, C., Zhang, Z., Mao, Y., Ren, J., Wen, J., & Liu, Y. (2023). All-Fiber Narrow-Bandwidth Mode-Locked Laser Based on Polarization-Dependent Helical Long-Period Grating. Photonics, 10(7), 842. https://doi.org/10.3390/photonics10070842