Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (14,077)

Search Parameters:
Keywords = tumor-specific

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2157 KB  
Review
Refining the Role of Tumor-Associated Macrophages in Oral Squamous Cell Carcinoma
by Kiyofumi Takabatake, Piao Tianyan, Takuma Arashima, Anqi Chang, Hotaka Kawai, Htoo Shwe Eain, Yamin Soe, Zin Zin Min, Masae Fujii, Keisuke Nakano and Hitoshi Nagatsuka
Cancers 2025, 17(17), 2770; https://doi.org/10.3390/cancers17172770 (registering DOI) - 25 Aug 2025
Abstract
In the tumor microenvironment, various immune and stromal cells, such as fibroblasts and vascular endothelial cells, contribute to tumor growth and progression by interacting with cancer cells. Tumor-associated macrophages (TAMs) have attracted attention as major players in the tumor microenvironment. The origin of [...] Read more.
In the tumor microenvironment, various immune and stromal cells, such as fibroblasts and vascular endothelial cells, contribute to tumor growth and progression by interacting with cancer cells. Tumor-associated macrophages (TAMs) have attracted attention as major players in the tumor microenvironment. The origin of TAMs is believed to be the infiltration of monocytes derived from bone marrow progenitor cells into tumor tissues and their differentiation into macrophages, whereas tissue-resident macrophages derived from yolk sacs have recently been reported. TAMs infiltrating tumor tissues act in a tumor-promoting manner through immunosuppression, angiogenesis, and the promotion of cancer cell invasion. Reflecting the nature of TAMs, increased TAM invasion and TAM-specific gene expression in tumor tissues may be the new biomarkers for cancer. Moreover, new therapeutic strategies targeting TAMs, such as transformation into immunostimulatory macrophages, suppression of TAM infiltration, and promotion of phagocytosis, are being investigated, and many clinical trials are underway. As the origin and function of TAMs are further elucidated, TAM-targeted therapy is expected to become a new option for the immunotherapy of various cancers, including oral cancers. Full article
(This article belongs to the Section Cancer Pathophysiology)
Show Figures

Figure 1

29 pages, 1272 KB  
Systematic Review
The Impact of Body Composition on Outcomes in NSCLC Patients Treated with Immune Checkpoint Inhibitors: A Systematic Review
by Carina Golban, Septimiu-Radu Susa, Norberth-Istvan Varga, Cristiana-Smaranda Ivan, Patricia Ortansa Schirta, Nicolae Călin Schirta, Alina Gabriela Negru, Sorin Saftescu and Serban Mircea Negru
Cancers 2025, 17(17), 2765; https://doi.org/10.3390/cancers17172765 (registering DOI) - 25 Aug 2025
Abstract
Background/Objectives: Immune checkpoint inhibitors targeting the PD-1/PD-L1 axis have become a standard in the treatment of all stages of non-small lung cancer. Beyond tumor-intrinsic biomarkers like PD-L1 expression, evidence points to the role of patient-related factors, such as body mass index, sarcopenia, and [...] Read more.
Background/Objectives: Immune checkpoint inhibitors targeting the PD-1/PD-L1 axis have become a standard in the treatment of all stages of non-small lung cancer. Beyond tumor-intrinsic biomarkers like PD-L1 expression, evidence points to the role of patient-related factors, such as body mass index, sarcopenia, and cachexia. These body composition parameters may reflect metabolic reserve or even immune competence and could help stratify outcomes in patients treated with PD-1 and PD-L1. This systematic review aims to evaluate the impact of body composition—specifically BMI, pretreatment weight loss, sarcopenia, and cachexia—on clinical outcomes such as progression-free and overall survival in NSCLC patients treated with immune checkpoint inhibitors. Methods: A systematic literature search was conducted across multiple databases including PubMed, Google Scholar, and Science Direct. We included full-text original research articles (1 January 2020–1 May 2025) reporting clinical outcomes of NSCLC patients treated with PD-1 or PD-L1 inhibitors, in relation to body composition factors (BMI, pretreatment weight loss, sarcopenia, cachexia). Eligible studies involved adults (>18 years) and included observational cohorts or controlled trials; animal or in vitro studies were excluded. Data extraction and risk of bias assessments were performed independently by two reviewers, with discrepancies being resolved through a third one. Results: From 12,358 records identified, 21 studies met the inclusion criteria. Most were retrospective cohorts assessing the impact of pre-treatment weight loss, cachexia, and sarcopenia on ICI outcomes in NSCLC. These factors consistently predicted poorer survival and response, while BMI alone showed limited prognostic value. Considerable heterogeneity in body composition definitions and outcome reporting was observed. Conclusions: Body composition—particularly weight loss, cachexia, and sarcopenia—significantly impacts survival and response in NSCLC patients treated with ICIs. These factors reflect immune–metabolic dysfunction that may impair treatment efficacy. BMI alone is insufficient; routine assessment of muscle mass and cachexia could improve risk stratification. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

31 pages, 1493 KB  
Review
An Update of Immunohistochemistry in Hepatocellular Carcinoma
by Bingyu Li, Larry Huang, Jialing Huang and Jianhong Li
Diagnostics 2025, 15(17), 2144; https://doi.org/10.3390/diagnostics15172144 (registering DOI) - 25 Aug 2025
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge due to molecular heterogeneity and frequent delayed diagnosis. This comprehensive review synthesizes recent immunohistochemistry (IHC) advancements for HCC diagnosis, prognostication, and therapeutic prediction. We systematically evaluate conventional markers, such as hepatocyte paraffin 1 (HepPar1), arginase-1 [...] Read more.
Hepatocellular carcinoma (HCC) remains a global health challenge due to molecular heterogeneity and frequent delayed diagnosis. This comprehensive review synthesizes recent immunohistochemistry (IHC) advancements for HCC diagnosis, prognostication, and therapeutic prediction. We systematically evaluate conventional markers, such as hepatocyte paraffin 1 (HepPar1), arginase-1 (Arg-1), and glypican-3 (GPC3), as well as emerging biomarkers, detailing their diagnostic sensitivities and specificities in HCC with varied tumor differentiation. Prognostic immunostaining markers, such as Ki-67 proliferation index and vascular endothelial growth factor (VEGF) overexpression, correlate with reduced 5-year survival, while novel immune checkpoint IHC markers (PD-L1 and CTLA-4) predict response to immunotherapy, particularly in advanced HCC. This work provides evidence-based recommendations for optimizing IHC utilization in clinical practice while identifying knowledge gaps in biomarker validation and standardization. Full article
(This article belongs to the Special Issue Diagnostic and Prognostic Markers in Liver Diseases)
Show Figures

Figure 1

16 pages, 3516 KB  
Article
TCR-T Cell Recognition of an NY-ESO-1 Epitope Presented by HLA-A2 Supertype: Implications for Cancer Immunotherapy
by Qingqing Lin, Fenglan Liu, Yipeng Ma, Yanwei Li, Tong Lin, Xiaochun Chen, Jinling Zhang, Heng Sun, Zhi Wang, Xiaojun Xia, Geng Tian, Shi Jin and Mingjun Wang
Vaccines 2025, 13(9), 898; https://doi.org/10.3390/vaccines13090898 - 25 Aug 2025
Abstract
Background: T-cell receptor (TCR)-engineered T-cell therapy (TCR-T) has become a promising anticancer therapy. Recognition of tumor cells by TCR-T cells requires matched human leukocyte antigen (HLA) alleles and tumor antigens, which seriously limits their population coverage. One strategy to expand the population coverage [...] Read more.
Background: T-cell receptor (TCR)-engineered T-cell therapy (TCR-T) has become a promising anticancer therapy. Recognition of tumor cells by TCR-T cells requires matched human leukocyte antigen (HLA) alleles and tumor antigens, which seriously limits their population coverage. One strategy to expand the population coverage of a specific TCR-T cell therapy is to enable TCR-T cells to recognize target peptides presented by more HLA alleles. Methods: In this study, HLA alleles were selected based on the Chinese population frequency and HLA supertype classification. Then, COS-7 and two tumor cell lines (586 mel and 5637) were transduced with selected HLA alleles for functional evaluation of TCR-T cells. HLA-A2 alleles capable of both exogenously and endogenously presenting the NY-ESO-1-derived epitope and thereby being recognized by TCR-T cells were tested. Results: We demonstrated that a given TCR-T cell product can recognize the NY-ESO-1 peptide exogenously and endogenously presented not only by HLA-A*02:01 but also by HLA-A*02:03, HLA-A*02:06, and HLA-A*02:10, almost doubling the population coverage in the Chinese population from 12.01% to 21.05%. Conclusions: Our study suggests that cancer patients expressing members of the HLA-A2 supertype may benefit from the TCR-T cell product, and other TCR-T cell products could similarly expand their population coverage even within the non-Chinese population through an analogous approach. Full article
(This article belongs to the Section Vaccination Against Cancer and Chronic Diseases)
Show Figures

Graphical abstract

16 pages, 436 KB  
Review
Orphan Cytochromes P450 as Possible Pharmacological Targets or Biomarkers in Breast Cancer
by Barbara Licznerska, Hanna Szaefer and Wanda Baer-Dubowska
Curr. Issues Mol. Biol. 2025, 47(9), 682; https://doi.org/10.3390/cimb47090682 - 25 Aug 2025
Abstract
Although significant advances in the treatment of breast cancer have been made over the last few decades, searching for more effective prophylaxis and therapy for this type of cancer is still topical. Orphan cytochromes (CYPs) P450 are enzymes whose functions and substrates are [...] Read more.
Although significant advances in the treatment of breast cancer have been made over the last few decades, searching for more effective prophylaxis and therapy for this type of cancer is still topical. Orphan cytochromes (CYPs) P450 are enzymes whose functions and substrates are not fully known. The overexpression of some orphan CYPs in breast cancer tissue warrants attention as a possible breast cancer prophylaxis/treatment target or biomarker. Of particular interest is CYP4Z1, which seems to be specific for breast cancer, including triple-negative breast cancer (TNBC). The currently available data indicate that inhibition of CYP4Z1 breast-specific expression may reduce the growth, progression, angiogenesis, and invasiveness of breast cancer. Although less specific, the other orphan CYPs, such as CYP2W1, CYP2S1, CYP2U1, and CYP4X1, exhibit significantly higher expression in breast tumors compared to normal tissues. The available data indicate that these CYP isoforms catalyze the hydroxylation of fatty acids. Their products, such as epoxyeicosatrienoic acids (EETs) or hydroxyeicosatetraenoic acids (HETEs), are considered critical modulators of cancer progression. Therefore, inhibition of the expression and activity of these orphan CYPs might be more useful in cancer treatment than in prophylaxis. This review summarizes current knowledge of orphan CYPs in breast tissue and their possible application in drug targeting or prognosis assessment. Full article
(This article belongs to the Special Issue Future Challenges of Targeted Therapy of Cancers: 2nd Edition)
Show Figures

Figure 1

19 pages, 1317 KB  
Article
Clinical, Immunohistochemical, and Inflammatory Profiles in Colorectal Cancer: The Impact of MMR Deficiency
by Vlad Alexandru Ionescu, Gina Gheorghe, Ioana Alexandra Baban, Alexandru Barbu, Ninel Iacobus Antonie, Teodor Florin Georgescu, Razvan Matei Bratu, Carmen Cristina Diaconu, Cristina Mambet, Coralia Bleotu, Valentin Enache and Camelia Cristina Diaconu
Diagnostics 2025, 15(17), 2141; https://doi.org/10.3390/diagnostics15172141 - 25 Aug 2025
Abstract
Background/Objectives: Mismatch repair (MMR) deficiency assessment has proven to be a valuable tool for prognostic evaluation and therapeutic management guidance in patients with colorectal cancer (CRC). Our study aimed to investigate the associations between MMR deficiency and a range of clinicopathological parameters. Methods: [...] Read more.
Background/Objectives: Mismatch repair (MMR) deficiency assessment has proven to be a valuable tool for prognostic evaluation and therapeutic management guidance in patients with colorectal cancer (CRC). Our study aimed to investigate the associations between MMR deficiency and a range of clinicopathological parameters. Methods: We conducted a retrospective observational study including 264 patients diagnosed with CRC, for whom immunohistochemical (IHC) data were available. Statistical analysis was performed using the Python 3.12.7 programming language within the Jupyter Notebook environment (Anaconda distribution). Results: MMR deficiency was identified in 18.18% of patients. It was significantly associated with younger age (<50 years), female sex, right-sided tumor location, poor tumor differentiation (G3), smoking, and loss of CDX2 expression (p < 0.001). MLH1 and PMS2 were the most frequently affected proteins, with concurrent loss in 77.08% of MMR-deficient cases. Loss of MLH1 expression correlated with female sex (p = 0.004), right-sided location (p < 0.001), poor differentiation (p < 0.001), and loss of CDX2 expression (p < 0.001). Additionally, the loss of PMS2 expression was associated with female sex (p = 0.015), right-sided tumor location (p = 0.003), and poor differentiation (p < 0.001). No significant associations were identified between MMR status and tumor stage, histological subtype, PLR, or NLR values. Conclusions: Gaining deeper insights into the clinical relevance of MMR status in CRC could contribute to improved testing rates and support the design of tailored management strategies that address the specific biological features of these tumors. Full article
(This article belongs to the Special Issue Advances in the Diagnosis of Gastrointestinal Diseases—2nd Edition)
Show Figures

Figure 1

32 pages, 2441 KB  
Review
Tailoring Therapy: Hydrogels as Tunable Platforms for Regenerative Medicine and Cancer Intervention
by Camelia Munteanu, Eftimia Prifti, Adrian Surd and Sorin Marian Mârza
Gels 2025, 11(9), 679; https://doi.org/10.3390/gels11090679 - 24 Aug 2025
Abstract
Hydrogels are water-rich polymeric networks mimicking the body’s extracellular matrix, making them highly biocompatible and ideal for precision medicine. Their “tunable” and “smart” properties enable the precise adjustment of mechanical, chemical, and physical characteristics, allowing responses to specific stimuli such as pH or [...] Read more.
Hydrogels are water-rich polymeric networks mimicking the body’s extracellular matrix, making them highly biocompatible and ideal for precision medicine. Their “tunable” and “smart” properties enable the precise adjustment of mechanical, chemical, and physical characteristics, allowing responses to specific stimuli such as pH or temperature. These versatile materials offer significant advantages over traditional drug delivery by facilitating targeted, localized, and on-demand therapies. Applications range from diagnostics and wound healing to tissue engineering and, notably, cancer therapy, where they deliver anti-cancer agents directly to tumors, minimizing systemic toxicity. Hydrogels’ design involves careful material selection and crosslinking techniques, which dictate properties like swelling, degradation, and porosity—all crucial for their effectiveness. The development of self-healing, tough, and bio-functional hydrogels represents a significant step forward, promising advanced biomaterials that can actively sense, react to, and engage in complex biological processes for a tailored therapeutic approach. Beyond their mechanical resilience and adaptability, these hydrogels open avenues for next-generation therapies, such as dynamic wound dressings that adapt to healing stages, injectable scaffolds that remodel with growing tissue, or smart drug delivery systems that respond to real-time biochemical cues. Full article
(This article belongs to the Special Issue Advances in Hydrogels for Regenerative Medicine)
Show Figures

Figure 1

17 pages, 939 KB  
Article
Management of the Axilla in Older Patients with Breast Cancer: Reassessing the Role of Sentinel Lymph Node Biopsy
by Francisco Castillejos Ibáñez, Ernesto Muñoz Sornosa, Vicente López Flor, Marcos Adrianzén Vargas, María Teresa Martínez Martínez and Elvira Buch Villa
Cancers 2025, 17(17), 2758; https://doi.org/10.3390/cancers17172758 - 24 Aug 2025
Abstract
Background: Sentinel lymph node biopsy (SLNB) has traditionally been used to stage the axilla in early-stage breast cancer. However, its utility in women over 70 with hormone receptor-positive tumors and negative axillary imaging is increasingly questioned due to limited therapeutic benefit and potential [...] Read more.
Background: Sentinel lymph node biopsy (SLNB) has traditionally been used to stage the axilla in early-stage breast cancer. However, its utility in women over 70 with hormone receptor-positive tumors and negative axillary imaging is increasingly questioned due to limited therapeutic benefit and potential complications. Objectives. To assess the feasibility of omitting SLNB in women aged 70 and older with clinically node-negative, luminal-type breast cancer. Methods: A retrospective analysis was conducted on women aged 70 and above with histologically confirmed invasive breast cancer, negative axillary imaging, and surgery between January 2021 and December 2024. Eligible patients were selected based on normal axillary ultrasound findings. All underwent SLNB. We examined demographics, clinical characteristics, surgical outcomes, and oncological variables such as recurrence and mortality. Results: A total of 149 women underwent surgery, with a mean age of 77.2 (5.24) years. SLNB was positive in 23.5% of cases, but only 6.7% required axillary dissection. Sensitivity and specificity of SLNB declined notably after age 76. No axillary or breast recurrences were reported. Most patients (89.9%) received hormonal therapy, while 11.4% had chemotherapy and 17.5% axillary radiotherapy. Outpatient management was feasible in 87.9% of cases, and no clinically significant lymphedema was observed. Conclusions: Omitting SLNB in women ≥70 years with luminal breast cancer and negative axillary imaging appears safe and does not compromise oncological outcomes. This strategy minimizes surgical risks and enhances quality of life, supporting a more tailored and less invasive approach to axillary management in older patients. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Graphical abstract

16 pages, 1635 KB  
Article
Expression Analysis of let-7a-5p and miR-21-3p in Extracellular Vesicles Derived from Serum of NSCLC Patients
by Dian Jamel Salih, Katrin S. Reiners, Domenico Loizzi, Nicoletta Pia Ardò, Teresa Antonia Santantonio, Francesco Sollitto and Gunther Hartmann
Biomedicines 2025, 13(9), 2060; https://doi.org/10.3390/biomedicines13092060 - 24 Aug 2025
Abstract
Background/Objectives: Despite the significant advancements made in the diagnosis of lung cancer, the traditional diagnostic methods remain limited because they are often invasive, expensive, and not suitable for regular screening, creating a need for more accessible and non-invasive alternatives. In this context, [...] Read more.
Background/Objectives: Despite the significant advancements made in the diagnosis of lung cancer, the traditional diagnostic methods remain limited because they are often invasive, expensive, and not suitable for regular screening, creating a need for more accessible and non-invasive alternatives. In this context, the analysis of miRNAs in EVs and free circulating microRNA may be used as liquid biopsies in lung cancer to identify individuals at risk. This study aimed to compare miRNA profiles in the serum and EVs derived from lung cancer patients by focusing on Let-7a-5p and miR-21-3p. Materials and Methods: Serum and EVs were isolated from lung cancer patients and healthy controls. EVs were characterized using nanoparticle tracking analysis, electron microscopy, and Western blotting for surface markers (CD63, CD81, TSG101). Total miRNA levels were quantified in the serum and EVs, and specific miRNAs (hsa-let-7a-5p and hsa-miR-21-3p) were analyzed using RT-qPCR. Statistical analysis evaluated miRNA expression across clinicopathological features, including age, gender, smoking status, tumor stage, cancer type, and EGFR mutation status. Results: Total miRNA levels were significantly enriched in EVs compared to the serum. Let-7a-5p was downregulated in EVs from patients with advanced-stage lung cancer (Stage III–IV) compared to those with early-stage cancer and controls (p < 0.05), while no differences were observed in the serum. Conversely, miR-21-3p was significantly upregulated in EVs and serum from advanced-stage patients (p < 0.01) and in adenocarcinoma compared to squamous cell carcinoma (p < 0.05). No significant differences were observed for age, gender, or smoking status. Conclusions: Our findings highlight the differential expression of miRNAs in EVs and the serum, emphasizing the diagnostic potential of EV-associated Let-7a-5p and miR-21-3p in lung cancer. These results suggest that EVs are a more robust source for miRNA biomarkers compared to the serum. Full article
(This article belongs to the Special Issue Extracellular Vesicles and Exosomes as Therapeutic Agents)
Show Figures

Figure 1

16 pages, 2019 KB  
Article
Molecular and Clinicopathological Profiling of Clear Cell Renal Cell Carcinoma with Rhabdoid Features: An Integrative Pathway-Based Stratification Approach
by Zhichun Lu, Qing Zhao, Huihong Xu, Mark H. Katz, David S. Wang, Christopher D. Andry and Shi Yang
Cancers 2025, 17(17), 2744; https://doi.org/10.3390/cancers17172744 - 23 Aug 2025
Viewed by 57
Abstract
Background: Clear cell renal cell carcinoma with rhabdoid features (ccRCC-R) is a highly aggressive variant of renal cell carcinoma that carries a poor prognosis and limited treatment options. Methods: To better define the clinicopathologic and molecular landscape of ccRCC-R, we conducted [...] Read more.
Background: Clear cell renal cell carcinoma with rhabdoid features (ccRCC-R) is a highly aggressive variant of renal cell carcinoma that carries a poor prognosis and limited treatment options. Methods: To better define the clinicopathologic and molecular landscape of ccRCC-R, we conducted an integrated clinicopathologic and molecular study of 17 tumors of ccRCC-R, utilizing comprehensive histomorphologic evaluation, immunohistochemistry, and targeted next-generation sequencing (NGS). Results: Histologically, all tumors demonstrated classic clear cell renal cell carcinoma morphology with focal to extensive rhabdoid differentiation, characterized by eccentrically located nuclei, prominent nucleoli, abundant eosinophilic cytoplasm, and paranuclear intracytoplasmic inclusion. Architectural alterations, including solid/sheet-like, alveolar/trabecular, and pseudopapillary growth patterns, were frequently observed. Immunohistochemically, tumors commonly exhibited loss of PAX8 and Claudin4 expression, preserved cytokeratin AE1/AE3 staining, and diffuse membranous CAIX expression. Frequent loss of SMARCA2 with retained SMARCA4 supported aberrations in chromatin remodeling. Unsupervised hierarchical clustering based on pathway-specific somatic mutations identified four distinct molecular subgroups defined by recurrent alterations in (1) DNA damage repair (DDR) genes, (2) chromatin remodeling genes, (3) PI3K/AKT/mTOR signaling components, and (4) MAPK pathway genes. Clinicopathologic correlation revealed that each subgroup was associated with unique biological characteristics and suggested distinct therapeutic vulnerabilities. Conclusions: Our findings underscore the molecular heterogeneity of ccRCC-R and support the utility of pathway-based stratification for guiding precision oncology approaches and biomarker-informed clinical trial design. Full article
(This article belongs to the Special Issue Recent Advances in Management of Renal Cell Carcinoma)
Show Figures

Figure 1

33 pages, 2450 KB  
Review
Research Progress on Polymer-Based Nanocarriers for Tumor-Targeted Delivery of Survivin siRNA
by Luya Ren, Shaoxia Wang, Bin-Chun Li and Guo-Bin Ding
Polymers 2025, 17(17), 2279; https://doi.org/10.3390/polym17172279 - 23 Aug 2025
Viewed by 239
Abstract
Survivin, a pivotal member of the inhibitor of apoptosis proteins (IAP) family, plays critical roles in cell cycle regulation and division. Survivin is overexpressed in most malignancies, making it an attractive therapeutic target. Due to its high specificity and potency, siRNA-based RNA interference [...] Read more.
Survivin, a pivotal member of the inhibitor of apoptosis proteins (IAP) family, plays critical roles in cell cycle regulation and division. Survivin is overexpressed in most malignancies, making it an attractive therapeutic target. Due to its high specificity and potency, siRNA-based RNA interference (RNAi) has emerged as a powerful therapeutic strategy for effectively downregulating disease-related genes such as survivin in cancer therapy. However, naked siRNA suffers from rapid enzymatic degradation, poor cellular uptake, and off-target effects, severely limiting its therapeutic efficacy in vivo. Development of polymer-based nanocarriers for tumor-targeted delivery of survivin siRNA (siSurvivin) holds great potential to address these challenges. In this review, we first described the structure and function of survivin and summarized the survivin-targeted therapeutic strategy. Then, the siRNA delivery systems, particularly the polymeric nanocarriers, were introduced. Furthermore, a plethora of polymer-based nanocarriers for tumor-targeted siSurvivin delivery, including synthetic polymers (branched polymers, dendritic polymers, polymeric micelles), natural polymers (polysaccharides, proteins, and others), lipid-polymer hybrid nanoparticles, and polymer composite nanoparticles, were elaborated. Promising results underscore the potential of polymer-based nanocarriers for survivin siRNA delivery to enhance cancer therapy, providing a roadmap for future clinical translation. Full article
(This article belongs to the Special Issue Polymers for Drug/Gene Delivery and Controlled Release)
Show Figures

Figure 1

30 pages, 2129 KB  
Review
Fluorescence-Guided Surgery in Head and Neck Squamous Cell Carcinoma (HNSCC)
by Albrecht Blosse, Markus Pirlich, Andreas Dietz, Christin Möser, Katrin Arnold, Jessica Freitag, Thomas Neumuth, David M. Smith, Hans Kubitschke and Maximilian Gaenzle
Int. J. Transl. Med. 2025, 5(3), 40; https://doi.org/10.3390/ijtm5030040 - 22 Aug 2025
Viewed by 469
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are the seventh most common form of cancer worldwide, typically characterized by high mortality and significant morbidity, including pain and speech and swallowing disorders. Complete tumor tissue resection, the common first line of therapy, remains a [...] Read more.
Head and neck squamous cell carcinomas (HNSCCs) are the seventh most common form of cancer worldwide, typically characterized by high mortality and significant morbidity, including pain and speech and swallowing disorders. Complete tumor tissue resection, the common first line of therapy, remains a surgical challenge with room for improvements. Because tumor cells express highly specific surface molecules serving as receptors for ligands, specific targeting ligands can be conjugated to fluorescent molecules in order to better visualize tumor borders. Targeted fluorescence-guided surgery (T-FGS) as well as tumor-targeted and near-infrared (NIR) fluorescence imaging are emerging techniques for real-time intraoperative cancer imaging. Targeting agents include nanodots or fluorophores, which have been conjugated to specific ligands like antibodies, peptides, or other synthetic moieties. This article surveys tumor-targeted ligands in recent and current preclinical studies and clinical trials related to HNSCC, highlighting common NIRF dyes used for molecular imaging and their physical properties, working concentrations, and associated risks. Smaller ligands, nanodots, dual-modality NIR dyes, and activatable agents can enhance tumor-targeting processes, resulting in faster, more penetrable, and clearer imaging, which could lead to improved clinical applications and better tumor removal rates in the future. Full article
Show Figures

Figure 1

13 pages, 1207 KB  
Article
Evaluation of Cyclotron Solid Target Produced Gallium-68 Chloride for the Labeling of [68Ga]Ga-PSMA-11 and [68Ga]Ga-DOTATOC
by Michał Jagodziński, Jakub Boratyński, Paulina Hamankiewicz, Łukasz Cheda, Witold Uhrynowski, Agnieszka Girstun, Joanna Trzcińska-Danielewicz, Zbigniew Rogulski and Marek Pilch-Kowalczyk
Molecules 2025, 30(17), 3458; https://doi.org/10.3390/molecules30173458 - 22 Aug 2025
Viewed by 159
Abstract
Gallium-68 is a widely used positron-emitting radionuclide in nuclear medicine, traditionally obtained from 68Ge/68Ga generators. However, increasing clinical demand has driven interest in alternative production methods, such as medical cyclotrons equipped with solid targets. This study evaluates the functional equivalence [...] Read more.
Gallium-68 is a widely used positron-emitting radionuclide in nuclear medicine, traditionally obtained from 68Ge/68Ga generators. However, increasing clinical demand has driven interest in alternative production methods, such as medical cyclotrons equipped with solid targets. This study evaluates the functional equivalence of gallium-68 chloride obtained from cyclotron solid target and formulated to be equivalent to the eluate from a germanium-gallium generator, aiming to determine whether this production method can serve as a reliable alternative for PET radiopharmaceutical applications. Preparations of [68Ga]Ga-PSMA-11 and [68Ga]Ga-DOTATOC, labeled with cyclotron-derived gallium-68 chloride, were subjected to quality control analysis using radio thin layer chromatography and radio high performance liquid chromatography. Subsequently, biodistribution studies were performed in mouse oncological models of expression of PSMA antigen and SSTR receptor to compare uptake of preparations produced with generator and cyclotron-derived isotopes. All tested formulations met the required radiochemical purity specifications. Moreover, tumor accumulation of the radiolabeled compounds was comparable regardless of the isotope source. The results support the conclusion that gallium-68 produced via cyclotron is functionally equivalent to that obtained from a generator, demonstrating its potential for interchangeable use in clinical and research radiopharmaceutical applications. Full article
Show Figures

Figure 1

24 pages, 1583 KB  
Review
Targeting Cancer Translational Plasticity: IRES-Driven Metabolism and Survival Within the Tumor Microenvironment
by Fabrizio Damiano, Benedetta Di Chiara Stanca, Laura Giannotti, Eleonora Stanca, Angela Francesca Dinoi and Luisa Siculella
Cancers 2025, 17(17), 2731; https://doi.org/10.3390/cancers17172731 - 22 Aug 2025
Viewed by 248
Abstract
The tumor microenvironment creates strong stress conditions, including hypoxia and nutrient depletion, which cause the blocking of cap-dependent translation. Under stressful conditions, cancer cells exploit the cap-independent translation mechanism mediated by internal ribosome entry site (IRES), which ensures continued protein synthesis. IRES elements [...] Read more.
The tumor microenvironment creates strong stress conditions, including hypoxia and nutrient depletion, which cause the blocking of cap-dependent translation. Under stressful conditions, cancer cells exploit the cap-independent translation mechanism mediated by internal ribosome entry site (IRES), which ensures continued protein synthesis. IRES elements located in the 5′ untranslated regions of specific mRNAs allow selective translation of key anti-apoptotic and adaptive proteins. These proteins promote cellular processes that sustain cell survival, among them metabolic reprogramming, redox balance, and epithelial-to-mesenchymal transition, thus facilitating tumor progression and therapy resistance. IRES activity is dynamically regulated by IRES trans-acting factors, such as YB-1, PTB, and hnRNPA1, which respond to cellular stress by enhancing translation of crucial mRNAs. Emerging therapeutic strategies include pharmacological IRES inhibitors, RNA-based approaches targeting ITAF interactions, and IRES-containing vectors for controlled therapeutic gene expression. A deeper understanding of translational reprogramming, IRES structural diversity, and ITAF function is essential to develop targeted interventions to overcome therapeutic resistance and eliminate persistent tumor cell populations. Full article
(This article belongs to the Special Issue Targeting the Tumor Microenvironment (Volume II))
Show Figures

Figure 1

34 pages, 4867 KB  
Review
Polymeric Nanoparticles for Targeted Lung Cancer Treatment: Review and Perspectives
by Devesh U. Kapoor, Sonam M. Gandhi, Sambhavi Swarn, Basant Lal, Bhupendra G. Prajapati, Supang Khondee, Supachoke Mangmool, Sudarshan Singh and Chuda Chittasupho
Pharmaceutics 2025, 17(9), 1091; https://doi.org/10.3390/pharmaceutics17091091 - 22 Aug 2025
Viewed by 330
Abstract
Lung cancer remains a foremost cause of cancer-related impermanence globally, demanding innovative and effective therapeutic strategies. Polymeric nanoparticles (NPs) have turned up as a promising transport system for drugs due to their biodegradability, biocompatibility, and capability to provide controlled and targeted release of [...] Read more.
Lung cancer remains a foremost cause of cancer-related impermanence globally, demanding innovative and effective therapeutic strategies. Polymeric nanoparticles (NPs) have turned up as a promising transport system for drugs due to their biodegradability, biocompatibility, and capability to provide controlled and targeted release of therapeutic agents. This review offers a thorough examination of different polymeric NP platforms, such as chitosan, gelatin, alginate, poly (lactic acid), and polycaprolactone, highlighting their mechanisms, formulations, and applications in the treatment of lung cancer. These NPs facilitate the delivery of chemotherapeutic agents, gene therapies, and immune modulators, with enhanced bioavailability and reduced systemic toxicity. Additionally, advanced formulations such as ligand-conjugated, stimuli-responsive, and multifunctional NPs demonstrate improved tumor-specific accumulation and cellular uptake. The review also discusses quantum dots, magnetic and lipid-based NPs, and green-synthesized metallic polymeric hybrids, emphasizing their potential in theranostics and combination therapies. Preclinical studies show promising results, yet clinical translation faces challenges; for example, large-scale production, long-term toxicity, and regulatory hurdles. Overall, polymeric NPs represent a powerful platform for advancing personalized lung cancer therapy, with future prospects rooted in multifunctional, targeted, and patient-specific nanomedicine. Full article
(This article belongs to the Special Issue Nanoparticle-Mediated Targeted Drug Delivery Systems)
Show Figures

Figure 1

Back to TopTop