Molecular and Clinicopathological Profiling of Clear Cell Renal Cell Carcinoma with Rhabdoid Features: An Integrative Pathway-Based Stratification Approach
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Tumor Selection and Study Design
2.2. Histomorphologic Evaluation
2.3. Immunohistochemistry
2.4. Molecular NGS Study and Pathway-Based Clustering Analysis
3. Results
3.1. Clinicopathological Features
3.2. Histomorphologic Features and Immunohistochemical Results
3.3. Molecular NGS Analysis and Pathway-Based Subclassification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ccRCC | Clear cell renal cell carcinoma |
ccRCC-R | Clear cell renal cell carcinoma with rhabdoid features |
FFPE | Formalin-fixed paraffin-embedded |
NGS | Next-generation sequencing |
WHO/ISUP | World Health Organization/International Society of Urological Pathology |
VAF | Variant allele frequency |
SNV | Single-nucleotide variants |
DDR | DNA damage repair |
VEGFi (Pazo) | VEGF inhibitor (Pazopanib) |
ICB (Nivo + Ipi) | Immune checkpoint blockade (Nivolumab + Ipilimumab) |
TKI (Cabo) | Tyrosine kinase inhibitor (Cabozantinib) |
LTFU | Lost to follow-up |
NED | No evidence of disease |
AWD | Alive with disease |
DNAD | Death not associated with disease |
References
- Przybycin, C.G.; McKenney, J.K.; Reynolds, J.P.; Campbell, S.; Zhou, M.; Karafa, M.T.; Magi-Galluzzi, C. Rhabdoid differentiation is associated with aggressive behavior in renal cell carcinoma: A clinicopathologic analysis of 76 cases with clinical follow-up. Am. J. Surg. Pathol. 2014, 38, 1260–1265. [Google Scholar] [CrossRef] [PubMed]
- Gökden, N.; Nappi, O.; Swanson, P.E.; Pfeifer, J.D.; Vollmer, R.T.; Wick, M.R.; Humphrey, P.A. Renal cell carcinoma with rhabdoid features. Am. J. Surg. Pathol. 2000, 24, 1329–1338. [Google Scholar] [CrossRef] [PubMed]
- Hahn, A.W.; Lebenthal, J.; Genovese, G.; Sircar, K.; Tannir, N.M.; Msaouel, P. The significance of sarcomatoid and rhabdoid dedifferentiation in renal cell carcinoma. Cancer Treat Res. Commun. 2022, 33, 100640. [Google Scholar] [CrossRef] [PubMed]
- Moch, H.; Amin, M.B.; Berney, D.M.; Compérat, E.M.; Gill, A.J.; Hartmann, A.; Menon, S.; Raspollini, M.R.; Rubin, M.A.; Srigley, J.R.; et al. The 2022 World Health Organization Classification of Tumours of the Urinary System and Male Genital Organs-Part A: Renal, Penile, and Testicular Tumours. Eur. Urol. 2022, 82, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.R.; Murugan, P.; Patel, L.R.; Voicu, H.; Yoo, S.Y.; Majewski, T.; Mehrotra, M.; Wani, K.; Tannir, N.; Karam, J.A.; et al. Intratumoral morphologic and molecular heterogeneity of rhabdoid renal cell carcinoma: Challenges for personalized therapy. Mod. Pathol. 2015, 28, 1225–1235. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bakouny, Z.; Braun, D.A.; Shukla, S.A.; Pan, W.; Gao, X.; Hou, Y.; Flaifel, A.; Tang, S.; Bosma-Moody, A.; He, M.X.; et al. Integrative molecular characterization of sarcomatoid and rhabdoid renal cell carcinoma. Nat. Commun. 2021, 12, 808. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013, 499, 43–49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hakimi, A.A.; Ostrovnaya, I.; Reva, B.; Schultz, N.; Chen, Y.B.; Gonen, M.; Liu, H.; Takeda, S.; Voss, M.H.; Tickoo, S.K.; et al. ccRCC Cancer Genome Atlas (KIRC TCGA) Research Network investigators. Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: A report by MSKCC and the KIRC TCGA research network. Clin. Cancer Res. 2013, 19, 3259–3267. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lalani, A.A.; Heng, D.Y.C.; Basappa, N.S.; Wood, L.; Iqbal, N.; McLeod, D.; Soulières, D.; Kollmannsberger, C. Evolving landscape of first-line combination therapy in advanced renal cancer: A systematic review. Ther. Adv. Med. Oncol. 2022, 14, 17588359221108685. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lalani, A.A.; Kapoor, A.; Basappa, N.S.; Bhindi, B.; Bjarnason, G.A.; Bosse, D.; Breau, R.H.; Canil, C.M.; Cardenas, L.M.; Castonguay, V.; et al. Adjuvant therapy for renal cell carcinoma: 2023 Canadian Kidney Cancer Forum consensus statement. Can. Urol. Assoc, J. 2023, 17, E154–E163. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Delahunt, B.; Eble, J.N.; Egevad, L.; Samaratunga, H. Grading of renal cell carcinoma. Histopathology 2019, 74, 4–17. [Google Scholar] [CrossRef] [PubMed]
- Brierley, J.; Gospodarowicz, M.K.; Wittekind, C. American Joint Committee on Cancer (AJCC) TNM Classification, 8th ed.; Springer: New York, NY, USA, 2017; pp. 747–756. [Google Scholar]
- Kuroiwa, K.; Kinoshita, Y.; Shiratsuchi, H.; Oshiro, Y.; Tamiya, S.; Oda, Y.; Naito, S.; Tsuneyoshi, M. Renal cell carcinoma with rhabdoid features: An aggressive neoplasm. Histopathology 2002, 41, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Adeniran, A.J.; Shuch, B.; Humphrey, P.A. Sarcomatoid and Rhabdoid Renal Cell Carcinoma: Clinical, Pathologic, and Molecular Genetic Features. Am. J. Surg. Pathol. 2024, 48, e65–e88. [Google Scholar] [CrossRef] [PubMed]
- Agaimy, A.; Cheng, L.; Egevad, L.; Feyerabend, B.; Hes, O.; Keck, B.; Pizzolitto, S.; Sioletic, S.; Wullich, B.; Hartmann, A. Rhabdoid and Undifferentiated Phenotype in Renal Cell Carcinoma: Analysis of 32 Cases Indicating a Distinctive Common Pathway of Dedifferentiation Frequently Associated With SWI/SNF Complex Deficiency. Am. J. Surg. Pathol. 2017, 41, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Haswell, J.R.; Roberts, C.W. Molecular pathways: SWI/SNF (BAF) complexes are frequently mutated in cancer--mechanisms and potential therapeutic insights. Clin. Cancer Res. 2014, 20, 21–27. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Turajlic, S.; Xu, H.; Litchfield, K.; Rowan, A.; Horswell, S.; Chambers, T.; O’Brien, T.; Lopez, J.I.; Watkins, T.B.K.; Nicol, D.; et al. Deterministic Evolutionary Trajectories Influence Primary Tumor Growth: TRACERx Renal. Cell 2018, 173, 595–610.e11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Turajlic, S.; Xu, H.; Litchfield, K.; Rowan, A.; Chambers, T.; Lopez, J.I.; Nicol, D.; O’Brien, T.; Larkin, J.; Horswell, S.; et al. Tracking Cancer Evolution Reveals Constrained Routes to Metastases: TRACERx Renal. Cell 2018, 173, 581–594.e12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ricketts, C.J.; De Cubas, A.A.; Fan, H.; Smith, C.C.; Lang, M.; Reznik, E.; Bowlby, R.; Gibb, E.A.; Akbani, R.; Beroukhim, R.; et al. The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma. Cell Rep. 2018, 23, 313–326.e5, Erratum in Cell Rep. 2018, 23, 3698. https://doi.org/10.1016/j.celrep.2018.06.032. Erratum in Cell Rep. 2024, 43, 113063. https://doi.org/10.1016/j.celrep.2023.113063. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kapur, P.; Christie, A.; Rajaram, S.; Brugarolas, J. What morphology can teach us about renal cell carcinoma clonal evolution. Kidney Cancer J. 2020, 18, 68–76. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gerlinger, M.; Horswell, S.; Larkin, J.; Rowan, A.J.; Salm, M.P.; Varela, I.; Fisher, R.; McGranahan, N.; Matthews, N.; Santos, C.R.; et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 2014, 46, 225–233. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Frew, I.J.; Moch, H. A clearer view of the molecular complexity of clear cell renal cell carcinoma. Annu. Rev. Pathol. 2015, 10, 263–289. [Google Scholar] [CrossRef] [PubMed]
- Ged, Y.; Chaim, J.L.; DiNatale, R.G.; Knezevic, A.; Kotecha, R.R.; Carlo, M.I.; Lee, C.H.; Foster, A.; Feldman, D.R.; Teo, M.Y.; et al. DNA damage repair pathway alterations in metastatic clear cell renal cell carcinoma and implications on systemic therapy. J. Immunother. Cancer 2020, 8, e000230. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhuang, Z.; Lin, J.; Huang, Y.; Lin, T.; Zheng, Z.; Ma, X. Notch 1 is a valuable therapeutic target against cell survival and proliferation in clear cell renal cell carcinoma. Oncol. Lett. 2017, 14, 3437–3444. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, L.; Li, Y.; Cai, B.; Chen, J.; Zhao, K.; Li, M.; Lang, J.; Wang, K.; Pan, S.; Zhu, K. A Notch signaling-related lncRNA signature for predicting prognosis and therapeutic response in clear cell renal cell carcinoma. Sci. Rep. 2023, 13, 21141. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pletcher, J.P.; Bhattacharjee, S.; Doan, J.P.; Wynn, R.; Sindhwani, P.; Nadiminty, N.; Petros, F.G. The Emerging Role of Poly (ADP-Ribose) Polymerase Inhibitors as Effective Therapeutic Agents in Renal Cell Carcinoma. Front. Oncol. 2021, 11, 681441. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tannir, N.M.; Signoretti, S.; Choueiri, T.K.; McDermott, D.F.; Motzer, R.J.; Flaifel, A.; Pignon, J.C.; Ficial, M.; Frontera, O.A.; George, S.; et al. Efficacy and Safety of Nivolumab Plus Ipilimumab versus Sunitinib in First-line Treatment of Patients with Advanced Sarcomatoid Renal Cell Carcinoma. Clin. Cancer Res. 2021, 27, 78–86. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iacovelli, R.; Ciccarese, C.; Bria, E.; Bracarda, S.; Porta, C.; Procopio, G.; Tortora, G. Patients with sarcomatoid renal cell carcinoma—Redefining the first-line of treatment: A meta-analysis of randomised clinical trials with immune checkpoint inhibitors. Eur. J. Cancer 2020, 136, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Motzer, R.J. Systemic Therapy for Metastatic Renal-Cell Carcinoma. N. Engl. J. Med. 2017, 376, 354–366. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Yang, Z.; Dong, Y.; Hao, X.; Wang, K.; Xia, W.; Ren, L.; Li, T.; Xu, M.; Zhu, G.; et al. The positive feedback loop between SP1 and MAP2K2 significantly drives resistance to VEGFR inhibitors in clear cell renal cell carcinoma. Int. J. Biol. Sci. 2025, 21, 860–873. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ocana, A.; Vera-Badillo, F.; Al-Mubarak, M.; Templeton, A.J.; Corrales-Sanchez, V.; Diez-Gonzalez, L.; Cuenca-Lopez, M.D.; Seruga, B.; Pandiella, A.; Amir, E. Activation of the PI3K/mTOR/AKT pathway and survival in solid tumors: Systematic review and meta-analysis. PLoS ONE 2014, 9, e95219. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roldan-Romero, J.M.; Beuselinck, B.; Santos, M.; Rodriguez-Moreno, J.F.; Lanillos, J.; Calsina, B.; Gutierrez, A.; Tang, K.; Lainez, N.; Puente, J.; et al. PTEN expression and mutations in TSC1, TSC2 and MTOR are associated with response to rapalogs in patients with renal cell carcinoma. Int. J. Cancer. 2020, 146, 1435–1444. [Google Scholar] [CrossRef] [PubMed]
- Leroy, X.; Zini, L.; Buob, D.; Ballereau, C.; Villers, A.; Aubert, S. Renal cell carcinoma with rhabdoid features: An aggressive neoplasm with overexpression of p53. Arch. Pathol. Lab. Med. 2007, 131, 102–106. [Google Scholar] [CrossRef] [PubMed]
Case (N) | Sex (M/F) | Age (yrs) | Laterality (L/R)) | Tumor Size (cm) | WHO/ ISUP Grade | Pathologic Stage (pTNM) | Adjuvant Therapy | Systemic Therapy | Follow-Up (Months) | Clinical Outcome | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | M | 74 | L | 8.5 | 4 | pT3a | Nx | Mx | No | No | 1 | LTFU |
2 | F | 62 | R | 6.5 | 4 | pT3a | Nx | Mx | No | No | 38 | AWD |
3 | F | 86 | R | 6.4 | 4 | pT4 | N0 | Mx | No | No | 94 | DNAD |
4 | M | 42 | R | 7 | 4 | pT3b | N1 | Mx | No | No | 1 | LTFU |
5 | F | 71 | R | 6 | 4 | pT3a | N1 | Mx/M1(6 mons) | No | No | 6 | LTFU |
6 | F | 66 | R | 9.5 | 4 | pT3a | Nx | Mx/M1(49 mons) | No | No | 53 | DNAD |
7 | M | 54 | R | 15 | 4 | pT3b | Nx | Mx/M1(3 mons) | No | VEGFi (Pazo) | 4 | LTFU |
8 | M | 52 | L | 5 | 4 | pT3a | Nx | Mx/M1(14 mons) | No | VEGFi (Pazo); Radiation; ICB (Nivo + Ipi) | 130 | AWD |
9 | M | 49 | R | 7 | 4 | pT3a | Nx | Mx/M1(69 mons) | No | No | 115 | AWD |
10 | M | 72 | R | 9 | 4 | pT3b | N0 | M1(lung) | No | VEGFi (Pazo); ICB (Nivo + Ipi); TKI (Cabo) | 28 | DNAD |
11 | M | 63 | L | 10.5 | 4 | pT3a | Nx | Mx | No | No | 55 | NED |
12 | M | 46 | L | 10 | 4 | pT3a | N0 | Mx/M1(5 mons) | No | ICB (Nivo + Ipi) | 5 | LTFU |
13 | M | 66 | R | 11 | 4 | pT3a | N1 | Mx/M1(12 mons) | No | ICB (Nivo + Ipi) | 54 | NED |
14 | F | 58 | R | 11 | 4 | pT4 | N0 | Mx/M1(18 mons) | ICB (Nivo + Ipi) | TKI (Lenv); mTORi (Everol) | 52 | AWD |
15 | F | 66 | L | 8.3 | 4 | pT3a | N0 | M1(adrenal) | NA | ICB (Nivo) | 37 | NED |
16 | M | 60 | R | 7.6 | 4 | pT3a | Nx | Mx | ICB (Pembro) | NA | 30 | NED |
17 | M | 65 | L | 16.5 | 4 | pT3a | Nx | Mx | ICB (Pembro) | NA | 29 | NED |
Case (N) | WHO/ ISUP Grade 1/2 (%) | WHO/ ISUP Grade 3 (%) | WHO/ISUP Grade 4 | Tumor Necrosis (%) | |||||
---|---|---|---|---|---|---|---|---|---|
Rhabdoid Features | Sarcomatoid Features (%) | Pleomorphic Cells * | Giant Cells (pleo/mono) | Total (%) | |||||
% | Architectures | ||||||||
1 | 10 | 60 | 10 | Solid/sheet-like | Np | 5 | Gp | 15 | 15 |
2 | 20 | 10 | 25 | Alveolar/trabecular | Np | <5 | Gp/Gm | 30 | 40 |
3 | 5 | 15 | 30 | Solid/sheet-like | Np | <5 | Gp | 40 | 40 |
4 | 20 | 30 | 25 | Solid/sheet-like | Np | <5 | Gp | 30 | 20 |
5 | 20 | 50 | 10 | Pseudopapillary | <5 | <5 | Gp | 20 | 10 |
6 | 30 | 30 | 15 | Solid/sheet-like | Np | Np | Gm | 20 | 20 |
7 | 10 | 50 | 15 | Solid/sheet-like | <5 | <5 | Gm | 20 | 20 |
8 | 60 | 10 | 20 | Solid/sheet-like | Np | Np | Np | 20 | 10 |
9 | 20 | 30 | 30 | Alveolar | Np | <10 | Np | 40 | 10 |
10 | 40 | 50 | 5 | Solid/sheet-like | Np | Np | Np | 5 | 5 |
11 | 10 | 30 | 20 | Pseudopapillary | 20 | <5 | Gp | 40 | 20 |
12 | 5 | 15 | 60 | Alveolar/trabecular | Np | <10 | Gp | 70 | 10 |
13 | 20 | 35 | 30 | Alveolar/trabecular | Np | <5 | Np | 35 | 10 |
14 | 5 | 15 | 70 | Pseudopapillary | Np | <5 | Gp | 75 | 5 |
15 | 10 | 20 | 40 | Pseudopapillary | Np | Np | Gp | 40 | 30 |
16 | 30 | 35 | 10 | Alveolar | <5 | <10 | Gp | 25 | 10 |
17 | 5 | 30 | 20 | Alveolar | <5 | <5 | Gp | 25 | 40 |
Case (N) | PAX8 | CAIX | AE1/AE3 | Claudin4 | SMARCA2 | SMARCA4 |
---|---|---|---|---|---|---|
1 | − | 3+ | 3+ | − | − | 3+ |
2 | − | 3+ | 3+ | 2+ | − | 3+ |
3 | − | 3+ | − | − | − | 3+ |
4 | − | 2+ | 3+ | − | − | 3+ |
5 | 2+ | 1+ | 2+ | − | 1+ | 3+ |
6 | 2+ | 3+ | 3+ | − | 1+ | 3+ |
7 | − | 2+ | 2+ | − | − | 3+ |
8 | − | 3+ | 3+ | 2+ | − | 3+ |
9 | 2+ | 3+ | 3+ | 2+ | 3+ | 3+ |
10 | 3+ | 3+ | 3+ | 2+ | − | 3+ |
11 | − | 3+ | 3+ | − | − | 3+ |
12 | NP | 3+ | 3+ | − | − | 3+ |
13 | 2+ | 3+ | 3+ | − | − | 3+ |
14 | 3+ | 3+ | 3+ | − | − | 3+ |
15 | 2+ | 3+ | NP | NP | NP | NP |
16 | 2+ | 3+ | 3+ | 1+ | − | 3+ |
17 | 2+ | 1+ | 3+ | − | − | 3+ |
Tumor (N) | Chromatin Remodeling | DDR | PI3K/AKT/mTOR | CDK Pathway | TSC/NF Pathway | RB/p53 | MYC Amplification | MAPK Pathway | NOTCH1 Pathway |
---|---|---|---|---|---|---|---|---|---|
1 | BAP1 | CDK12 | -- | CDK12 | NF2 | -- | -- | MAP2K2 | NOTCH1 |
2 | SETD2 | CDK12 | -- | CDK12 | NF1 | -- | -- | -- | NOTCH1 |
3 | BAP1 | PMS2/ CDK12 | PTEN | CDK12/CDKN2B-AS1 | -- | -- | -- | -- | NOTCH1 |
4 | -- | MHS6 | -- | -- | -- | -- | MYC-CN | -- | NOTCH1 |
5 | -- | -- | FGFR4/ MTOR | -- | -- | -- | -- | -- | NOTCH1 |
6 | BAP1/ ARID1A | PMS2/ CDK12 | FGFR4 | CDK12/CDKN2B-AS1 | -- | -- | -- | MAP2K2 | NOTCH1 |
7 | BAP1 | -- | FGFR4 | -- | TSC1/TSC2 | RB1/p53 | MYC-CN | -- | NOTCH1 |
8 | -- | -- | PTEN | -- | -- | -- | -- | -- | NOTCH1 |
9 | SETD2 | -- | -- | CDKN2B-AS1 | -- | -- | -- | -- | NOTCH1 |
10 | SETD2 | -- | FGFR4/ PTEN | -- | -- | -- | -- | -- | NOTCH1 |
11 | -- | - | FGFR4 | -- | -- | -- | -- | -- | NOTCH1 |
12 | -- | -- | FGFR4 | -- | TSC1 | -- | -- | -- | NOTCH1 |
13 | BAP1 | -- | -- | -- | -- | -- | MAP2K2 | NOTCH1 | |
14 | -- | -- | FGFR4/ MTOR | -- | -- | -- | -- | -- | NOTCH1 |
15 | BAP1/ SETD2 | PMS2/ MHS6 | FGFR4 | -- | -- | -- | -- | -- | NOTCH1 |
16 | -- | -- | -- | -- | TSC1 | -- | -- | MAP2K2 | NOTCH1 |
17 | -- | -- | -- | -- | -- | -- | -- | MAP2K2 | NOTCH1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Zhao, Q.; Xu, H.; Katz, M.H.; Wang, D.S.; Andry, C.D.; Yang, S. Molecular and Clinicopathological Profiling of Clear Cell Renal Cell Carcinoma with Rhabdoid Features: An Integrative Pathway-Based Stratification Approach. Cancers 2025, 17, 2744. https://doi.org/10.3390/cancers17172744
Lu Z, Zhao Q, Xu H, Katz MH, Wang DS, Andry CD, Yang S. Molecular and Clinicopathological Profiling of Clear Cell Renal Cell Carcinoma with Rhabdoid Features: An Integrative Pathway-Based Stratification Approach. Cancers. 2025; 17(17):2744. https://doi.org/10.3390/cancers17172744
Chicago/Turabian StyleLu, Zhichun, Qing Zhao, Huihong Xu, Mark H. Katz, David S. Wang, Christopher D. Andry, and Shi Yang. 2025. "Molecular and Clinicopathological Profiling of Clear Cell Renal Cell Carcinoma with Rhabdoid Features: An Integrative Pathway-Based Stratification Approach" Cancers 17, no. 17: 2744. https://doi.org/10.3390/cancers17172744
APA StyleLu, Z., Zhao, Q., Xu, H., Katz, M. H., Wang, D. S., Andry, C. D., & Yang, S. (2025). Molecular and Clinicopathological Profiling of Clear Cell Renal Cell Carcinoma with Rhabdoid Features: An Integrative Pathway-Based Stratification Approach. Cancers, 17(17), 2744. https://doi.org/10.3390/cancers17172744