Research Progress on Polymer-Based Nanocarriers for Tumor-Targeted Delivery of Survivin siRNA
Abstract
1. Introduction
2. Introduction of Survivin
2.1. The IAP Family
2.2. Survivin Structure
2.3. Survivin Function
2.4. Survivin-Targeted Therapeutic Strategies
3. siRNA Delivery Systems
3.1. Overview of siRNA Delivery Systems
3.2. Polymer-Based Nanoscale Delivery Systems
4. Polymeric Nanocarriers for Targeted Survivin siRNA Delivery
4.1. Targeted Delivery of Survivin siRNA by Synthetic Polymeric Nanoparticles
4.1.1. Branched and Hyperbranched Polymers
4.1.2. Dendrimers
4.1.3. Polymeric Micelles
4.2. Targeted Delivery of Survivin siRNA by Natural Polymeric Nanoparticles
4.2.1. Polysaccharide
4.2.2. Protein
4.2.3. Others
4.3. Targeted Delivery of Survivin siRNA by Liposomal Polymer Nanoparticles
4.4. Targeted Delivery of Survivin siRNA by Organic/Inorganic Hybrid Nanomaterials
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AICAR | 5-Aminoimidazole-4-carboxamide ribonucleotide |
AIE | Aggregation-induced emission |
AIF | Apoptosis-inducing factor |
ALPR | HER2/CD44-targeted hydrogel nanobot |
ASOs | Antisense oligonucleotides |
CA | Cationized amylose |
cIAP1 | Cellular inhibitor of apoptosis protein 1 |
cIAP2 | Cellular inhibitor of apoptosis protein 2 |
COS | Chitooligosaccharides |
CPC | Chromosal passenger complex |
CPP | Cell penetrating peptide |
DDP | Cis-Diaminodichloroplatinum/Cisplatin |
DIABLO | Direct inhibitor of apoptosis-binding proteins with low pI |
DLPC | 1,2-dilauroyl-.sn-glycero-3-phosphocholine |
DOX | Doxorubicin |
DPPC | 1,2-dipalmitoylsn-glycero-3-phosphocholine |
DSPE | 1,2-distearoyl-sn-glycero-3-phosphoethanolamine |
ECVs | Extra cellular vesicles |
HA | Hyaluronic acid |
HCC | Hepatocellular carcinoma |
IAP | Inhibitor of apoptosis proteins |
INCENP | Inner centromere protein |
LA | Linolic acid |
LNCs | Lipid nanocapsules |
LNPs | Liquid nanoparticles |
LPHNPs | Lipid polymer hybrid nanoparticles |
MA | Mercaptobenzoic acid |
ML-IAP | Melanoma inhibitor of apoptosis protein |
MTS | Mitochondrial targeting sequence |
NAIP | Neuronal apoptosis inhibitory protein |
NES | Nuclear export signal |
OA | Oleic acid |
ORI | Oridonin |
PA | Palmitic acid |
PAMAM | Polyamide-amine |
PBA | Phenylboronic acid |
PC | Phosphatidyl choline |
PCL | Polycaprolactone |
PEG-CS | Poly (ethylene glycol)-modified chitosan |
PEG-PAsp | Poly(ethylene glycol)-poly (aspartic acid) |
PEI | Polyethyleneimine |
PEI–PLA | Polyehtyleneimine-poly(lactic acid) |
PGA | Polyglutamic acid |
PM | Polymeric micelles |
PNPs | Polymer nanoparticles |
PSCA | Prostate stem cell antigens |
PSH | PEI–SS–HA |
PTT | Photothermal therapy |
PTX | Pachitaxel |
RNAi | RNA interference |
ROS | Reactive oxygen species |
SAC | Spindle assembly check point |
SFNPs | Silk fibroin nanoparticles |
siRNA | Small interfering RNA |
SMAC | Second mitochondria derived activator of caspases |
SPC | Soya phosphatidylcholine |
SPIO | Superparamagnetic iron oxide |
Survivin | BIRC5 |
TEPA | Tetraethylenepentamine |
TKI | Tyrosine kinase inhibitor |
TMC | N, N, N-trimethyl chitosan |
TPE | Tetraphenylethylene |
XIAP | X-linked inhibitor of apoptosis protein |
References
- Kiri, S.; Ryba, T. Cancer, metastasis, and the epigenome. Mol. Cancer 2024, 23, 154. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.S.; Amend, S.R.; Austin, R.H.; Gatenby, R.A.; Hammarlund, E.U.; Pienta, K.J. Updating the Definition of Cancer. Mol. Cancer Res. 2023, 21, 1142–1147. [Google Scholar] [CrossRef]
- Judasz, E.; Lisiak, N.; Kopczyński, P.; Taube, M.; Rubiś, B. The Role of Telomerase in Breast Cancer’s Response to Therapy. Int. J. Mol. Sci. 2022, 23, 12844. [Google Scholar] [CrossRef]
- Granja, A.; Pinheiro, M.; Reis, S. Epigallocatechin Gallate Nanodelivery Systems for Cancer Therapy. Nutrients 2016, 8, 307. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Kankala, R.K.; Long, L.; Xie, S.; Chen, A.; Zou, L. Current understanding of passive and active targeting nanomedicines to enhance tumor accumulation. Coord. Chem. Rev. 2023, 481, 215051. [Google Scholar] [CrossRef]
- Genc, S.; Taghizadehghalehjoughi, A.; Yeni, Y.; Jafarizad, A.; Hacimuftuoglu, A.; Nikitovic, D.; Docea, A.O.; Mezhuev, Y.; Tsatsakis, A. Fe3O4 Nanoparticles in Combination with 5-FU Exert Antitumor Effects Superior to Those of the Active Drug in a Colon Cancer Cell Model. Pharmaceutics 2023, 15, 245. [Google Scholar] [CrossRef]
- Xu, J.; Chen, G.; Mo, C.; Sha, Y.; Luo, S.; Ou, M. Development and evaluation of siRNA-mediated gene silencing strategies for ADO2 therapy utilizing iPSCs model and DMPC-SPIONs delivery system. Stem Cell Res. Ther. 2025, 16, 66. [Google Scholar] [CrossRef]
- Jaiswal, P.K.; Goel, A.; Mittal, R.D. Survivin: A molecular biomarker in cancer. Ind. J. Med. Res. 2015, 141, 389–397. [Google Scholar]
- Dong, Y.; Siegwart, D.J.; Anderson, D.G. Strategies, design, and chemistry in siRNA delivery systems. Adv. Drug Deliv. Rev. 2019, 144, 133–147. [Google Scholar] [CrossRef]
- Gorabi, A.M.; Kiaie, N.; Aslani, S.; Jamialahmadi, T.; Johnston, T.P.; Sahebkar, A. Prospects for the potential of RNA interference in the treatment of autoimmune diseases: Small interfering RNAs in the spotlight. J. Autoimmun. 2020, 114, 102529. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M.I.; Moazzam, M.; Kato, S.; Yeseom Cho, K.; Tiwari, R.K. Overcoming Barriers for siRNA Therapeutics: From Bench to Bedside. Pharmaceuticals 2020, 13, 294. [Google Scholar] [CrossRef]
- Sun, Y.; Li, B.; Cao, Q.; Liu, T.; Li, J. Targeting cancer stem cells with polymer nanoparticles for gastrointestinal cancer treatment. Stem Cell Res. Ther. 2022, 13, 489. [Google Scholar] [CrossRef]
- Kozielski, K.L.; Tzeng, S.Y.; Green, J.J. Bioengineered nanoparticles for siRNA delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013, 5, 449–468. [Google Scholar] [CrossRef] [PubMed]
- Velluto, D.; Thomas, S.N.; Simeoni, E.; Swartz, M.A.; Hubbell, J.A. PEG-b-PPS-b-PEI micelles and PEG-b-PPS/PEG-b-PPS-b-PEI mixed micelles as non-viral vectors for plasmid DNA: Tumor immunotoxicity in B16F10 melanoma. Biomaterials 2011, 32, 9839–9847. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Zhou, X.; Yang, J. TAT modified and lipid—PEI hybrid nanoparticles for co-delivery of docetaxel and pDNA. Biomed. Pharmacother. 2016, 84, 954–961. [Google Scholar] [CrossRef]
- Sun, T.; Jiang, C. Stimuli-responsive drug delivery systems triggered by intracellular or subcellular microenvironments. Adv. Drug Deliv. Rev. 2023, 196, 114773. [Google Scholar] [CrossRef]
- Li, J.; Lu, W.; Yang, Y.; Xiang, R.; Ling, Y.; Yu, C.; Zhou, Y. Hybrid Nanomaterials for Cancer Immunotherapy. Adv. Sci. 2023, 10, e2204932. [Google Scholar] [CrossRef]
- Sabour, R.; Harras, M.F.; Mohamed Al Kamaly, O.; Altwaijry, N. Discovery of Novel 3-Cyanopyridines as Survivin Modulators and Apoptosis Inducers. Molecules 2020, 25, 4892. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Fairmichael, C.; Longley, D.B.; Turkington, R.C. The Multiple Roles of the IAP Super-family in cancer. Pharmacol. Ther. 2020, 214, 107610. [Google Scholar] [CrossRef]
- Martínez-Sifuentes, M.A.; Bassol-Mayagoitia, S.; Nava-Hernández, M.P.; Ruiz-Flores, P.; Ramos-Treviño, J.; Haro-Santa Cruz, J.; Hernández-Ibarra, J.A. Survivin in Breast Cancer: A Review. Genet. Test. Mol. Biomark. 2022, 26, 411–421. [Google Scholar] [CrossRef]
- Wheatley, S.P.; Altieri, D.C. Survivin at a glance. J. Cell Sci. 2019, 132, jcs223826. [Google Scholar] [CrossRef] [PubMed]
- Albadari, N.; Li, W. Survivin Small Molecules Inhibitors: Recent Advances and Challenges. Molecules 2023, 28, 1376. [Google Scholar] [CrossRef] [PubMed]
- Frassanito, M.A.; Saltarella, I.; Vinella, A.; Muzio, L.L.; Pannone, G.; Fumarulo, R.; Vacca, A.; Mariggiò, M.A. Survivin overexpression in head and neck squamous cell carcinomas as a new therapeutic target (Review). Oncol. Rep. 2019, 41, 2615–2624. [Google Scholar] [CrossRef]
- Hagenbuchner, J.; Oberacher, H.; Arnhard, K.; Kiechl-Kohlendorfer, U.; Ausserlechner, M.J. Modulation of Respiration and Mitochondrial Dynamics by SMAC-Mimetics for Combination Therapy in Chemoresistant Cancer. Theranostics 2019, 9, 4909–4922. [Google Scholar] [CrossRef]
- Cheung, C.H.A.; Chang, Y.C.; Lin, T.Y.; Cheng, S.M.; Leung, E. Anti-apoptotic proteins in the autophagic world: An update on functions of XIAP, Survivin, and BRUCE. J. Biomed. Sci. 2020, 27, 31. [Google Scholar] [CrossRef]
- Park, S.H.; Shin, I.; Park, S.H.; Kim, N.D.; Shin, I. An Inhibitor of the Interaction of Survivin with Smac in Mitochondria Promotes Apoptosis. Chem. Asian J. 2019, 14, 4035–4041. [Google Scholar] [CrossRef]
- Santhanam, M.; Kumar Pandey, S.; Shteinfer-Kuzmine, A.; Paul, A.; Abusiam, N.; Zalk, R.; Shoshan-Barmatz, V. Interaction of SMAC with a survivin-derived peptide alters essential cancer hallmarks: Tumor growth, inflammation, and immunosuppression. Mol. Ther. 2024, 32, 1934–1955. [Google Scholar] [CrossRef]
- Mahmoudian-Sani, M.R.; Alghasi, A.; Saeedi-Boroujeni, A.; Jalali, A.; Jamshidi, M.; Khodadadi, A. Survivin as a diagnostic and therapeutic marker for thyroid cancer. Pathol. Res. Pract. 2019, 215, 619–625. [Google Scholar] [CrossRef]
- Shakeri, R.; Kheirollahi, A.; Davoodi, J. Apaf-1: Regulation and function in cell death. Biochimie 2017, 135, 111–125. [Google Scholar] [CrossRef]
- Liu, Y.; Lear, T.; Iannone, O.; Shiva, S.; Corey, C.; Rajbhandari, S.; Jerome, J.; Chen, B.B.; Mallampalli, R.K. The Proapoptotic F-box Protein Fbxl7 Regulates Mitochondrial Function by Mediating the Ubiquitylation and Proteasomal Degradation of Survivin. J. Biol. Chem. 2015, 290, 11843–11852. [Google Scholar] [CrossRef]
- Kim, S.; Lee, M.; Kim, N.Y.; Kwon, Y.S.; Nam, G.S.; Lee, K.; Kwon, K.M.; Kim, D.K.; Hwang, I.H. Oxidative tryptamine dimers from Corynebacterium durum directly target survivin to induce AIF-mediated apoptosis in cancer cells. Biomed. Pharmacother. 2024, 173, 116335. [Google Scholar] [CrossRef]
- Novo, N.; Ferreira, P.; Medina, M. The apoptosis-inducing factor family: Moonlighting proteins in the crosstalk between mitochondria and nuclei. IUBMB Life 2021, 73, 568–581. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.H.; Xia, F.; Pop, R.; Dohi, T.; Socolovsky, M.; Altieri, D.C. Developmental control of apoptosis by the immunophilin aryl hydrocarbon receptor-interacting protein (AIP) involves mitochondrial import of the survivin protein. J. Biol. Chem. 2011, 286, 16758–16767. [Google Scholar] [CrossRef]
- Siragusa, G.; Tomasello, L.; Giordano, C.; Pizzolanti, G. Survivin (BIRC5): Implications in cancer therapy. Life Sci. 2024, 350, 122788. [Google Scholar] [CrossRef]
- Chen, Y.H.; Chen, H.H.; Wang, W.J.; Chen, H.Y.; Huang, W.S.; Kao, C.H.; Lee, S.R.; Yeat, N.Y.; Yan, R.L.; Chan, S.J.; et al. TRABID inhibition activates cGAS/STING-mediated anti-tumor immunity through mitosis and autophagy dysregulation. Nat. Commun. 2023, 14, 3050. [Google Scholar] [CrossRef]
- Vader, G.; Kauw, J.J.; Medema, R.H.; Lens, S.M. Survivin mediates targeting of the chromosomal passenger complex to the centromere and midbody. EMBO Rep. 2006, 7, 85–92. [Google Scholar] [CrossRef]
- Lyu, H.; Huang, J.; He, Z.; Liu, B. Epigenetic mechanism of survivin dysregulation in human cancer. Sci. China Life Sci. 2018, 61, 808–814. [Google Scholar] [CrossRef]
- Li, F.; Aljahdali, I.; Ling, X. Cancer therapeutics using survivin BIRC5 as a target: What can we do after over two decades of study? J. Exp. Clin. Cancer Res. 2019, 38, 368. [Google Scholar] [CrossRef]
- Venkatesan, N.; Kanwar, J.R.; Deepa, P.R.; Navaneethakrishnan, S.; Joseph, C.; Krishnakumar, S. Targeting HSP90/Survivin using a cell permeable structure based peptido-mimetic shepherdin in retinoblastoma. Chem. Biol. Interact. 2016, 252, 141–149. [Google Scholar] [CrossRef]
- Daglioglu, C.; Okutucu, B. Therapeutic Effects of AICAR and DOX Conjugated Multifunctional Nanoparticles in Sensitization and Elimination of Cancer Cells via Survivin Targeting. Pharm. Res. 2017, 34, 175–184. [Google Scholar] [CrossRef]
- Wang, Q.; Arnst, K.E.; Xue, Y.; Lei, Z.N.; Ma, D.; Chen, Z.S.; Miller, D.D.; Li, W. Synthesis and biological evaluation of indole-based UC-112 analogs as potent and selective survivin inhibitors. Eur. J. Med. Chem. 2018, 149, 211–224. [Google Scholar] [CrossRef]
- Ibrahim, T.M.; Ernst, C.; Lange, A.; Hennig, S.; Boeckler, F.M. Small-Molecule Intervention At The Dimerization Interface Of Survivin By Novel Rigidized Scaffolds. Drug Des. Devel Ther. 2019, 13, 4247–4263. [Google Scholar] [CrossRef]
- Peery, R.; Kyei-Baffour, K.; Dong, Z.; Liu, J.; de Andrade Horn, P.; Dai, M.; Liu, J.Y.; Zhang, J.T. Synthesis and Identification of a Novel Lead Targeting Survivin Dimerization for Proteasome-Dependent Degradation. J. Med. Chem. 2020, 63, 7243–7251. [Google Scholar] [CrossRef]
- Ling, X.; Wu, W.; Aljahdali, I.A.M.; Liao, J.; Santha, S.; Fountzilas, C.; Boland, P.M.; Li, F. FL118, acting as a ‘molecular glue degrader’, binds to dephosphorylates and degrades the oncoprotein DDX5 (p68) to control c-Myc, survivin and mutant Kras against colorectal and pancreatic cancer with high efficacy. Clin. Transl. Med. 2022, 12, e881. [Google Scholar] [CrossRef]
- Yin, H.; Que, R.; Liu, C.; Ji, W.; Sun, B.; Lin, X.; Zhang, Q.; Zhao, X.; Peng, Z.; Zhang, X.; et al. Survivin-targeted drug screening platform identifies a matrine derivative WM-127 as a potential therapeutics against hepatocellular carcinoma. Cancer Lett. 2018, 425, 54–64. [Google Scholar] [CrossRef]
- Cheng, S.M.; Lin, T.Y.; Chang, Y.C.; Lin, I.W.; Leung, E.; Cheung, C.H.A. YM155 and BIRC5 downregulation induce genomic instability via autophagy-mediated ROS production and inhibition in DNA repair. Pharmacol. Res. 2021, 166, 105474. [Google Scholar] [CrossRef]
- Hong, M.; Ren, M.Q.; Silva, J.; Paul, A.; Wilson, W.D.; Schroeder, C.; Weinberger, P.; Janik, J.; Hao, Z. YM155 inhibits topoisomerase function. Anticancer. Drugs 2017, 28, 142–152. [Google Scholar] [CrossRef]
- Carrasco, R.A.; Stamm, N.B.; Marcusson, E.; Sandusky, G.; Iversen, P.; Patel, B.K. Antisense inhibition of survivin expression as a cancer therapeutic. Mol. Cancer Ther. 2011, 10, 221–232. [Google Scholar] [CrossRef]
- Zhang, H.; Vandesompele, J.; Braeckmans, K.; De Smedt, S.C.; Remaut, K. Nucleic acid degradation as barrier to gene delivery: A guide to understand and overcome nuclease activity. Chem. Soc. Rev. 2024, 53, 317–360. [Google Scholar] [CrossRef] [PubMed]
- Purewal, J.S.; Doshi, G.M. RNAi in psoriasis: A melodic exploration of miRNA, shRNA, and amiRNA with a spotlight on siRNA. Eur. J. Pharmacol. 2024, 985, 177083. [Google Scholar] [CrossRef] [PubMed]
- Chi, X.; Gatti, P.; Papoian, T. Safety of antisense oligonucleotide and siRNA-based therapeutics. Drug Discov. Today 2017, 22, 823–833. [Google Scholar] [CrossRef]
- Li, X.; Le, Y.; Zhang, Z.; Nian, X.; Liu, B.; Yang, X. Viral Vector-Based Gene Therapy. Int. J. Mol. Sci. 2023, 24, 7736. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, X.; Zhu, D.; Wang, Y.; Zhang, Z.; Zhou, X.; Qiu, N.; Chen, X.; Shen, Y. Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration. Adv. Drug Deliv. Rev. 2017, 115, 115–154. [Google Scholar] [CrossRef]
- El Moukhtari, S.H.; Garbayo, E.; Amundarain, A.; Pascual-Gil, S.; Carrasco-León, A.; Prosper, F.; Agirre, X.; Blanco-Prieto, M.J. Lipid nanoparticles for siRNA delivery in cancer treatment. J. Control Release 2023, 361, 130–146. [Google Scholar] [CrossRef]
- Thirumurugan, S.; Ramanathan, S.; Muthiah, K.S.; Lin, Y.C.; Hsiao, M.; Dhawan, U.; Wang, A.N.; Liu, W.C.; Liu, X.; Liao, M.Y.; et al. Inorganic nanoparticles for photothermal treatment of cancer. J. Mater. Chem. B 2024, 12, 3569–3593. [Google Scholar] [CrossRef]
- Oroojalian, F.; Beygi, M.; Baradaran, B.; Mokhtarzadeh, A.; Shahbazi, M.A. Immune Cell Membrane-Coated Biomimetic Nanoparticles for Targeted Cancer Therapy. Small 2021, 17, e2006484. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, W.; Chu, X.; Wang, A.; He, Z.; Si, C.L.; Hu, W. Dendritic cell-targeting polymer nanoparticle-based immunotherapy for cancer: A review. Int. J. Pharm. 2023, 635, 122703. [Google Scholar] [CrossRef]
- Beach, M.A.; Nayanathara, U.; Gao, Y.; Zhang, C.; Xiong, Y.; Wang, Y.; Such, G.K. Polymeric Nanoparticles for Drug Delivery. Chem. Rev. 2024, 124, 5505–5616. [Google Scholar] [CrossRef]
- Ziranu, P.; Pretta, A.; Aimola, V.; Cau, F.; Mariani, S.; D’Agata, A.P.; Codipietro, C.; Rizzo, D.; Dell’Utri, V.; Sanna, G.; et al. CD44: A New Prognostic Marker in Colorectal Cancer? Cancers 2024, 16, 1569. [Google Scholar] [CrossRef]
- Aibani, N.; Rai, R.; Patel, P.; Cuddihy, G.; Wasan, E.K. Chitosan Nanoparticles at the Biological Interface: Implications for Drug Delivery. Pharmaceutics 2021, 13, 1686. [Google Scholar] [CrossRef]
- Mousazadeh, H.; Pilehvar-Soltanahmadi, Y.; Dadashpour, M.; Zarghami, N. Cyclodextrin based natural nanostructured carbohydrate polymers as effective non-viral siRNA delivery systems for cancer gene therapy. J. Control Release 2021, 330, 1046–1070. [Google Scholar] [CrossRef]
- Taghipour-Sabzevar, V.; Sharifi, T.; Moghaddam, M.M. Polymeric nanoparticles as carrier for targeted and controlled delivery of anticancer agents. Ther. Deliv. 2019, 10, 527–550. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Y.; He, G.; Guo, C.; Dong, J.; Wu, L. Development of mRNA Lipid Nanoparticles: Targeting and Therapeutic Aspects. Int. J. Mol. Sci. 2024, 25, 10166. [Google Scholar] [CrossRef]
- Mainini, F.; Eccles, M.R. Lipid and Polymer-Based Nanoparticle siRNA Delivery Systems for Cancer Therapy. Molecules 2020, 25, 2692. [Google Scholar] [CrossRef]
- Bunwatcharaphansakun, P.; Yodsanit, N.; Keaswejjareansuk, W.; Gonil, P.; Wongkhieo, S.; Jantimaporn, A.; Kengkittipat, W.; Kaewmalun, S.; Sawangrat, N.; Yata, T.; et al. Innovative Hybrid Nanocarriers of GnRH Peptide-Modified Chitosan-Coated Lipid Nanoparticles as a Targeted Chemotherapy for Reproductive-Related Cancers. J. Biomed. Mater. Res. A 2025, 113, e37843. [Google Scholar] [CrossRef]
- Xu, Y.; Reheman, A.; Feng, W. Recent research progress on metal ions and metal-based nanomaterials in tumor therapy. Front. Bioeng. Biotechnol. 2025, 13, 1550089. [Google Scholar] [CrossRef]
- Hou, H.; Liu, X.; Liu, J.; Wang, Y. Carbohydrate polymer-based nanoparticles with cell membrane camouflage for cancer therapy: A review. Int. J. Biol. Macromol. 2025, 289, 138620. [Google Scholar] [CrossRef]
- Eftekhari, A.; Kryschi, C.; Pamies, D.; Gulec, S.; Ahmadian, E.; Janas, D.; Davaran, S.; Khalilov, R. Natural and synthetic nanovectors for cancer therapy. Nanotheranostics 2023, 7, 236–257. [Google Scholar] [CrossRef]
- Wong, K.H.; Lu, A.; Chen, X.; Yang, Z. Natural Ingredient-Based Polymeric Nanoparticles for Cancer Treatment. Molecules 2020, 25, 3620. [Google Scholar] [CrossRef]
- Kuna, K.; Baddam, S.R.; Kalagara, S.; Akkiraju, P.C.; Tade, R.S.; Enaganti, S. Emerging natural polymer-based architectured nanotherapeutics for the treatment of cancer. Int. J. Biol. Macromol. 2024, 262 Pt 1, 129434. [Google Scholar] [CrossRef]
- Gajbhiye, K.R.; Salve, R.; Narwade, M.; Sheikh, A.; Kesharwani, P.; Gajbhiye, V. Lipid polymer hybrid nanoparticles: A custom-tailored next-generation approach for cancer therapeutics. Mol. Cancer 2023, 22, 160. [Google Scholar] [CrossRef]
- Yang, C.; Lin, Z.I.; Chen, J.A.; Xu, Z.; Gu, J.; Law, W.C.; Yang, J.H.C.; Chen, C.K. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol. Biosci. 2022, 22, e2100349. [Google Scholar] [CrossRef]
- Xue, L.; Yan, Y.; Kos, P.; Chen, X.; Siegwart, D.J. PEI fluorination reduces toxicity and promotes liver-targeted siRNA delivery. Drug Deliv. Transl. Res. 2021, 11, 255–260. [Google Scholar] [CrossRef]
- Warrier, N.M.; Agarwal, P.; Kumar, P. Emerging Importance of Survivin in Stem Cells and Cancer: The Development of New Cancer Therapeutics. Stem Cell Rev. Rep. 2020, 16, 828–852. [Google Scholar] [CrossRef]
- Ding, G.B.; Meng, X.; Yang, P.; Li, B.; Stauber, R.H.; Li, Z. Integration of Polylactide into Polyethylenimine Facilitates the Safe and Effective Intracellular siRNA Delivery. Polymers 2020, 12, 445. [Google Scholar] [CrossRef]
- Ding, G.-B.; Ma, X.; Meng, X.; Yang, P.; Stauber, R.H.; Li, Z. pH low insertion peptide (pHLIP)-decorated polymeric nanovehicle for efficient and pH-responsive siRNA translocation. Mater. Des. 2021, 212, 110197. [Google Scholar] [CrossRef]
- Montazeri Aliabadi, H.; Landry, B.; Mahdipoor, P.; Uludağ, H. Induction of apoptosis by survivin silencing through siRNA delivery in a human breast cancer cell line. Mol. Pharm. 2011, 8, 1821–1830. [Google Scholar] [CrossRef]
- Parmar, M.B.; K C, R.B.; Löbenberg, R.; Uludağ, H. Additive Polyplexes to Undertake siRNA Therapy against CDC20 and Survivin in Breast Cancer Cells. Biomacromolecules 2018, 19, 4193–4206. [Google Scholar] [CrossRef]
- Hou, Y.C.; Zhang, C.; Zhang, Z.J.; Xia, L.; Rao, K.Q.; Gu, L.H.; Wu, Y.C.; Lv, Z.C.; Wu, H.X.; Zuo, X.L.; et al. Aggregation-Induced Emission (AIE) and Magnetic Resonance Imaging Characteristics for Targeted and Image-Guided siRNA Therapy of Hepatocellular Carcinoma. Adv. Healthc. Mater. 2022, 11, e2200579. [Google Scholar] [CrossRef]
- Zhupanyn, P.; Ewe, A.; Büch, T.; Malek, A.; Rademacher, P.; Müller, C.; Reinert, A.; Jaimes, Y.; Aigner, A. Extracellular vesicle (ECV)-modified polyethylenimine (PEI) complexes for enhanced siRNA delivery in vitro and in vivo. J. Control Release 2020, 319, 63–76. [Google Scholar] [CrossRef]
- Cao, Y.; Huang, H.Y.; Chen, L.Q.; Du, H.H.; Cui, J.H.; Zhang, L.W.; Lee, B.J.; Cao, Q.R. Enhanced Lysosomal Escape of pH-Responsive Polyethylenimine-Betaine Functionalized Carbon Nanotube for the Codelivery of Survivin Small Interfering RNA and Doxorubicin. ACS Appl. Mater. Interfaces 2019, 11, 9763–9776. [Google Scholar] [CrossRef]
- Jin, M.; Jin, G.; Kang, L.; Chen, L.; Gao, Z.; Huang, W. Smart polymeric nanoparticles with pH-responsive and PEG-detachable properties for co-delivering paclitaxel and survivin siRNA to enhance antitumor outcomes. Int. J. Nanomed. 2018, 13, 2405–2426. [Google Scholar] [CrossRef]
- Niu, B.; Liao, K.; Zhou, Y.; Wen, T.; Quan, G.; Pan, X.; Wu, C. Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials 2021, 277, 121110. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, Z.; Zhang, F.; Liu, Z.; Pang, H.; Guo, H.; Liu, J.; Zhang, H.; Zhang, R.; Li, X.; et al. Endogenous Stimuli-Responsive Hollow Manganese Dioxide/Semiconductor Nanostructures for siRNA-Enhanced Chemotherapy. ACS Appl. Nano Mater. 2025, 8, 8751–8760. [Google Scholar] [CrossRef]
- Chen, L.; Wang, S.; Liu, Q.; Zhang, Z.; Lin, S.; Zheng, Q.; Cheng, M.; Li, Y.; Cheng, C. Reduction sensitive nanocarriers mPEG-g-γ-PGA/SSBPEI@siRNA for effective targeted delivery of survivin siRNA against NSCLC. Colloids Surf. B Biointerfaces 2020, 193, 111105. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Luo, J.; Zhang, J.; Wang, S.; Sun, Y.; Liu, Q.; Cheng, C. Dual Targeted Nanoparticles for the Codelivery of Doxorubicin and siRNA Cocktails to Overcome Ovarian Cancer Stem Cells. Int. J. Mol. Sci. 2023, 24, 11575. [Google Scholar] [CrossRef]
- Li, H.; Zha, S.; Li, H.; Liu, H.; Wong, K.L.; All, A.H. Polymeric Dendrimers as Nanocarrier Vectors for Neurotheranostics. Small 2022, 18, e2203629. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.H.; Guo, Z.; Law, M.K.; Chen, M. Functionalized PAMAM constructed nanosystems for biomacromolecule delivery. Biomater. Sci. 2023, 11, 1589–1606. [Google Scholar] [CrossRef] [PubMed]
- Tietze, S.; Schau, I.; Michen, S.; Ennen, F.; Janke, A.; Schackert, G.; Aigner, A.; Appelhans, D.; Temme, A. A Poly(Propyleneimine) Dendrimer-Based Polyplex-System for Single-Chain Antibody-Mediated Targeted Delivery and Cellular Uptake of SiRNA. Small 2017, 13, 1700072. [Google Scholar] [CrossRef]
- Jugel, W.; Aigner, A.; Michen, S.; Hagstotz, A.; Ewe, A.; Appelhans, D.; Schackert, G.; Temme, A.; Tietze, S. Targeted RNAi of BIRC5/Survivin Using Antibody-Conjugated Poly(Propylene Imine)-Based Polyplexes Inhibits Growth of PSCA-Positive Tumors. Pharmaceutics 2021, 13, 676. [Google Scholar] [CrossRef]
- Salve, R.; Haldar, N.; Shaikh, A.; Samanta, R.; Sengar, D.; Patra, S.; Gajbhiye, V. MUC1 aptamer-tethered H40-TEPA-PEG nanoconjugates for targeted siRNA-delivery and gene silencing in breast cancer cells. Front. Bioeng. Biotechnol. 2024, 12, 1383495. [Google Scholar] [CrossRef]
- Zhou, Z.; Feng, Y.; Jiang, M.; Yao, Z.; Wang, J.; Pan, F.; Feng, R.; Zhao, C.; Ma, Y.; Zhou, J.; et al. Ionizable polymeric micelles (IPMs) for efficient siRNA delivery. Nat. Commun. 2025, 16, 360. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.; Ramsey, J.D.; Kabanov, A.V. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Adv. Drug Deliv. Rev. 2020, 156, 80–118. [Google Scholar] [CrossRef]
- Salzano, G.; Riehle, R.; Navarro, G.; Perche, F.; De Rosa, G.; Torchilin, V.P. Polymeric micelles containing reversibly phospholipid-modified anti-survivin siRNA: A promising strategy to overcome drug resistance in cancer. Cancer Lett. 2014, 343, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Salzano, G.; Navarro, G.; Trivedi, M.S.; De Rosa, G.; Torchilin, V.P. Multifunctional Polymeric Micelles Co-loaded with Anti-Survivin siRNA and Paclitaxel Overcome Drug Resistance in an Animal Model of Ovarian Cancer. Mol. Cancer Ther. 2015, 14, 1075–1084. [Google Scholar] [CrossRef]
- Zaiki, Y.; Iskandar, A.; Wong, T.W. Functionalized chitosan for cancer nano drug delivery. Biotechnol. Adv. 2023, 67, 108200. [Google Scholar] [CrossRef]
- Bian, X.; Yu, X.; Lu, S.; Jia, L.; Li, P.; Yin, J.; Tan, S. Chitosan-based nanoarchitectures for siRNA delivery in cancer therapy: A review of pre-clinical and clinical importance. Int. J. Biol. Macromol. 2025, 284 Pt 1, 137708. [Google Scholar] [CrossRef] [PubMed]
- Edo, G.I.; Yousif, E.; Al-Mashhadani, M.H. Chitosan: An overview of biological activities, derivatives, properties, and current advancements in biomedical applications. Carbohydr. Res. 2024, 542, 109199. [Google Scholar] [CrossRef]
- Dubey, S.K.; Bhatt, T.; Agrawal, M.; Saha, R.N.; Saraf, S.; Saraf, S.; Alexander, A. Application of chitosan modified nanocarriers in breast cancer. Int. J. Biol. Macromol. 2022, 194, 521–538. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Feng, C.; Chen, H.; Gao, Y. Chemical Modification of Chitosan for Developing Cancer Nanotheranostics. Biomacromolecules 2022, 23, 2197–2218. [Google Scholar] [CrossRef]
- Sader, D.; Zlotver, I.; Moya, S.; Calabrese, G.C.; Sosnik, A. Doubly self-assembled dermatan sulfate/chitosan nanoparticles for targeted siRNA delivery in cancer therapy. J. Colloid Interface Sci. 2025, 680 Pt B, 763–775. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, L.; Liu, W.; Zheng, Y.; Li, X.; Ye, J.; Li, B.; Chen, H.; Gao, Y. Near-infrared/pH dual-responsive nanocomplexes for targeted imaging and chemo/gene/photothermal tri-therapies of non-small cell lung cancer. Acta Biomater. 2020, 107, 242–259. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Huang, W.; Jin, M.; Wang, Q.; Fan, B.; Kang, L.; Gao, Z. Chitosan-based nanoparticles for survivin targeted siRNA delivery in breast tumor therapy and preventing its metastasis. Int. J. Nanomed. 2016, 11, 4931–4945. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Huang, W.; Li, Y.; Liu, S.; Jin, M.; Wang, Y.; Jia, L.; Gao, Z. Anti-tumor effects in mice induced by survivin-targeted siRNA delivered through polysaccharide nanoparticles. Biomaterials 2013, 34, 5689–5699. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.; Hao, P.; Qiao, R.; Liu, B.X.; Shi, X.; Wang, Z.; Sun, P. Stimuli-responsive chitosan based nanoparticles in cancer therapy and diagnosis: A review. Int. J. Biol. Macromol. 2024, 283 Pt 3, 137709. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Q.; Chen, J.; Tang, C.; Yin, C. Enhanced antitumor efficacy of glutathione-responsive chitosan based nanoparticles through co-delivery of chemotherapeutics, genes, and immune agents. Carbohydr. Polym. 2021, 270, 118384. [Google Scholar] [CrossRef]
- Anil, S. Potential Medical Applications of Chitooligosaccharides. Polymers 2022, 14, 3558. [Google Scholar] [CrossRef]
- Liu, X.; Chen, L.; Zhang, Y.; Xin, X.; Qi, L.; Jin, M.; Guan, Y.; Gao, Z.; Huang, W. Enhancing anti-melanoma outcomes in mice using novel chitooligosaccharide nanoparticles loaded with therapeutic survivin-targeted siRNA. Eur. J. Pharm. Sci. 2021, 158, 105641. [Google Scholar] [CrossRef]
- Bruniaux, J.; Allard-Vannier, E.; Aubrey, N.; Lakhrif, Z.; Ben Djemaa, S.; Eljack, S.; Marchais, H.; Hervé-Aubert, K.; Chourpa, I.; David, S. Magnetic nanocarriers for the specific delivery of siRNA: Contribution of breast cancer cells active targeting for down-regulation efficiency. Int. J. Pharm. 2019, 569, 118572. [Google Scholar] [CrossRef]
- Eljack, S.; Allard-Vannier, E.; Misericordia, Y.; Hervé-Aubert, K.; Aubrey, N.; Chourpa, I.; Faggad, A.; David, S. Combination of Nanovectorized siRNA Directed against Survivin with Doxorubicin for Efficient Anti-Cancer Activity in HER2+ Breast Cancer Cells. Pharmaceutics 2022, 14, 2537. [Google Scholar] [CrossRef]
- Lyu, Y.; Yu, M.; Liu, Q.; Zhang, Q.; Liu, Z.; Tian, Y.; Li, D.; Changdao, M. Synthesis of silver nanoparticles using oxidized amylose and combination with curcumin for enhanced antibacterial activity. Carbohydr. Polym. 2020, 230, 115573. [Google Scholar] [CrossRef]
- Zhang, H.; Deng, L.; Liu, H.; Mai, S.; Cheng, Z.; Shi, G.; Zeng, H.; Wu, Z. Enhanced fluorescence/magnetic resonance dual imaging and gene therapy of liver cancer using cationized amylose nanoprobe. Mater. Today Bio 2022, 13, 100220. [Google Scholar] [CrossRef] [PubMed]
- Varanko, A.; Saha, S.; Chilkoti, A. Recent trends in protein and peptide-based biomaterials for advanced drug delivery. Adv. Drug Deliv. Rev. 2020, 156, 133–187. [Google Scholar] [CrossRef] [PubMed]
- Norouzi, P.; Motasadizadeh, H.; Atyabi, F.; Dinarvand, R.; Gholami, M.; Farokhi, M.; Shokrgozar, M.A.; Mottaghitalab, F. Combination Therapy of Breast Cancer by Codelivery of Doxorubicin and Survivin siRNA Using Polyethylenimine Modified Silk Fibroin Nanoparticles. ACS Biomater. Sci. Eng. 2021, 7, 1074–1087. [Google Scholar] [CrossRef]
- Yoo, H.; Mok, H. Evaluation of multimeric siRNA conjugates for efficient protamine-based delivery into breast cancer cells. Arch. Pharm. Res. 2015, 38, 129–136. [Google Scholar] [CrossRef]
- Xu, X.; Li, L.; Li, X.; Tao, D.; Zhang, P.; Gong, J. Aptamer-protamine-siRNA nanoparticles in targeted therapy of ErbB3 positive breast cancer cells. Int. J. Pharm. 2020, 590, 119963. [Google Scholar] [CrossRef]
- Ma, S.; Li, X.; Ran, M.; Ji, M.; Gou, J.; Yin, T.; He, H.; Wang, Y.; Zhang, Y.; Tang, X. Fabricating nanoparticles co-loaded with survivin siRNA and Pt(IV) prodrug for the treatment of platinum-resistant lung cancer. Int. J. Pharm. 2021, 601, 120577. [Google Scholar] [CrossRef]
- Fazal, T.; Murtaza, B.N.; Shah, M.; Iqbal, S.; Rehman, M.U.; Jaber, F.; Dera, A.A.; Awwad, N.S.; Ibrahium, H.A. Recent developments in natural biopolymer based drug delivery systems. RSC Adv. 2023, 13, 23087–23121. [Google Scholar] [CrossRef]
- Liu, Y.; Ashmawy, S.; Latta, L.; Weiss, A.V.; Kiefer, A.F.; Nasr, S.; Loretz, B.; Hirsch, A.K.H.; Lee, S.; Lehr, C.M. pH-Responsive Dynaplexes as Potent Apoptosis Inductors by Intracellular Delivery of Survivin siRNA. Biomacromolecules 2023, 24, 3742–3754. [Google Scholar] [CrossRef]
- Han, W.; Yuan, Y.; Li, H.; Fu, Z.; Wang, M.; Guan, S.; Wang, L. Design and anti-tumor activity of self-loaded nanocarriers of siRNA. Colloids Surf. B Biointerfaces 2019, 183, 110385. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Xu, Q.; Wang, Q.; Liang, X.; Wang, J.; Jin, H.; Man, Y.; Guo, D.; Gao, F.; Tang, X. Induced Self-Assembly of Vitamin E-Spermine/siRNA Nanocomplexes via Spermine/Helix Groove-Specific Interaction for Efficient siRNA Delivery and Antitumor Therapy. Adv. Healthc. Mater. 2024, 13, e2303186. [Google Scholar] [CrossRef]
- Mukherjee, A.; Waters, A.K.; Kalyan, P.; Achrol, A.S.; Kesari, S.; Yenugonda, V.M. Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: State of the art, emerging technologies, and perspectives. Int. J. Nanomed. 2019, 14, 1937–1952. [Google Scholar] [CrossRef]
- Hassn Mesrati, M.; Syafruddin, S.E.; Mohtar, M.A.; Syahir, A. CD44: A Multifunctional Mediator of Cancer Progression. Biomolecules 2021, 11, 1850. [Google Scholar] [CrossRef]
- Marchiò, C.; Annaratone, L.; Marques, A.; Casorzo, L.; Berrino, E.; Sapino, A. Evolving concepts in HER2 evaluation in breast cancer: Heterogeneity, HER2-low carcinomas and beyond. Semin. Cancer Biol. 2021, 72, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, J.; Sun, X.; Lu, H.; Liu, K.; Li, Z.; Guan, J.; Song, H.; Wei, W.; Ge, Y.; et al. Precision Therapy of Recurrent Breast Cancer through Targeting Different Malignant Tumor Cells with a HER2/CD44-Targeted Hydrogel Nanobot. Small 2023, 19, e2301043. [Google Scholar] [CrossRef]
- Yang, S.; Wang, D.; Zhang, X.; Sun, Y.; Zheng, B. cRGD peptide-conjugated polyethylenimine-based lipid nanoparticle for intracellular delivery of siRNA in hepatocarcinoma therapy. Drug Deliv. 2021, 28, 995–1006. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Lee, R.J.; Wang, X.; Sun, Y.; Wang, M.; Li, L.; Li, C.; Xie, J.; Teng, L. Liposomal codelivery of an SN38 prodrug and a survivin siRNA for tumor therapy. Int. J. Nanomed. 2018, 13, 5811–5822. [Google Scholar] [CrossRef]
- Passos Gibson, V.; Derbali, R.M.; Phan, H.T.; Tahiri, H.; Allen, C.; Hardy, P.; Chain, J.L. Survivin silencing improved the cytotoxicity of carboplatin and melphalan in Y79 and primary retinoblastoma cells. Int. J. Pharm. 2020, 589, 119824. [Google Scholar] [CrossRef]
- Tan, C.; Zhang, Y.; Abbas, S.; Feng, B.; Zhang, X.; Xia, W.; Xia, S. Biopolymer-Lipid Bilayer Interaction Modulates the Physical Properties of Liposomes: Mechanism and Structure. J. Agric. Food Chem. 2015, 63, 7277–7285. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Fan, X.; Zhao, Y.; Zhi, D.; Cui, S.; Zhang, E.; Lan, H.; Du, J.; Zhang, Z.; Zhang, S.; et al. Stimuli-Responsive Polysaccharide Enveloped Liposome for Targeting and Penetrating Delivery of survivin-shRNA into Breast Tumor. ACS Appl. Mater. Interfaces 2020, 12, 22074–22087. [Google Scholar] [CrossRef]
- Eljack, S.; David, S.; Chourpa, I.; Faggad, A.; Allard-Vannier, E. Formulation of Lipid-Based Nanoparticles for Simultaneous Delivery of Lapatinib and Anti-Survivin siRNA for HER2+ Breast Cancer Treatment. Pharmaceuticals 2022, 15, 1452. [Google Scholar] [CrossRef]
- Xie, D.; Du, J.; Bao, M.; Zhou, A.; Tian, C.; Xue, L.; Ju, C.; Shen, J.; Zhang, C. A one-pot modular assembly strategy for triple-play enhanced cytosolic siRNA delivery. Biomater. Sci. 2019, 7, 901–913. [Google Scholar] [CrossRef]
- Xu, X.; Li, Z.; Zhao, X.; Keen, L.; Kong, X. Calcium phosphate nanoparticles-based systems for siRNA delivery. Regen. Biomater. 2016, 3, 187–195. [Google Scholar] [CrossRef]
- Mitrach, F.; Schmid, M.; Toussaint, M.; Dukic-Stefanovic, S.; Deuther-Conrad, W.; Franke, H.; Ewe, A.; Aigner, A.; Wölk, C.; Brust, P.; et al. Amphiphilic Anionic Oligomer-Stabilized Calcium Phosphate Nanoparticles with Prospects in siRNA Delivery via Convection-Enhanced Delivery. Pharmaceutics 2022, 14, 326. [Google Scholar] [CrossRef]
- Kara, G.; Parlar, A.; Cakmak, M.C.; Cokol, M.; Denkbas, E.B.; Bakan, F. Silencing of survivin and cyclin B1 through siRNA-loaded arginine modified calcium phosphate nanoparticles for non-small-cell lung cancer therapy. Colloids Surf. B Biointerfaces 2020, 196, 111340. [Google Scholar] [CrossRef]
- Bi, Y.; Zhang, Y.; Cui, C.; Ren, L.; Jiang, X. Gene-silencing effects of anti-survivin siRNA delivered by RGDV-functionalized nanodiamond carrier in the breast carcinoma cell line MCF-7. Int. J. Nanomed. 2016, 11, 5771–5787. [Google Scholar] [CrossRef] [PubMed]
- Negri, V.; Pacheco-Torres, J.; Calle, D.; López-Larrubia, P. Carbon Nanotubes in Biomedicine. Top. Curr. Chem. 2020, 378, 15. [Google Scholar] [CrossRef] [PubMed]
- Hassan, H.; Diebold, S.S.; Smyth, L.A.; Walters, A.A.; Lombardi, G.; Al-Jamal, K.T. Application of carbon nanotubes in cancer vaccines: Achievements, challenges and chances. J. Control Release 2019, 297, 79–90. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, T.; Cao, Y.; Sun, J.; Zhou, Q.; Chen, H.; Guo, S.; Wang, Y.; Zhen, Y.; Liang, X.J.; et al. Temperature-Sensitive Lipid-Coated Carbon Nanotubes for Synergistic Photothermal Therapy and Gene Therapy. ACS Nano 2021, 15, 6517–6529. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Jiang, X.; Wang, Z.; Fan, Y.; Li, J.; Chow, C.; Wang, C.; Deng, C.; Lin, W. Cationic Metal-Organic Layer Delivers siRNAs to Overcome Radioresistance and Potentiate Cancer Radiotherapy. Angew. Chem. Int. Ed. Engl. 2025, 64, e202419409. [Google Scholar] [CrossRef]
- Cai, M.; Yao, Y.; Yin, D.; Zhu, R.; Fu, T.; Kong, J.; Wang, K.; Liu, J.; Yao, A.; Ruan, Y.; et al. Enhanced lysosomal escape of cell penetrating peptide-functionalized metal-organic frameworks for co-delivery of survivin siRNA and oridonin. J. Colloid Interface Sci. 2023, 646, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Ge, Y.; Zhu, W.; Zhang, J.; Pan, W.; Li, N.; Tang, B. GalNAc-functionalized metal-organic frameworks for targeted siRNA delivery: Enhancing survivin silencing in hepatocellular carcinoma. Biomater. Sci. 2025, 13, 2704–2712. [Google Scholar] [CrossRef] [PubMed]
Delivery System | Advantages | Disadvantages | Ref. |
---|---|---|---|
Synthetic polymers | Ease of functionalization, high stability, high drug loading capacity, and long circulation time enable sustained drug release. | Certain toxicity, immunogenicity, and safety risks; the preparation process is complex. | [68] |
Natural polymers | Wide range of sources, good biocompatibility and biodegradability, low toxicity, and non-immunogenicity. | Off-target effect, stability, and longevity during storage and circulation in complex biological environments | [69,70] |
Lipid-polymer nanoparticles | Stability, high loading of cargo, increased biocompatibility, rate-limiting controlled release, and prolonged drug half-life. | High dose may cause immune reactions, preparation is complex and costly, and long-term stability still needs to be studied. | [71] |
Organic/inorganic hybrid nanomaterials | Combining the high stability and targeting properties of inorganic materials with the biocompatibility and biodegradability of organic materials, this approach enhances the intelligent response capability and structural stability of the carrier. Easy functionalization and low cytotoxicity. | Complex design, high preparation costs, batch-to-batch consistency issues, scalability for large-scale production, and biosafety. | [72] |
Synthetic Polymer-Based Survivin siRNA Delivery Systems | |||||
---|---|---|---|---|---|
Nanoparticle | Survivin Sequence | Cancer Types | Cell Lines | Outcome | Ref. |
PEI-CA6.9/siRNA | - | Breast cancer | MDA-MB-231 cell | Octanoic acid-modified PEI showed the best survivin silencing efficiency, which significantly reduced cell survival and induced apoptosis. | [77] |
CDC20/surviving siRNA polymer polyplexes | - | Breast cancer | MDA-MB-231 MDA-MB-436 MCF-7 cell | Polyethyleneimine modified with linoleic acid (PEI–LA) significantly increased cell viability and cellular uptake, improved the cellular uptake and release of siSurvivin, and effectively inhibited the growth of breast cancer cells. | [78] |
Sur@T7-AIF-GD NPS | - | Hepatocellular carcinoma | LM3 cell | T7 peptide enhances targeting, dual-functional imaging with Gd and AIE magnetic resonance imaging (MRI) and aggregation-induced emission (AIE) imaging, enabling precise delivery, real-time monitoring, and efficient treatment of hepatocellular carcinoma. | [79] |
ECV-modified PEI/siRNA | Sense: 5′-AUUCACCAAGGG-UUAAUUCdTdT-3′ | Prostate and Osteosarcoma carcinoma Ovarian and Colorectal cancer | SKOV3 PC3 HCT-116 Saos-2 cell | In the PC3 tumor xenograft nude mouse model, the ECV-modified PEI/siSurvivin complex significantly inhibited tumor growth. | [80] |
DOX-SPBB-siRNA | Sense: 5′-GAGCAGUUUGAAGAAUUATT-3′ Antisense: 5′-UAAUUCUUC-AAACUGCUUCTT-3′ | Lung cancer | A549 cell | DOX-SPBB-siRNA complex significantly reduced the tumor volume in an A549 tumor xenograft nude mouse model. | [81] |
PEI–PLA/PTX/siRNA-/PEG-PAsp | Sense: 5′-GCAUUCGUCCGG-UUGCGCUTT-3′ | Lung cancer | cell | PEG-PAsp has pH-responsive properties, enabling the PEG-PAsp-modified delivery system to induce apoptosis and arrest the cell cycle at the G2/M phase in A549 cells. | [82] |
QH-MnO2@PTX-siRNA | Sense: 5′-CACCGCAUCUCU-ACAUUCATT-3′ Antisense: 5′-UGAAUGUAG-AGAGCGGUGTT-3′ | Breast cancer | MDA-MB-231 cell | MnO2 nanoparticles exhibit superior responsiveness to high levels of GSH within cancer cells. The fluorescence recovery function of InP/ZnS quantum dots enables real-time monitoring of drug release in the tumor microenvironment. | [83] |
mPEG-g-γ-PGA/SSBPEI@siRNA | - | Lung cancer | A549 cell | PEI containing disulfide bonds breaks down in the high GSH environment of tumors to release drugs. | [84] |
SSBPEI-DOX@ siRNAs/iRGD-PEG-HA | - | Ovarian cancer | A2780 cell | The nanoparticles significantly enhanced the antitumor effect of DOX compared with free DOX and also greatly suppressed the migration and invasion of A2780/DDP-derived CSCs. | [85] |
scFv-P-BAP-siSurv-polyplex | Sense: 5′-GAAUUAACCCUU-GGUGAAU(tt)-3′ | Prostate carcinoma | PC3 cell | Maltose-modified PPI significantly reduced cytotoxicity and improved biocompatibility. The single-chain antibody fragment (scFv) delivery system can specifically recognize prostate stem cell antigen (PSCA), thereby precisely entering target cells. The siRNA delivered by the delivery system significantly inhibited tumor growth. | [86] |
H40-TEPA-PEG-MUC1 aptamer | Sense: 5′-GAAAGAAUUUGA-GGAAACUdTdT -3′ Antisense: 5′-AGUUUCCUC-AAAUUCUUUCdTdT 3′ | Breast cancer | MCF-7 cell | It exhibits significant gene silencing effects in MCF-7 cells and demonstrates superior gene silencing efficiency compared to non-targeted dendritic polymers and Lipofectamine-2000. | [87] |
Survivin siRNA/PTX PM | Sense: 5′-GCAUUCGUCCGG-UUGCGCUdTdT-3′ | Breast cancer | SKOV3-tr cell MDA-MB 231 cell | Significantly inhibited cell viability and enhanced cell sensitivity to PTX in a variety of cancer cell lines, while effectively overcoming drug resistance by down-regulating survivin protein level and disrupting microtubule structure in drug-resistant cell line SKOV3-tr. | [88] |
siRNA/PTX PM | Sense: 5′-GCAUUCGUCCGG-UUGCGCUdTdT-3′ | Ovarian cancer | SKOV3-tr cell | PTX encapsulation efficiency to 90%, downregulated the expression of survivin, and promoted drug enrichment in tumor tissues. | [89] |
Natural Polymer-Based Survivin siRNA Delivery Systems | |||||
---|---|---|---|---|---|
Nanoparticle | Survivin Sequence | Cancer Types | Cell Lines | Outcome | Ref. |
SUR siRNA-CS-g-PMMA/DS | Sense: 5′-GAACAUCAUCAU-CCAGGACTT-3′ | Breast cancer | 4T1 cell | 4T1 cells treated with siSurvivin-loaded nanoparticles showed a significant decrease in cell viability, migration ability, and sphere size, confirming that this delivery system is effective in achieving gene silencing. | [100] |
CE7Q/CQ/S/Survivin shRNA | Survivin-shRNA: 5′-GAATTA-ACCCTTGGTGAAT-3′ | Lung cancer | A549 cell | This system could recognize epidermal growth factor receptor and enter into EGFR-mutated non-small cell lung cancer cells, and a stimuli-responsive release profile was achieved by near-infrared laser irradiation at pH 5.4 and displayed superior antitumor efficacy in vitro and in vivo. | [101] |
PEG-CS/siRNA | - | Breast cancer | 4T1 cell | PEG-CS/siSurvivin showed a significant inhibitory effect on 4T1 cells, while the cell survival rate decreased and the apoptosis rate elevated as compared to the naked siRNA group, inhibiting tumor growth and lung metastasis effectively. | [102] |
TAT-g-CS/siSsur | Sense: 5′-GAACAUCAUCAU-CCAGGAC-3′ | Breast cancer | MCF-7 4T1-Luc | Improved cellular uptake efficiency, inhibited the proliferation of 4T1-Luc tumor cells, and significantly inhibited the in vivo growth and metastasis of malignant breast tumors. | [103] |
MT/PTX/pDNA/rhIL-2 NPs | - | Hepatocellular carcinoma | QGY-7703 | Formation of MT nanoparticles with redox properties. The release rate significantly improved. Tumor inhibition rate was significantly higher than the treatment group using the three drugs alone, enhancing the antitumor effect. | [104] |
PBA-COS/siRNA | Sense: 5′-GCAUUCGUCCGG-UUGCGCUTT-3′ Antisense: 5′-AGCGCAACCGGACGAAUGCTT-3′ | Melanoma | B16F10 cell | Significantly inhibited melanoma cell proliferation, growth, and metastasis. | [105] |
TS-MSN/siRNA | Sense: 5′-GUCUGGACCUCA-UGUUGUUdTdT-3′ | Breast cancer | MDA-MB-231 cell | Improved cellular internalization and enhanced gene silencing efficiency. | [106] |
TS-MSN siSurvivin | Sense: 5′-GUCUGGACCUCA-UGUUGUUdTdT-3′ Antisense: 5′-AACAACAUG-AGGUCCAGACdTdT-3′ | Breast cancer | SK-BR-3 cell | TS-MSN improved cellular internalization and enhanced the anticancer effect of DOX by downregulating survivin expression. | [107] |
CSP/TPE@siRNA-SP94 | sense: 5′-CACCGCAUCUCU-ACAUUCATT-3′ Antisense: 5′-UGAAUGUAG-AGAUGCGGUGTT-3′ | Hepatocellular carcinoma | Huh-7 cell | It exhibits excellent fluorescence and magnetic resonance imaging performance both in vitro and in vivo and significantly inhibits tumor growth in a nude mouse model carrying Huh-7 tumors. | [108] |
DOX/siRNA/PEI-SFNPs | - | Breast cancer | 4T1 cell | It effectively inhibited tumor growth without causing significant weight loss or other systemic toxicity, providing a new strategy for breast cancer treatment. | [109] |
APR | Sense: 5′-GGACCACCGCAUCUCUACAdTdT-3′ Antisense: 3′-dTdTCCUGGU-GGCGUAGAGAUGU-5′ | Breast cancer | MCF-7 cell | ErbB3 aptamer can specifically recognize and bind to the ErbB3 receptor overexpressed on the surface of breast cancer cells, realizing the precise delivery of siRNA. Protamine not only enhances the stability of the complex but also improves the intracellular delivery efficiency of siRNA through the electrostatic binding of siSurvivin. | [110] |
NP-siRNA/Pt (IV) | Sense: 5′-GAAUUAACCCUU-GGUGAUTT-3′ Antisense: 3′-AUUCACCAAG GGUUAAUUCTT-5′ | Lung cancer | A549 cell | Co-loading siSurvivin and Pt(IV) prodrug enhanced the tumor tissue-specific accumulation of the nanocarrier. Surface modification of the nanocarrier with PGA effectively improved its stability and prolonged its circulation time in the blood. | [111] |
XL-DPs/siRNA | - | Lung cancer | A549 cell | The polymer is pH-responsive and releases siSurvivin in acidic environments. It has good biocompatibility and low cytotoxicity. | [112] |
PEG–RAFF-siRNA | Sense: 5′-GAGACAGAAUAG-AGUGAUATT-3′ Antisense: 5′-UAUCACUCU-AUUCUGUCUCTT-3′ | Breast cancer | MCF-7 cell | Arginine is frequently present in cell-penetrating peptides, which can enhance cellular uptake. Alanine serves as a spacer, which effectively avoids the steric hindrance. | [113] |
VE-Sper/DSPE-PEG2000/siRNA | Sense: 5′-GCAUUCGUCCGG-UUGCGCUdTdT-3′ Antisense: 5′-AGCGCAACC-GGACGAAUGCdTdT-3′ | Hepatocellular carcinoma | HepG2 cell | This nanocomposite can effectively silence the Eg5 and survivin genes and arrest the cell cycle at the G2/M phase. It significantly inhibits tumor growth in HepG2 tumor-bearing mice. | [114] |
Liposomal Polymer-Based Survivin siRNA Delivery Systems | |||||
---|---|---|---|---|---|
Nanoparticle | Survivin Sequence | Cancer Types | Cell Lines | Outcome | Ref. |
ALPR (HER2/CD44-Targeted Hydrogel Nanobot) | Sense: 5′-GCAUUCGUCCGG-UUGCGCUdtdt-3′ Antisense: 5′-AGCGCAACC-GGACGAAUGCdtdt-3′ | Breast cancer | SKBR-3 MCF-7 MDA-MB-231 | ALPR can efficiently deliver Herceptin, peptide, and survivin siRNA to SKBR-3, MDA-MB-231, and MCF-7 cells, demonstrating excellent antitumor effects. | [125] |
cRGD-PSH-NP/S | Sense: 5′-mGCAGGUUCCUm-UAUCUGUCATT-3′ | Hepatocellular carcinoma | HepG2 cell | cRGD-PSH-NP/S markedly downregulated survivin expression both in vitro and in vivo and exhibited potent tumor inhibition in HepG2-bearing nude mice. | [126] |
Tf-L-SN38/P/siRNA | Sense: 5′-mGCAGGUUCCUm-UAUCUGUCAdTdT-3′ Antisense:5′-UGAmCAGAm-UAAGGAACCUGmCdTdT-3′ | Cervical cancer | HeLa cell | Tf-modified liposomes can specifically bind to transferrin receptors on the surface of tumor cells, increasing drug accumulation in tumor tissues. This enhances the efficacy of chemotherapeutic drugs and inhibits tumor growth. | [127] |
LNP/survivin siRNA | Sense: 5′-GGACCACCGCAUCUCUACATT-3′ Antisense: 5′-UGUAGAGAU-GCGGUGGUCCTT-3′ | Human retinoblastoma cell line | Y79 cell | Downregulation of survivin via siLNP enhances the cytotoxic effects of carboplatin and melphalan on Y79 cells and primary retinoblastoma cells. | [128] |
HA/HAase/CS/liposome/survivin-shRNA (HCLR) | shRNA: 5′-AATTTGAGGA-AACTGCGGAGA-3′ | Breast cancer | MDA-MB-231 cell | HA specifically binds to the CD44 receptor on the surface of tumor cells, promoting tumor targeting and prolonging the retention time of liposomes in the bloodstream. CS undergoes protonation in the tumor microenvironment (pH 6.5) to promote cellular uptake, while pH-triggered HAase release improves the diffusion of the nanocarrier in tumor tissue, enhancing tumor penetration. It exhibits excellent in vivo tumor suppression capabilities. | [130] |
siRNA-LAPA_LBNP | Sense: 5′-GUCUGGACCUCA-UGUUGUUdTdT-3′ | Breast cancer | SKBR-3 cell | It has good physical and chemical properties, a high cell uptake rate, and significant cytotoxic effects. | [131] |
OCA-CC-siRNA | Sense: 5′-GAAUUUGAGGAA-ACUGCGAtt-3′ Antisense: 3′-ttCUUAAACU-CCUUUGACGCU-5′ | Breast cancer | MCF-7 | Enhanced cytoplasmic delivery capacity and demonstrated significant antitumor activity in vitro and in vivo through silencing survivin expression. | [132] |
Organic/Inorganic Hybrid Nanomaterials-Based Survivin siRNA Delivery Systems | |||||
---|---|---|---|---|---|
Nanoparticle | Survivin Sequence | Cancer Types | Cell Lines | Outcome | Ref. |
CaP-NPs-siRNA | Sense: 5′-CUAUUGUGACCU-GGACUUATT-3′ Antisense: 5′-UAAGUCCAG-GUCACAAUAGAG-3′ | Glioblastoma | F98 cells | o14PEGMA improves the dispersion stability of nanoparticles, increases cellular uptake efficiency, and reduces the potential cytotoxicity of traditional CaP. Calcium phosphate nanoparticles protect siRNA from degradation and promote its uptake into cells. | [134] |
CaP-Arg-siRNA | Sense: 5′-GAAGCAGUUUGA-AGAAUUATT-3′ Antisense: 5′-UAAUUCUUC-AAACUGCUUCTT-3′ | Lung cancer | A549 cell | CaP-Arg-siRNAs significantly suppressed the expression of survivin and cyclin B1, resulting in a marked decrease in cell growth and inducing apoptosis drastically. | [135] |
NDCONH(CH2)2NH-VDGR/survivin siRNA | Sense: 5′-GCATGGGTCCCC-CGACGTTG-3′ Antisense: 5′-GCTCCGGCC-AGAGGCCTCAA-3′ | Breast cancer | MCF-7 cell | Reduced survivin expression and displayed a potent inhibitory effect on tumor growth in vitro and in vivo. | [136] |
CNTs-PS/siRNA | Sense: 5′-CACCGCAUCUCU-ACAUUCATT-3′ Antisense: 5′-UGAAUGUAG-AGAUGCGGUGTT-3′ | Cervical cancer | HeLa cell | The modified CNTs demonstrated excellent biocompatibility and temperature-sensitive properties. The combination of photothermal therapy and gene therapy caused massive apoptosis in HeLa cells and exhibited strong antitumor activity in vivo. | [139] |
CMOL@ siRNA | SUR A: Sense: 5′-CCUUCCUCACUG-UCAAGAATT-3′ Antisense: 5′-UUCUUGACA-GUGAGGAAGGTT-3′ SUR B: Sense: 5′-GAGACCAACAAC-AAGCAAATT-3′ Antisense: 5′-UUUGCUUGU-UGUUGGUCUCTT-3′ SUR C: Sense: 5′-CUACCCGUCAGU-CAAUUGATT-3′ Antisense: 5′-UCAAUUGAC-UGACGGGUAGTT-3′ | Colorectal and Breast cancer | CT26, 4T1 cell | CMOL functions as an effective reactive oxygen species (ROS) generator, and the cationic framework serves as an siRNA cocktail carrier to synergistically downregulate survivin levels. Combined with low-dose X-ray irradiation, it has shown significant antitumor efficacy. | [140] |
PEG-CPP33@ORI@survivin siRNA@ZIF-90 | Antisense: 5′-UAAUUCUUC-AAACUGCUUCTT-3′ | Lung cancer | A549 cell | PEG-CPP33@NPs significantly improved the cellular uptake efficiency of siRNA in A549 cells and showed stronger tumor accumulation. The strongest antitumor effect in vivo was observed through the co-delivery of ORI and survivin siRNA. | [141] |
siRNA@MOF-GalNAc | Sense: 5′-AAGGAGAUCAAC-AUUUUCA-3′ Antisense: 5′-UGAAAAUGU-UGAUCUCCUU-3′ | Hepatocellular carcinoma | HepG2 cell | The GalNAc-decorated MOF specifically accumulated in HCC tumor tissue and was effectively endocytosed by HCC cells. The protective properties of the MOF increased the stability of siRNA and allowed for significant downregulation of survivin expression in HCC tumors, contributing to tumor inhibition through the suppression of cell proliferation and the induction of apoptosis. | [142] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, L.; Wang, S.; Li, B.-C.; Ding, G.-B. Research Progress on Polymer-Based Nanocarriers for Tumor-Targeted Delivery of Survivin siRNA. Polymers 2025, 17, 2279. https://doi.org/10.3390/polym17172279
Ren L, Wang S, Li B-C, Ding G-B. Research Progress on Polymer-Based Nanocarriers for Tumor-Targeted Delivery of Survivin siRNA. Polymers. 2025; 17(17):2279. https://doi.org/10.3390/polym17172279
Chicago/Turabian StyleRen, Luya, Shaoxia Wang, Bin-Chun Li, and Guo-Bin Ding. 2025. "Research Progress on Polymer-Based Nanocarriers for Tumor-Targeted Delivery of Survivin siRNA" Polymers 17, no. 17: 2279. https://doi.org/10.3390/polym17172279
APA StyleRen, L., Wang, S., Li, B.-C., & Ding, G.-B. (2025). Research Progress on Polymer-Based Nanocarriers for Tumor-Targeted Delivery of Survivin siRNA. Polymers, 17(17), 2279. https://doi.org/10.3390/polym17172279