Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = tubular absorber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 10781 KiB  
Review
Recent Developments in Additively Manufactured Crash Boxes: Geometric Design Innovations, Material Behavior, and Manufacturing Techniques
by Ahmed Saber, A. M. Amer, A. I. Shehata, H. A. El-Gamal and A. Abd_Elsalam
Appl. Sci. 2025, 15(13), 7080; https://doi.org/10.3390/app15137080 - 24 Jun 2025
Cited by 2 | Viewed by 732
Abstract
Crash boxes play a vital role in improving vehicle safety by absorbing collision energy and reducing the forces transmitted to occupants. Additive manufacturing (AM) has become a powerful method for developing advanced crash boxes by enabling complex geometries. This review provides a comprehensive [...] Read more.
Crash boxes play a vital role in improving vehicle safety by absorbing collision energy and reducing the forces transmitted to occupants. Additive manufacturing (AM) has become a powerful method for developing advanced crash boxes by enabling complex geometries. This review provides a comprehensive examination of recent progress in AM crash boxes, with a focus on three key aspects: geometric design innovations, material behavior, and manufacturing techniques. The review investigates the influence of various AM-enabled structural configurations, including tubular, origami-inspired, lattice, and bio-inspired designs, on crashworthiness performance. Among these, bio-inspired structures exhibit superior energy absorption characteristics, achieving a mean specific energy absorption (SEA) of 21.51 J/g. Material selection is also explored, covering polymers, fiber-reinforced polymers, metals, and multi-material structures. Metallic AM crash boxes demonstrate the highest energy absorption capacity, with a mean SEA of 28.65 J/g. In addition, the performance of different AM technologies is evaluated, including Stereolithography (SLA), Material Jetting (MJT), Selective Laser Melting (SLM), Selective Laser Sintering (SLS), Fused Deposition Modeling (FDM), and hybrid manufacturing techniques. Among these, crash boxes produced by SLM show the most favorable energy absorption performance, with a mean SEA of 16.50 J/g. The findings presented in this review offer critical insights to guide future research and development in the design and manufacturing of next-generation AM crash boxes intended to enhance vehicle safety. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

15 pages, 16118 KiB  
Article
Axial Tensile Experiment of the Lap-Type Asymmetric K-Shaped Square Tubular Joints with Built-In Stiffeners
by Zhihua Zhong, Peiyu Peng, Zheweng Zhu, Xiang Ao, Shiwei Xiong, Jinkun Huang, Lihong Zhou and Xiaochuan Bai
Buildings 2025, 15(10), 1634; https://doi.org/10.3390/buildings15101634 - 13 May 2025
Viewed by 322
Abstract
To study the mechanical properties of asymmetric K-shaped square tubular joints with built-in stiffening rib lap joints, axial tensile tests were carried out on one K-shaped joint without built-in stiffening ribs and four K-shaped joints with built-in stiffening ribs using an electro-hydraulic servo [...] Read more.
To study the mechanical properties of asymmetric K-shaped square tubular joints with built-in stiffening rib lap joints, axial tensile tests were carried out on one K-shaped joint without built-in stiffening ribs and four K-shaped joints with built-in stiffening ribs using an electro-hydraulic servo structural testing system. The effects of the addition of stiffening ribs and the welding method of the stiffening ribs on the mechanical properties were studied comparatively. The failure mode of the K-shaped joint was obtained, and the strain distribution and peak displacement reaction force in the nodal region were analyzed. A finite element analysis of the K-shaped joint was carried out, and the finite element results were compared with the experimental results. The results showed that the addition of transverse reinforcement ribs and more complete welds shared the squeezing effect of the brace on the chord. Arranging more reinforcing ribs in the fittings makes the chord more uniformly stressed and absorbs more energy while increasing the flexural load capacity of the fittings’ side plates. The presence of a weld gives a short-lived temperature increase in the area around the crack, and the buckling of the structure causes the surface temperature in the buckling area to continue to increase for some time. The temperature change successfully localized where the structure was deforming and creating cracks. The addition of the reinforcing ribs resulted in a change in the deformation pattern of the model, and the difference occurred because the flexural capacity of the brace with the added reinforcing ribs was greater than that of the side plate buckling. Full article
(This article belongs to the Special Issue Application of Experiment and Simulation Techniques in Engineering)
Show Figures

Figure 1

19 pages, 9865 KiB  
Article
Morphologic Features and Thermal Characteristics of Nine Cotton Biomass Byproducts
by Zhongqi He, Sunghyun Nam, Haile Tewolde, Catrina V. Ford, Renuka Dhandapani, Roselle Barretto and Donghai Wang
Biomass 2025, 5(1), 12; https://doi.org/10.3390/biomass5010012 - 25 Feb 2025
Cited by 1 | Viewed by 1058
Abstract
Cotton biomass residues consist of an important portion of the agricultural byproducts. In this work, we systematically analyzed and compared the morphology and thermal properties of nine cotton biomass byproducts. The unique tubular and/or porous morphology of some samples (e.g., main stems, branch [...] Read more.
Cotton biomass residues consist of an important portion of the agricultural byproducts. In this work, we systematically analyzed and compared the morphology and thermal properties of nine cotton biomass byproducts. The unique tubular and/or porous morphology of some samples (e.g., main stems, branch stems, and petioles) implied their structural advantage in the development of electric supercapacitors and pollutant absorbents. The higher heating values of the nine samples ranged between 17 and 20 MJ kg−1, higher than some of the other common agricultural byproducts (e.g., rice husk and sugarcane bagasse). The moisture content showed a positive correlation (p > 0.05) to the dehydration temperature of the differential scanning calorimetric plots. The residual char after thermogravimetric analysis could be separated into a high-yield cluster (34.4–26.6%) of leaf blades, bracts/peduncles, burrs, defatted meal, and petioles, and a low-yield cluster (20.5–13.6%) of main stems, branch stems, cotton gin waste, and cottonseed hull. These observations and data are useful for a better understanding of the fundamental chemistry of cotton biomass byproducts. Growing knowledge is useful for improving their recycling strategies and may shed light on the exploration of new value-added products or applications from these cotton biomass byproducts for a circular economy with sustainable agriculture. Full article
Show Figures

Figure 1

24 pages, 1618 KiB  
Review
Antioxidative Function of Zinc and Its Protection Against the Onset and Progression of Kidney Disease Due to Cadmium
by Soisungwan Satarug
Biomolecules 2025, 15(2), 183; https://doi.org/10.3390/biom15020183 - 27 Jan 2025
Viewed by 1711
Abstract
Chronic kidney disease (CKD) is now the world’s top seventh cause of death from a non-communicable disease, and its incidence is projected to increase further as its major risk factors, including obesity, diabetes, hypertension, and non-alcoholic fatty liver disease (NAFLD), continue to rise. [...] Read more.
Chronic kidney disease (CKD) is now the world’s top seventh cause of death from a non-communicable disease, and its incidence is projected to increase further as its major risk factors, including obesity, diabetes, hypertension, and non-alcoholic fatty liver disease (NAFLD), continue to rise. Current evidence has linked the increased prevalence of CKD, diabetes, hypertension, and NAFLD to chronic exposure to the metal pollutant cadmium (Cd). Exposure to Cd is widespread because diet is the main exposure route for most people. Notably, however, the health risk of dietary Cd exposure is underappreciated, and the existing tolerable exposure guidelines for Cd do not afford health protection. New health-protective exposure guidelines are needed. From one’s diet, Cd is absorbed by the intestinal epithelium from where it passes through the liver and accumulates within the kidney tubular epithelial cells. Here, it is bound to metallothionine (MT), and as it is gradually released, it induces tubular damage, tubulointerstitial inflammation and fibrosis, and nephron destruction. The present review provides an update on our knowledge of the exposure levels of Cd that are found to be associated with CKD, NAFLD, and mortality from cardiovascular disease. It discusses the co-existence of hypertension and CKD in people environmentally exposed to Cd. It highlights nuclear and mitochondrial targeting and zinc deficiency as the universal cytotoxic mechanisms of Cd. Special emphasis is placed on the novel antioxidative function of zinc involving de novo heme biosynthesis and the induced expression of heme oxygenase-1 (HO-1). Other exogenous biomolecules with promising anti-Cd toxicity are highlighted. Full article
(This article belongs to the Special Issue Mitochondrial ROS in Health and Disease)
Show Figures

Figure 1

17 pages, 7984 KiB  
Article
Design and Application of High-Density Cold Plasma Devices Based on High Curvature Spiked Tungsten Structured Electrodes
by Haotian Weng, Yaozhong Zhang, Xiaolu Huang, Hewei Yuan, Yang Xu, Kun Li, Yunhui Tang and Yafei Zhang
Appl. Sci. 2024, 14(13), 5901; https://doi.org/10.3390/app14135901 - 5 Jul 2024
Cited by 1 | Viewed by 1611
Abstract
Advances in radar technology have driven efforts to develop effective countermeasures. Plasma is recognized as a highly effective medium for absorbing electromagnetic waves. Recent research has focused on enhancing plasma element performance. This paper achieved ultra-high-density, low-pressure cold plasma with a density of [...] Read more.
Advances in radar technology have driven efforts to develop effective countermeasures. Plasma is recognized as a highly effective medium for absorbing electromagnetic waves. Recent research has focused on enhancing plasma element performance. This paper achieved ultra-high-density, low-pressure cold plasma with a density of 1.15 × 1012 cm−3, surpassing similar studies by more than an order of magnitude. Tungsten electrodes with high-curvature spiked structures were invented to replace traditional iron–nickel alloy electrodes, increasing plasma density by 88.2% under the same conditions. Lightweight and cost-effective tubular and annular ultra-high-density, low-pressure cold plasma devices were developed, demonstrating exceptional performance in electromagnetic wave absorption, plasma transient antennas, and radar stealth technology. The influence of plasma on electromagnetic waves and its numerical relationship were analyzed. By measuring the radar cross-section (RCS), the reduction in radar detection rates was quantified. The results show that the ultra-high-density cold plasma devices exhibit very low intrinsic RCS values, suitable for plasma antenna applications. The array of plasma elements generates a large-area high-density low-pressure cold plasma. This plasma effectively reduces the radar cross-section (RCS) of metallic equipment in the S and C bands and shows attenuation in the X band. These effects highlight the superior characteristics of plasma technology in electronic warfare. This exploratory research lays the groundwork for further defense applications. Full article
(This article belongs to the Special Issue Recent Progress in Radar Target Detection and Localization)
Show Figures

Figure 1

9 pages, 1788 KiB  
Article
Evaluation of the Technical Condition of Pipes during the Transportation of Hydrogen Mixtures According to the Energy Approach
by Yaroslav Ivanytskyi, Yaroslav Blikharskyy, Jarosław Sęp, Zinoviy Blikharskyy, Jacek Selejdak and Oleh Holiian
Appl. Sci. 2024, 14(12), 5040; https://doi.org/10.3390/app14125040 - 10 Jun 2024
Cited by 1 | Viewed by 1164
Abstract
In this study, a theoretical–experimental methodology for determining the stress–strain state in pipeline systems, taking into account the hydrogen environment, was developed. A complex of theoretical and experimental studies was conducted to determine the specific energy of destruction as an invariant characteristic of [...] Read more.
In this study, a theoretical–experimental methodology for determining the stress–strain state in pipeline systems, taking into account the hydrogen environment, was developed. A complex of theoretical and experimental studies was conducted to determine the specific energy of destruction as an invariant characteristic of the material’s resistance to strain at different hydrogen concentrations. The technique is based on the construction of complete diagrams of the destruction of the material based on the determination of true strains and stresses in the local volume using the method involving the optical–digital correlation of speckle images. A complex of research was carried out, and true diagrams of material destruction were constructed, depending on the previous elastic–plastic strain and the action of the hydrogen environment. The change in the concentration of hydrogen absorbed by the material was estimated, depending on the value of the specific energy of destruction. A study was conducted on tubular samples, and the degree of damage to the material of the inner wall under the action of hydrogen and stress from the internal pressure was evaluated according to the change in specific energy, depending on the value of the true strain established with the help of an optical–digital correlator on the outer surface, and the degree of damage was determined. It has been established that the specific fracture energy of 17G1S steel decreases by 70–90% under the influence of hydrogen. The effect of the change in the amount of strain energy on the thickness of the pipe wall is illustrated. Full article
(This article belongs to the Special Issue Fatigue Strength of Machines and Systems)
Show Figures

Figure 1

24 pages, 7411 KiB  
Article
Design, Simulation and Optimization of a Novel Transpired Tubular Solar Air Heater
by Hossain Nemati
Energies 2024, 17(10), 2323; https://doi.org/10.3390/en17102323 - 11 May 2024
Cited by 2 | Viewed by 1327
Abstract
In this paper, a novel tubular solar air heater is introduced. In this air heater, the hot boundary layer is drawn into the absorber tube and can provide thermal energy at moderate temperatures. Several different cases were simulated and a correlation was proposed [...] Read more.
In this paper, a novel tubular solar air heater is introduced. In this air heater, the hot boundary layer is drawn into the absorber tube and can provide thermal energy at moderate temperatures. Several different cases were simulated and a correlation was proposed to predict the collector’s effectiveness as a function Rayleigh number and Reynolds number. An equation was derived to find the effectiveness of this collector. Finally, a real case was studied with non-uniform solar flux distribution, as well as radiation heat loss. Good agreement was found between the results and those derived by the proposed analytical method. For different suction values, the first-law and the second-law efficiencies were calculated. Based on the exergy analysis, exergy destruction in absorption is the dominant factor that is unavoidable in low-temperature collectors. It was shown that there is an optimum suction value at which the second-law efficiency is maximized. At the optimum point, temperature rise can reach 54 K, which is hardly possible with a flat plate collector. Based on the exergy analysis, the relation between tube wall temperature and air outlet temperature in their dimensionless forms at the optimum working condition was derived, and it was shown that effectiveness at the optimum working condition is around 0.5. This means that the air temperature rise shall be half of the temperature difference between collector wall and the ambient temperatures. A high outlet temperature besides the low cost of construction and maintenance are the main advantages of this air heater. With such a high temperature rise, this type of collector can increase the use of solar energy in domestic applications. Full article
(This article belongs to the Topic Advances in Solar Heating and Cooling)
Show Figures

Figure 1

34 pages, 2323 KiB  
Review
Natural Fibre and Hybrid Composite Thin-Walled Structures for Automotive Crashworthiness: A Review
by Monica Capretti, Giulia Del Bianco, Valentina Giammaria and Simonetta Boria
Materials 2024, 17(10), 2246; https://doi.org/10.3390/ma17102246 - 10 May 2024
Cited by 16 | Viewed by 2722
Abstract
Natural fibres, valued for their low density, cost-effectiveness, high strength-to-weight ratio, and efficient energy absorption, are increasingly emerging as alternatives to synthetic materials in green composites. Although they cannot fully replace synthetic counterparts, like carbon, in structural applications due to their inferior mechanical [...] Read more.
Natural fibres, valued for their low density, cost-effectiveness, high strength-to-weight ratio, and efficient energy absorption, are increasingly emerging as alternatives to synthetic materials in green composites. Although they cannot fully replace synthetic counterparts, like carbon, in structural applications due to their inferior mechanical performance, combining them through hybridization presents a potential solution. This approach promotes a balance between environmental benefits and mechanical efficiency. Recently, the transportation sector has shifted its focus towards delivering lightweight and crashworthy composite structures to improve vehicle performance, address safety concerns, and minimise environmental impact through the use of eco-friendly materials. The crashworthiness of energy absorbers, typically thin-walled structures, is influenced by several factors, including their material and geometric design. This paper presents a comprehensive overview of recent studies focused on the crashworthiness of fibre-reinforced, thin-walled composites under axial crushing. It explores different aspects, such as their materials, cross-sections, stacking sequences, triggering or filling mechanisms, and the effect of loading rate speed. Emphasis is placed on natural-fibre-based materials, including a comparative analysis of synthetic ones and their hybridization. The primary objective is to review the progress of solutions using green composites as energy absorbers in the automotive industry, considering their lightweight design, crashworthiness, and environmental sustainability. Full article
(This article belongs to the Special Issue Mechanical Behaviour of Advanced Metal and Composite Materials)
Show Figures

Figure 1

23 pages, 2507 KiB  
Review
Is Chronic Kidney Disease Due to Cadmium Exposure Inevitable and Can It Be Reversed?
by Soisungwan Satarug
Biomedicines 2024, 12(4), 718; https://doi.org/10.3390/biomedicines12040718 - 23 Mar 2024
Cited by 18 | Viewed by 5523
Abstract
Cadmium (Cd) is a metal with no nutritional value or physiological role. However, it is found in the body of most people because it is a contaminant of nearly all food types and is readily absorbed. The body burden of Cd is determined [...] Read more.
Cadmium (Cd) is a metal with no nutritional value or physiological role. However, it is found in the body of most people because it is a contaminant of nearly all food types and is readily absorbed. The body burden of Cd is determined principally by its intestinal absorption rate as there is no mechanism for its elimination. Most acquired Cd accumulates within the kidney tubular cells, where its levels increase through to the age of 50 years but decline thereafter due to its release into the urine as the injured tubular cells die. This is associated with progressive kidney disease, which is signified by a sustained decline in the estimated glomerular filtration rate (eGFR) and albuminuria. Generally, reductions in eGFR after Cd exposure are irreversible, and are likely to decline further towards kidney failure if exposure persists. There is no evidence that the elimination of current environmental exposure can reverse these effects and no theoretical reason to believe that such a reversal is possible. This review aims to provide an update on urinary and blood Cd levels that were found to be associated with GFR loss and albuminuria in the general populations. A special emphasis is placed on the mechanisms underlying albumin excretion in Cd-exposed persons, and for an accurate measure of the doses–response relationships between Cd exposure and eGFR, its excretion rate must be normalised to creatinine clearance. The difficult challenge of establishing realistic Cd exposure guidelines such that human health is protected, is discussed. Full article
Show Figures

Figure 1

25 pages, 6841 KiB  
Article
Multifunctional Exosomes Derived from M2 Macrophages with Enhanced Odontogenesis, Neurogenesis and Angiogenesis for Regenerative Endodontic Therapy: An In Vitro and In Vivo Investigation
by Yujie Wang, Jing Mao, Yifan Wang, Nan Jiang and Xin Shi
Biomedicines 2024, 12(2), 441; https://doi.org/10.3390/biomedicines12020441 - 16 Feb 2024
Cited by 10 | Viewed by 2803
Abstract
Introduction: Exosomes derived from M2 macrophages (M2-Exos) exhibit tremendous potential for inducing tissue repair and regeneration. Herein, this study was designed to elucidate the biological roles of M2-Exos in regenerative endodontic therapy (RET) compared with exosomes from M1 macrophages (M1-Exos). Methods: The internalization [...] Read more.
Introduction: Exosomes derived from M2 macrophages (M2-Exos) exhibit tremendous potential for inducing tissue repair and regeneration. Herein, this study was designed to elucidate the biological roles of M2-Exos in regenerative endodontic therapy (RET) compared with exosomes from M1 macrophages (M1-Exos). Methods: The internalization of M1-Exos and M2-Exos by dental pulp stem cells (DPSCs) and human umbilical vein endothelial cells (HUVECs) was detected by uptake assay. The effects of M1-Exos and M2-Exos on DPSC and HUVEC behaviors, including migration, proliferation, odonto/osteogenesis, neurogenesis, and angiogenesis were determined in vitro. Then, Matrigel plugs incorporating M2-Exos were transplanted subcutaneously into nude mice. Immunostaining for vascular endothelial growth factor (VEGF) and CD31 was performed to validate capillary-like networks. Results: M1-Exos and M2-Exos were effectively absorbed by DPSCs and HUVECs. Compared with M1-Exos, M2-Exos considerably facilitated the proliferation and migration of DPSCs and HUVECs. Furthermore, M2-Exos robustly promoted ALP activity, mineral nodule deposition, and the odonto/osteogenic marker expression of DPSCs, indicating the powerful odonto/osteogenic potential of M2-Exos. In sharp contrast with M1-Exos, which inhibited the neurogenic capacity of DPSCs, M2-Exos contributed to a significantly augmented expression of neurogenic genes and the stronger immunostaining of Nestin. Consistent with remarkably enhanced angiogenic markers and tubular structure formation in DPSCs and HUVECs in vitro, the employment of M2-Exos gave rise to more abundant vascular networks, dramatically higher VEGF expression, and widely spread CD31+ tubular lumens in vivo, supporting the enormous pro-angiogenic capability of M2-Exos. Conclusions: The multifaceted roles of M2-Exos in ameliorating DPSC and HUVEC functions potentially contribute to complete functional pulp–dentin complex regeneration. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Graphical abstract

22 pages, 7143 KiB  
Article
Numerical Modeling and Experimental Validation of Heat Transfer Characteristics in Small PTCs with Nonevacuated Receivers
by Amedeo Ebolese, Domenico Marano, Carlo Copeta, Agatino Bruno and Vincenzo Sabatelli
Solar 2023, 3(4), 544-565; https://doi.org/10.3390/solar3040030 - 12 Oct 2023
Viewed by 2375
Abstract
The development of small-sized parabolic trough collectors (PTCs) for processing heat production at medium temperatures (100–250 °C) represents an interesting approach to increase the utilization of solar thermal technologies in industrial applications. Thus, the development of simplified models to analyze and predict their [...] Read more.
The development of small-sized parabolic trough collectors (PTCs) for processing heat production at medium temperatures (100–250 °C) represents an interesting approach to increase the utilization of solar thermal technologies in industrial applications. Thus, the development of simplified models to analyze and predict their performance under different operative and climatic conditions is crucial for evaluating the application potential of this low-cost technology. In this paper, we present a numerical method that by combining three-dimensional finite element simulations (implemented with COMSOL Multiphysics software version 6.1) with a one-dimensional analysis (based on a MATLAB script) allows for the theoretical determination of the power output of a small-PTC with a nonevacuated tubular receiver operating at a medium temperature. The finite element model considers both the nonuniformity of the concentrated solar flux on the receiver tube (evaluated using Monte Carlo ray-tracing analysis) and the establishment of natural convection in the air gap between the glass envelope and absorber tube. The model calculates, for several values of direct normal irradiance (DNI) and inlet temperatures, the thermal power transferred to the heat transfer fluid (HTF) per unit length. The data are fitted using the multiple linear regression method, obtaining a function that is then used in a one-dimensional multi-nodal model to estimate the temperatures and the heat gains along the receiver tube. The outputs of the model are the outlet temperature and the total thermal power transferred to the HTF. In order to validate the developed methodology for the assessment of the heat transfer characteristics in the small-PTC with a nonevacuated receiver, an experiment at the ENEA Trisaia—Solar Thermal Collector Testing Laboratory was carried out. This work compares the theoretical data with those acquired through experimentation, obtaining a good agreement, with maximum differences of 0.2% and 3.6% for the outlet temperatures and the power outputs, respectively. Full article
(This article belongs to the Special Issue Recent Advances in Solar Thermal Energy)
Show Figures

Figure 1

19 pages, 4603 KiB  
Article
Role of Titanium Dioxide-Immobilized PES Beads in a Combined Water Treatment System of Tubular Alumina Microfiltration and PES Beads
by Sungtaek Hong, Sungwoo Park and Jin Yong Park
Membranes 2023, 13(9), 757; https://doi.org/10.3390/membranes13090757 - 25 Aug 2023
Viewed by 1357
Abstract
The membrane process has a limit to the decay of various pollutants in water. To improve the problem, the roles of backwashing media and titanium dioxide (TiO2) photocatalyst-immobilized-polyethersulfone (PES) beads’ concentration were investigated in a combined system of tubular alumina MF [...] Read more.
The membrane process has a limit to the decay of various pollutants in water. To improve the problem, the roles of backwashing media and titanium dioxide (TiO2) photocatalyst-immobilized-polyethersulfone (PES) beads’ concentration were investigated in a combined system of tubular alumina MF and the PES beads for advanced drinking water treatment. The space between the outside of the MF membrane and the module inside was filled with the PES beads. UV at a wavelength of 352 nm was irradiated from outside of the acryl module. A quantity of humic acid and kaolin was dissolved in distilled water for synthetic water. Water or air intermittent backwashing was performed outside to inside. The membrane fouling resistance after 3 h process (Rf,180) was minimum at 30 g/L of the PES beads for water backwashing, and at 40 g/L for air backwashing when increasing the PES beads from 0 to 50 g/L. The irreversible membrane fouling resistance after physical cleaning (Rif) was at the bottom at 5 g/L of the PES beads for water backwashing, which was 3.43 times higher than minimal at 40 g/L of the PES beads for air backwashing. The treatment effectiveness of turbidity increased when increasing the PES beads’ concentration from 0 to 50 g/L; however, it reached a maximum at 98.1% at 40 g/L and 99.2% at 50 g/L for water and air backwashing, respectively. The treatment effectiveness of UV254 absorbance, which was dissolved organic matter (DOM), increased dramatically when increasing the PES beads; however, it reached a peak of 83.0% at 40 g/L and 86.0% at 50 g/L for water and air backwashing, respectively. Finally, the best PES beads’ concentration was 20~30 g/L to minimize the membrane fouling; however, it was 50 g/L to remove pollutants effectively. The water backwashing was better than the air at treating DOM; however, the air backwashing was more effective than the water at removing turbid matter and reducing membrane fouling. Full article
(This article belongs to the Special Issue Advances in Integrated Membrane Processes and Systems)
Show Figures

Figure 1

14 pages, 12280 KiB  
Article
Rapid Thermal Processing of Kesterite Thin Films
by Maxim Ganchev, Stanka Spasova, Taavi Raadik, Arvo Mere, Mare Altosaar and Enn Mellikov
Coatings 2023, 13(8), 1449; https://doi.org/10.3390/coatings13081449 - 17 Aug 2023
Cited by 2 | Viewed by 1968
Abstract
Multinary chalcogenides with Kesterite structure Cu2ZnSn(S,Se)4 (CZTSSe) are a prospective material base for the enhancement of the photovoltaics industry with abundant and environmentally friendly constituents and appropriate electro-physical properties for building highly efficient devices at a low cost with a [...] Read more.
Multinary chalcogenides with Kesterite structure Cu2ZnSn(S,Se)4 (CZTSSe) are a prospective material base for the enhancement of the photovoltaics industry with abundant and environmentally friendly constituents and appropriate electro-physical properties for building highly efficient devices at a low cost with a short energy pay-back time. The actual record efficiency of 13.6%, which was reached recently, is far below the current isostructural chalcopyrite’s solar cells efficiency of near 24%. The main problems for future improvements are the defects in and stability of the Kesterite absorber itself and recombination losses at interfaces at the buffer and back contacts. Here, we present an investigation into the rapid thermal annealing (RTA) of as-electrodeposited thin films of Cu2ZnSnS4 (CZTS). The treatment was carried out in a cold wall tubular reactor in dynamic conditions with variations in the temperature, speed and time of the specific elements of the process. The effect of annealing was investigated by X-ray diffractometry, Raman scattering and Scanning Electron Microscopy (SEM). The phase composition of the films depending on treatment conditions was analyzed, showing that, in a slow, prolonged, high-temperature process, the low-temperature binaries react completely and only Kesterite and ZnS are left. In addition, structural investigations by XRD have shown a gradual decrease in crystallite sizes when the temperature level and duration of the high-temperature segment increases, and respectively increase in the strain due to the formation of the phases in non-equilibrium conditions. However, when the speed of dynamic segments in the process decreases, both the crystallite size and strain of the Kesterite non-monotonically decrease. The grain sizes of Kesterite, presented by SEM investigations, have been shown to increase when the temperature and the duration increase, while the speed decreases, except at higher temperatures of near 750 °C. The set of experiments, following a scrupulous analysis of Raman data, were shown to have the potential to elucidate a way to ensure the fine manipulation of the substitutional Cu/Zn defects in the structure of CZTS thin films, considering the dependences of the ratios of Q = I287/I303 and Q′ = I338/(I366 + I374) on the process variables. Qualitatively, it can be concluded that increases in the speed, duration and temperature of RTA lead to increases in the order of the structure, whereas, at higher temperatures of near 750 °C, these factors decrease. Full article
(This article belongs to the Special Issue Electrochemical Deposition: Properties and Applications)
Show Figures

Figure 1

18 pages, 14111 KiB  
Article
Visco-Elastic Honeycomb Structures with Increased Energy Absorption and Shape Recovery Performance Using Buckling Initiators
by Colleen M. Murray, Min Mao, Jungjin Park, John Howard and Norman M. Wereley
Polymers 2023, 15(16), 3350; https://doi.org/10.3390/polym15163350 - 9 Aug 2023
Cited by 10 | Viewed by 2450
Abstract
Energy-absorbing materials have extensive applications in aerospace and automotive applications. Research has shown buckling initiators, or triggers, in energy-absorbing tubular structures increase the energy absorbed by encouraging the side panels to fold when loaded out of plane in compression conditions. Additively manufactured TPE [...] Read more.
Energy-absorbing materials have extensive applications in aerospace and automotive applications. Research has shown buckling initiators, or triggers, in energy-absorbing tubular structures increase the energy absorbed by encouraging the side panels to fold when loaded out of plane in compression conditions. Additively manufactured TPE honeycombs were designed in this study to include these buckling initiators, which introduced a slight decrease in initial weight, as well as initial stress concentrations, while improving crashworthiness characteristics. The samples with buckling initiators (1BI) showed an increase in crush efficiency when directly compared to their no buckling initiator (0BI) counterparts. The 1BI samples maintained an increased crush efficiency regardless of the strain rate used. The samples with 1BI were able to better equilibrate the peak stress with the plateau stress. These honeycomb samples were found to maintain their crush efficiency, even after multiple rounds of compression testing. The quasi-static 0BI samples experienced a 23.4% decrease in the peak stress after multiple rounds of compression testing, while the 1BI samples saw approximately a 23.0% decrease. The 1BI samples averaged a decrease in crush efficiency of 0.5%, while the 0BI samples saw a decrease in crush efficiency of 5%. As the strain rate increased, the crush efficiency for the 1BI samples showed an increase in performance, with a smaller degradation in crush efficiency over multiple uses. Visco-elastic honeycomb with buckling initiators has a higher energy absorption than samples with no buckling initiators when exposed to multiple impact cycles. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

21 pages, 7554 KiB  
Article
Thermal Performance of a Novel Non-Tubular Absorber with Extended Internal Surfaces for Concentrated Solar Power Receivers
by Xinchen Na, Yingxue Yao and Jianjun Du
Energies 2023, 16(13), 5055; https://doi.org/10.3390/en16135055 - 29 Jun 2023
Viewed by 1371
Abstract
A non-tubular prototype cavity receiver absorber with extended internal surfaces (fins) is proposed to enhance heat transfer in Stirling engine-based Concentrated Solar Power systems. There is limited research on the realization of downsized absorbers in terms of their design and manufacturing. The objective [...] Read more.
A non-tubular prototype cavity receiver absorber with extended internal surfaces (fins) is proposed to enhance heat transfer in Stirling engine-based Concentrated Solar Power systems. There is limited research on the realization of downsized absorbers in terms of their design and manufacturing. The objective of the absorber solution proposed in this paper is to address the issue of inadequate comprehension regarding the impacts of the geometric and flow parameters on thermohydraulic efficiency. These impacts are numerically investigated in a 100 mm long heat transfer channel with a 10 mm × 10 mm section. The prototype absorber is fabricated using a wire electrode-discharging manufacturing approach, and is experimentally investigated using the enthalpy method. Numerical results indicate that heat transfer to the working fluid in the novel absorber can reach 482 W at the reasonable cost of 0.391% pressure drop per 100 mm (air flow at 0.0015 kg/s and 5 bar). In the experimental investigation, the prototype realizes a 1113.033 W heat transfer rate at 8 bar and 12 kg/h. This implies that a non-tubular design with extended internal surfaces can increase the internal surface area to enhance heat transfer while downsizing the volume to reduce heat loss. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

Back to TopTop