Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (281)

Search Parameters:
Keywords = tropical and subtropical crops

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5650 KiB  
Article
Boron Supplementation and Phytohormone Application: Effects on Development, Fruit Set, and Yield in Macadamia Cultivar ‘A4’ (Macadamia integrifolia, M. tetraphylla)
by Zhang-Jie Zhou, Zi-Xuan Zhao, Jing-Jing Zhou, Fan Yang and Jin-Zhi Zhang
Plants 2025, 14(16), 2461; https://doi.org/10.3390/plants14162461 - 8 Aug 2025
Viewed by 296
Abstract
Macadamia (Macadamia integrifolia), Macadamia tetraphylla and hybrids, a crop of high economic and nutritional importance, faces challenges with low fruit set rates and severe fruit drop. To address this, we investigated the effects of exogenous plant growth regulators (PGRs) and boron [...] Read more.
Macadamia (Macadamia integrifolia), Macadamia tetraphylla and hybrids, a crop of high economic and nutritional importance, faces challenges with low fruit set rates and severe fruit drop. To address this, we investigated the effects of exogenous plant growth regulators (PGRs) and boron fertilizer on the development, fruit set, and yield of the A4 macadamia variety. The study was conducted in 2024 at the Lujiangba research base (China, Yunnan Province). Five treatments were applied during key growth stages: boron (B), brassinosteroids (BR), N-(2-Chloro-4-pyridyl)-N’-phenylurea (CPPU), 6-benzylaminopurine (6-BA), and gibberellic acid (GA3). Growth stages include flower bud formation, peak flowering, and fruiting. Our findings revealed that B treatment significantly increased pollen viability (95.69% improvement) and raceme length (23.97% increase), while BR enhanced flower count per raceme (26.37% increase) and CPPU improved flower retention (10.53% increase). Additionally, GA3 and 6-BA promoted leaf expansion in new shoots, increasing leaf length by 39.83% and 31.39%, respectively. Notably, B application significantly improved total yield (43.11% increase) and fruit number (39.12% increase), whereas BR maximized nut shell diameter (5.7% increase) and individual nut weight (19.9% increase). Furthermore, CPPU and 6-BA markedly improved initial fruit set rates, while GA3, BR, and B effectively reduced early fruit drop. Physiological analyses indicated that elevated soluble sugars and proteins in flowers correlated with higher initial fruit set, whereas increased endogenous cytokinin and GA3 levels improved fruit retention and reduced drop rates. Based on these findings, we propose an integrated approach to optimize productivity: applying 0.02% B at the floral bud stage, 2 mg/L 6-BA at full bloom, and a combination of 0.02% B and 0.2 mL/L BR during early fruit set. This strategy not only enhances yield but also mitigates fruit drop, offering practical solutions for macadamia production. Full article
(This article belongs to the Special Issue Development of Woody Plants)
Show Figures

Figure 1

28 pages, 5315 KiB  
Article
Integrated Transcriptome and Metabolome Analysis Provides Insights into the Low-Temperature Response in Sweet Potato (Ipomoea batatas L.)
by Zhenlei Liu, Jiaquan Pan, Sitong Liu, Zitong Yang, Huan Zhang, Tao Yu and Shaozhen He
Genes 2025, 16(8), 899; https://doi.org/10.3390/genes16080899 - 28 Jul 2025
Viewed by 416
Abstract
Background/Objectives: Sweet potato is a tropical and subtropical crop and its growth and yield are susceptible to low-temperature stress. However, the molecular mechanisms underlying the low temperature stress of sweetpotato are unknown. Methods: In this work, combined transcriptome and metabolism analysis was employed [...] Read more.
Background/Objectives: Sweet potato is a tropical and subtropical crop and its growth and yield are susceptible to low-temperature stress. However, the molecular mechanisms underlying the low temperature stress of sweetpotato are unknown. Methods: In this work, combined transcriptome and metabolism analysis was employed to investigate the low-temperature responses of two sweet potato cultivars, namely, the low-temperature-resistant cultivar “X33” and the low-temperature-sensitive cultivar “W7”. Results: The differentially expressed metabolites (DEMs) of X33 at different time stages clustered in five profiles, while they clustered in four profiles of W7 with significant differences. Differentially expressed genes (DEGs) in X33 and W7 at different time points clustered in five profiles. More DEGs exhibited continuous or persistent positive responses to low-temperature stress in X33 than in W7. There were 1918 continuously upregulated genes and 6410 persistent upregulated genes in X33, whereas 1781 and 5804 were found in W7, respectively. Core genes involved in Ca2+ signaling, MAPK cascades, the reactive oxygen species (ROS) signaling pathway, and transcription factor families (including bHLH, NAC, and WRKY) may play significant roles in response to low temperature in sweet potato. Thirty-one common differentially expressed metabolites (DEMs) were identified in the two cultivars in response to low temperature. The KEGG analysis of these common DEMs mainly belonged to isoquinoline alkaloid biosynthesis, phosphonate and phosphinate metabolism, flavonoid biosynthesis, cysteine and methionine metabolism, glycine, serine, and threonine metabolism, ABC transporters, and glycerophospholipid metabolism. Five DEMs with identified Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were selected for correlation analysis. KEGG enrichment analysis showed that the carbohydrate metabolism, phenylpropanoid metabolism, and glutathione metabolism pathways were significantly enriched and played vital roles in low-temperature resistance in sweet potato. Conclusions: These findings contribute to a deeper understanding of the molecular mechanisms underlying plant cold tolerance and offer targets for molecular breeding efforts to enhance low-temperature resistance. Full article
Show Figures

Figure 1

19 pages, 1545 KiB  
Review
Emerging Threat of Meloidogyne enterolobii: Pathogenicity Mechanisms and Sustainable Management Strategies in the Context of Global Change
by Mingming Shi, Rui Liu, D. U. Nilunda Madhusanka, Yonggang Liu, Ning Luo, Wei Guo, Jianlong Zhao, Huixia Li and Zhenchuan Mao
Microbiol. Res. 2025, 16(8), 165; https://doi.org/10.3390/microbiolres16080165 - 22 Jul 2025
Viewed by 410
Abstract
Meloidogyne enterolobii, a highly virulent and broad-host-range plant-parasitic nematode, poses an increasing threat to global agricultural production. By inducing the formation of nutrient-rich giant cells in host roots and deploying a diverse array of effector proteins to modulate plant immune responses, this [...] Read more.
Meloidogyne enterolobii, a highly virulent and broad-host-range plant-parasitic nematode, poses an increasing threat to global agricultural production. By inducing the formation of nutrient-rich giant cells in host roots and deploying a diverse array of effector proteins to modulate plant immune responses, this nematode achieves efficient colonization and invasion, resulting in impaired crop growth and significant economic losses. In recent years, global climate warming combined with the rapid development of protected agriculture has broken the traditional geographical limits of tropical and subtropical regions, thereby increasing the risk of M. enterolobii occurrence in temperate and high-latitude areas. Concurrently, conventional chemical control methods are increasingly limited by environmental pollution and the development of resistance, steering research toward green control strategies. This review systematically summarizes the latest research progress of M. enterolobii in terms of ecological diffusion trends, pathogenic mechanisms, and green control, and explored the feasibility of integrating multidisciplinary technologies to construct an efficient and precise control system. The ultimate aim is to provide theoretical support and technical supports for green and sustainable development of global agriculture. Full article
Show Figures

Figure 1

21 pages, 1583 KiB  
Review
Valorization of Agricultural Ashes from Cold and Temperate Regions as Alternative Supplementary Cementitious Materials: A Review
by A. Sadoon, M. T. Bassuoni and A. Ghazy
Clean Technol. 2025, 7(3), 59; https://doi.org/10.3390/cleantechnol7030059 - 11 Jul 2025
Viewed by 467
Abstract
The pursuit of sustainable alternatives to portland cement has become a global imperative within the construction sector, driven by the need to reduce carbon dioxide emissions and energy consumption. Among the promising alternatives, agricultural ashes have garnered attention for their potential as alternative [...] Read more.
The pursuit of sustainable alternatives to portland cement has become a global imperative within the construction sector, driven by the need to reduce carbon dioxide emissions and energy consumption. Among the promising alternatives, agricultural ashes have garnered attention for their potential as alternative supplementary cementitious materials (ASCMs), owing to their inherent pozzolanic properties when appropriately processed. However, the availability and utilization of these ashes have predominantly been concentrated in tropical and subtropical regions, where such biomass is more abundant. This review offers a comprehensive bibliometric analysis to identify and assess agricultural ashes (specifically switchgrass, barley, sunflower, and oat husks) that are cultivated in temperate and cold climates and exhibit potential for SCM application. The analysis aims to bridge the knowledge gap by systematically mapping the existing research landscape and highlighting underexplored resources suitable for cold-region implementation. Key processing parameters, including incineration temperature, retention duration, and post-combustion grinding techniques, are critically examined for their influence on the resulting ash’s physicochemical characteristics and pozzolanic reactivity. In addition, the effect on fresh, hardened, and durability properties was evaluated. Findings reveal that several crops grown in colder regions may produce ashes rich in reactive silica, thereby qualifying them as viable ASCM candidates and bioenergy sources. Notably, the ashes derived from switchgrass, barley, oats, and sunflowers demonstrate significant reactive silica content, reinforcing their potential in sustainable construction practices. Hence, this study underscores the multifaceted benefits of contributing to the decarbonization of the cement industry and circular economy, while addressing environmental challenges associated with biomass waste disposal and uncontrolled open-air combustion. Full article
Show Figures

Figure 1

15 pages, 3793 KiB  
Article
Dynamic Changes in Fatty Acids in Macadamia Fruit During Growth and Development
by Mingqun Cao, Birong Zhang, Minxian Duan, Hanyao Zhang, Suyun Yan, Fan Yang, Wenbin Shi, Xiaomeng Fu, Hongxia Yang, Jinxue Li and Xianyan Zhou
Agronomy 2025, 15(7), 1682; https://doi.org/10.3390/agronomy15071682 - 11 Jul 2025
Viewed by 347
Abstract
Fatty acids tend to undergo dynamic changes during the growth and development of fruits. In this study, we analyzed the variations in fruit morphology and kernel fatty acid fractions and contents at seven post-flowering stages in the fruit of ‘A4’ and ‘OC’, two [...] Read more.
Fatty acids tend to undergo dynamic changes during the growth and development of fruits. In this study, we analyzed the variations in fruit morphology and kernel fatty acid fractions and contents at seven post-flowering stages in the fruit of ‘A4’ and ‘OC’, two main macadamia cultivars in Yunnan, China. The single fruit weight and longitudinal and transverse diameters showed a ‘fast–slow–stable’ growth trend, and the fruit shape index gradually decreased with fruit development. A total of 13 saturated fatty acids, 18 monounsaturated fatty acids, and 10 polyunsaturated fatty acids were detected in macadamia kernels at seven developmental stages. The total fatty acid content in ‘OC’ and ‘A4’ tended to first increase and then decrease. The fatty acid content accounted for 8.81% and 6.33% of the total fatty acids at 50 days after flowering (DAF), and peaked at 95 DAF and 125 DAF (the fatty acid content accounted for 25.61% and 20.69% of the total fatty acids), indicating that these two periods are critical for fatty acid accumulation in the two cultivars. In addition, oleic acid, palmitoleic acid, cis-Vaccenic acid, and hexadecenoic acid were determined as the main fatty acids. This study reveals the dynamic changes in fatty acid composition and content in ‘OC’ and ‘A4’ during fruit development, providing a scientific basis for determining the appropriate harvesting time for macadamia nuts. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

17 pages, 3490 KiB  
Article
Flexible Visible Spectral Sensing for Chilling Injuries in Mango Storage
by Longgang Ma, Zhengzhong Wan, Zhencan Yang, Xunjun Chen, Ruihua Zhang, Maoyuan Yin and Xinqing Xiao
Eng 2025, 6(7), 158; https://doi.org/10.3390/eng6070158 - 10 Jul 2025
Viewed by 454
Abstract
Mango, as an important economic crop in tropical and subtropical regions, suffers from chilling injuries caused by postharvest low-temperature storage, which seriously affect its quality and economic benefits. Traditional detection methods have limitations such as low efficiency and strong destructiveness. This study designs [...] Read more.
Mango, as an important economic crop in tropical and subtropical regions, suffers from chilling injuries caused by postharvest low-temperature storage, which seriously affect its quality and economic benefits. Traditional detection methods have limitations such as low efficiency and strong destructiveness. This study designs and implements a flexible visible light spectral sensing system based on visible light spectral sensing technology and low-cost environmentally friendly flexible circuit technology. The system is structured based on a perception-analysis-warning-processing framework, utilizing laser-induced graphene electroplated copper integrated with laser etching technology for hardware fabrication, and developing corresponding data acquisition and processing functionalities. Taking Yunnan Yumang as the research object, a three-level chilling injury label dataset was established. After Z-Score standardization processing, the prediction accuracy of the SVM (Support Vector Machine) model reached 95.5%. The system has a power consumption of 230 mW at 4.5 V power supply, a battery life of more than 130 days, stable signal transmission, and a monitoring interface integrating multiple functions, which can provide real-time warning and intervention, thus offering an efficient and intelligent solution for chilling injury monitoring in mango cold chain storage. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

21 pages, 831 KiB  
Review
Beyond Single-Pathogen Models: Understanding Mixed Infections Involving Phytoplasmas and Other Plant Pathogens
by Shao-Shuai Yu and Wei Wei
Plants 2025, 14(13), 2049; https://doi.org/10.3390/plants14132049 - 4 Jul 2025
Viewed by 657
Abstract
Phytoplasmas are wall-less, phloem-restricted bacteria responsible for numerous significant plant diseases worldwide. An increasing body of evidence indicates that phytoplasmas can coexist with other pathogens in mixed infections, including various 16Sr group phytoplasmas, ‘Candidatus Liberibacter’ species, viruses, spiroplasmas, fungi, and other difficult-to-culture phloem-limited [...] Read more.
Phytoplasmas are wall-less, phloem-restricted bacteria responsible for numerous significant plant diseases worldwide. An increasing body of evidence indicates that phytoplasmas can coexist with other pathogens in mixed infections, including various 16Sr group phytoplasmas, ‘Candidatus Liberibacter’ species, viruses, spiroplasmas, fungi, and other difficult-to-culture phloem-limited bacteria. These interactions challenge established views regarding the causes, detection, and management of plant diseases. This review consolidates existing knowledge on the diversity and epidemiology of phytoplasma-related mixed infections, with a particular emphasis on documented co-infections across various host plants and regions, especially in tropical and subtropical areas. Mixed infections affect disease severity, symptom expression, vector behavior, and pathogen dissemination, highlighting the limitations of pathogen-specific diagnostic and control strategies. The necessity for tools to detect multiple pathogens, enhanced understanding of pathogen–pathogen and host–pathogen interactions, and comprehensive surveillance systems is emphasized. Ultimately, breeding for resistance must consider the complexities of natural co-infections to ensure effective protection of crops. Addressing the challenges presented by phytoplasma-related mixed infections is crucial for developing resilient and sustainable plant health strategies in the face of increasing ecological and agricultural pressures. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

47 pages, 2485 KiB  
Review
Plant Pathogenic and Endophytic Colletotrichum fructicola
by Latiffah Zakaria
Microorganisms 2025, 13(7), 1465; https://doi.org/10.3390/microorganisms13071465 - 24 Jun 2025
Viewed by 801
Abstract
Colletotrichum fructicola is a member of the gloeosporioides complex and can act as a pathogen, causing anthracnose in various plants and as an endophyte residing in healthy plants. As a plant pathogen, C. fructicola has been frequently reported to cause anthracnose in chili [...] Read more.
Colletotrichum fructicola is a member of the gloeosporioides complex and can act as a pathogen, causing anthracnose in various plants and as an endophyte residing in healthy plants. As a plant pathogen, C. fructicola has been frequently reported to cause anthracnose in chili fruit and tea plants, bitter rot in apples and pears, crown rot in strawberries, and Glomerella leaf spot in apples, which are the most common diseases associated with this pathogen. Over the years, C. fructicola has been reported to infect a wide range of plants in tropical, subtropical, and temperate regions, including various types of fruit crops, ornamental and medicinal plants, tree nuts, peanuts, and weeds. Several reports have also been made regarding endophytic C. fructicola recovered from different plant parts. Endophytic C. fructicola has the ability to switch to a pathogenic state, which may contribute to the infection of host and other susceptible plants. Due to the economic importance of C. fructicola infections, the present review highlighted C. fructicola as a plant pathogen and endophyte, providing a summary of its infections in various plants and endophytic ability to inhabit plant tissues. Several control measures for managing C. fructicola infections have also been provided. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

20 pages, 7485 KiB  
Review
DNA Satellites Impact Begomovirus Diseases in a Virus-Specific Manner
by Vincent N. Fondong
Int. J. Mol. Sci. 2025, 26(12), 5814; https://doi.org/10.3390/ijms26125814 - 17 Jun 2025
Viewed by 593
Abstract
Begomoviruses infect many crops and weeds globally, especially in the tropical and subtropical regions, where there are waves of epidemics. These begomovirus epidemics are frequently associated with three DNA satellites: betasatellites, alphasatellites, and deltasatellites. Except for the origin of replication, these satellites show [...] Read more.
Begomoviruses infect many crops and weeds globally, especially in the tropical and subtropical regions, where there are waves of epidemics. These begomovirus epidemics are frequently associated with three DNA satellites: betasatellites, alphasatellites, and deltasatellites. Except for the origin of replication, these satellites show no sequence identity with the helper begomovirus. Alphasatellites and betasatellites encode the α-Rep and βC1 proteins, respectively, while deltasatellites encode no proteins. α-Rep, which functions like the Rep of the helper begomoviruses, ensures alphasatellite replication autonomy, while betasatellites and deltasatellites depend wholly on the helper virus for replication. The betasatellite βC1 protein is a pathogenicity determinant and suppressor of RNA silencing. The associations between satellites and helper viruses vary, depending on the virus and the host, and the roles of these satellites in disease development are an active area of investigation. This review highlights current information on the role of DNA satellites in begomovirus diseases and examines commonalities and differences between and within these satellites under prevailing conditions. Furthermore, two episomes, SEGS-1 and SEGS-2, associated with cassava mosaic geminiviruses, and their possible status as DNA satellites are discussed. DNA satellites are a major factor in begomovirus infections, which are a major constraint to crop production, especially in tropical and subtropical regions. Thus, areas for future research efforts, as well as implications in the biotechnological management of these viruses, are discussed in this review. Full article
(This article belongs to the Special Issue Molecular Biology of Host and Pathogen Interactions: 3rd Edition)
Show Figures

Figure 1

21 pages, 2964 KiB  
Article
Immune Responses of Mango Callus Infected by Agrobacterium tumefaciens Inhibited Transformation
by Haiyan Shu, Zilhas Ahmed Jewel, Omor Faruk, Luqiong He, Qing Wei, Rulin Zhan and Shenghe Chang
Int. J. Mol. Sci. 2025, 26(11), 5006; https://doi.org/10.3390/ijms26115006 - 22 May 2025
Viewed by 586
Abstract
Mango is a vital fruit crop in tropical and subtropical regions, yet pests and diseases cause 30–70% production losses. Developing disease-resistant cultivars through transgenic methods could mitigate these issues. Agrobacterium-mediated callus transformation is a common genetic engineering approach, but successful transgenic mango [...] Read more.
Mango is a vital fruit crop in tropical and subtropical regions, yet pests and diseases cause 30–70% production losses. Developing disease-resistant cultivars through transgenic methods could mitigate these issues. Agrobacterium-mediated callus transformation is a common genetic engineering approach, but successful transgenic mango plants from callus remain unreported due to severe browning and necrosis post-infection. We hypothesized that Agrobacterium-induced immune responses trigger callus death, hindering transformation. To improve efficiency, we engineered an Agrobacterium strain carrying the type III secretion system (T3SS) and effector gene AvrPto. Compared to controls, infected calluses exhibited elevated reactive oxygen species (ROS), along with up-regulated ROS-related, gallic acid biosynthesis, and defense genes. Calluses infected with T3SS-AvrPto-harboring Agrobacterium showed delayed browning and necrosis versus those infected with the empty vector (NV). The transformation rate with Agrobacterium (T3SS-AvrPto-EGFP) reached 1.6%, while Agrobacterium (NV-EGFP) failed entirely. These findings demonstrate that T3SS and AvrPto enhance mango transformation efficiency, offering a promising strategy for breeding multi-resistant varieties. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 3226 KiB  
Article
Effects of Three Fertilizers on Improving Soil Characteristics and Growth Performance of Mahonia fortunei (Lindl.) Fedde in Rocky Desertification Areas
by Xiuwen Fang, Yue Sun, Xiangxiang Huang, Bo Pan, Haiying Gao and Zhishui Liang
Land 2025, 14(5), 1090; https://doi.org/10.3390/land14051090 - 17 May 2025
Viewed by 449
Abstract
Rocky desertification, a severe form of land degradation in tropical and subtropical regions driven by vegetation loss and soil erosion, poses significant ecological and economic challenges. Field trials in Fengshan County, Guangxi, China, evaluated the efficacy of NPK compound fertilizers, slow-release fertilizers, and [...] Read more.
Rocky desertification, a severe form of land degradation in tropical and subtropical regions driven by vegetation loss and soil erosion, poses significant ecological and economic challenges. Field trials in Fengshan County, Guangxi, China, evaluated the efficacy of NPK compound fertilizers, slow-release fertilizers, and bio-organic fertilizers on soil rehabilitation, microbial diversity, and the growth of Mahonia fortunei, a key species for ecological restoration and understory cash crop cultivation. The results demonstrated the bio-organic fertilizer’s superiority in soil regeneration, increasing organic matter by 30.4% (Bolin), 15.73% (Longlai), and 21.83% (Longlei) compared to NPK compound fertilizers, alongside elevating the total nitrogen (reaching 19.4 g/kg in Bolin) and phosphorus (85.45% higher in Bolin). Bio-organic fertilizer increased enzyme activities by 27–202% and enhanced microbial diversity, notably Proteobacteria and Actinobacteria. Slow-release fertilizers maximized micronutrient availability (e.g., Cu increased by 151.65% in Bolin) and improved plant growth, achieving peak Mahonia fortunei (Lindl.) Fedde height (3.62 cm, increasing 9.04%) and ground diameter (4.5 cm, increasing 18.42%) in Longlei compared to NPK compound fertilizers. Regional variability highlighted the bio-organic fertilizer’s dominance in soil fertility metrics, while slow-release formulations excelled in micronutrient enrichment and plant performance. NPK compound fertilizers exhibited the lowest efficacy, potentially exacerbating soil degradation. This study advocates integrating bio-organic fertilizers for soil regeneration with targeted slow-release applications for crop productivity, particularly in understory cash crop systems. Such a dual approach bridges ecological restoration with economic resilience in karst ecosystems, offering scalable solutions for global rocky desertification mitigation. Full article
Show Figures

Figure 1

16 pages, 15048 KiB  
Article
Comparative Global Metabolome Profile and Transcriptome Sequence Analysis of the Rough and Smooth Peel of the Orah Mandarin (Citrus reticulata)
by Hongming Liu, Chunrui Long, Xiaomeng Fu, Shaohua Wang, Yuqiang Lou, Jianmei Dong, Meichao Dong, Jiamei Mao, Jiandong Yang, Hongxia Yang, Yuxia Du and Xianyan Zhou
Horticulturae 2025, 11(5), 496; https://doi.org/10.3390/horticulturae11050496 - 4 May 2025
Viewed by 509
Abstract
Background: The Orah mandarin is an economically important variety of Citrus reticulata for citrus growers in Yunnan Province, China. Generally, the fruit peel is smooth, an attractive feature for consumer preferences. Recently, rough peels have been observed in several orchards, making the fruit [...] Read more.
Background: The Orah mandarin is an economically important variety of Citrus reticulata for citrus growers in Yunnan Province, China. Generally, the fruit peel is smooth, an attractive feature for consumer preferences. Recently, rough peels have been observed in several orchards, making the fruit aesthetically less desirable. Little is known about the mechanism of rough skin development. Methods: In this study, we used global metabolomics and a comparative transcriptomic approach to characterize the differences between smooth (CK) and rough (CP) Orah mandarin peels. Results: Our results indicate that CP fruits have a significantly larger diameter, peel weight and thickness, total soluble solids, and titratable acid content compared to CK. Metabolomic analysis detected 810 metabolites, of which 192 were differentially accumulated in CP and CK. CP is characterized by higher levels of flavonoids, amino acids and derivatives, terpenoids, and alkaloids. We also report nine compounds detected exclusively in CP, including dambonitol, 3-methyl-L-histidine, deacetylnomilinic acid, obacunoic acid, and 6-O-acetylarbutin. The transcriptome results showed that the expression of genes enriched in flavonoids, lipid, and amino acid metabolism and related pathways were consistent with the metabolome profiles. We also discuss the possible involvement of phytohormones in peel roughening. Conclusions: Overall, we present, for the first time, a detailed comparative metabolome and transcriptome profile in smooth and rough Orah mandarin peels. Our data and discussion highlight the potential mechanisms and provide a theoretical basis for the improvement of rough peel Orah mandarins. Full article
Show Figures

Figure 1

12 pages, 3049 KiB  
Article
Synergistic Effects of Supplemental Lighting and Foliar Phosphorus Application on Flowering in Passion Fruit (Passiflora edulis)
by Dongyu Sun, Caizhu Hu, Yinyan Yang, Huanhuan Wang, Tongbo Yan, Chubin Wu, Zhiqun Hu, Xingyu Lu and Biyan Zhou
Horticulturae 2025, 11(5), 478; https://doi.org/10.3390/horticulturae11050478 - 29 Apr 2025
Viewed by 516
Abstract
Passion fruit (Passiflora edulis), a commercially vital tropical crop, faces flowering instability due to photoperiod-sensitive flowering patterns, particularly under the cloudy, rainy climates of subtropical regions. To mitigate floral suppression during unfavorable light conditions, this study implemented a dual-modality strategy combining [...] Read more.
Passion fruit (Passiflora edulis), a commercially vital tropical crop, faces flowering instability due to photoperiod-sensitive flowering patterns, particularly under the cloudy, rainy climates of subtropical regions. To mitigate floral suppression during unfavorable light conditions, this study implemented a dual-modality strategy combining 16 h daily supplementary lighting (460 nm blue + 630 nm red spectrum) and foliar application of a high-phosphorus-containing nutrient, the Plant-Prod (nitrogen–phosphorus–potassium = 10:52:10) grown in field ‘Qinmi No. 9’. The treatment significantly stimulated lateral branch formation, internode elongation, flower retention, stage IV flower bud development, and enhanced photosynthetic efficiency. Physiological analyses revealed that the treatment increased the net photosynthetic rate (Pn), reduced the intercellular carbon dioxide concentration (Ci), and enhanced stomatal conductance (Gs), indicating the improvement of carbon assimilation. Controlled seedling trials further confirmed these effects, with treated groups exhibiting accelerated lateral branching and stress resilience. This integrated approach, combining optimized supplemental lighting and precision phosphorus fertilization, offers a practical and scalable strategy to stabilize passion fruit yields in climate-variable regions, with immediate potential for commercial orchards and greenhouse production. Full article
Show Figures

Figure 1

20 pages, 2747 KiB  
Article
Potential Distribution of Tribe Erythroneurini in China Based on the R-Optimized MaxEnt Model, with Implications for Management
by Xiaojuan Yuan, Weiwei Ran, Wenming Xu, Yuanqi Zhao, Di Su and Yuehua Song
Insects 2025, 16(5), 450; https://doi.org/10.3390/insects16050450 - 24 Apr 2025
Cited by 1 | Viewed by 708
Abstract
This study examines the distribution dynamics of the tribe Erythroneurini, a group of economically significant leafhoppers in China that pose threats to crops through sap feeding and virus transmission, while also serving as valuable ecological indicators due to their sensitivity to environmental changes. [...] Read more.
This study examines the distribution dynamics of the tribe Erythroneurini, a group of economically significant leafhoppers in China that pose threats to crops through sap feeding and virus transmission, while also serving as valuable ecological indicators due to their sensitivity to environmental changes. Through a systematic evaluation of 12 species distribution models (SDMs), we ultimately selected the Maximum Entropy (MaxEnt) model for predicting species distributions. The R-optimized MaxEnt model incorporated 11 environmental variables and 218 occurrence records to assess habitat suitability under historical, current, and future climate scenarios (SSP1-2.6 and SSP5-8.5). The model was configured with LQP features and a default regularization multiplier value of 1. Results reveal that temperature (BIO6, BIO2, BIO4) and precipitation (BIO12) are the primary drivers of habitat suitability, with tropical and subtropical regions identified as the most favorable. Future projections indicate a complex pattern of habitat contraction and expansion, with a notable northward shift toward higher latitudes under climate change. These findings highlight the profound impact of climate change on Erythroneurini distribution, underscoring the need for proactive management. Implementing long-term monitoring and targeted control in vulnerable regions mitigates ecological and agricultural risks, supporting sustainable pest management and fostering the integration of ecological conservation with agricultural development. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

16 pages, 2696 KiB  
Article
Agroforestry: A Sustainable Land-Use Practice for Enhancing Productivity and Carbon Sequestration in Madhupur Sal Forest, Bangladesh
by Mst. Sohela Afroz, S. M. Kamran Ashraf, Md. Tanbheer Rana, Saleha Khatun Ripta, Sumaiya Binte Rahman Asha, S. M. Sanjida Tasnim Urmi, Kimihiko Hyakumura and Kazi Kamrul Islam
Sustainability 2025, 17(8), 3697; https://doi.org/10.3390/su17083697 - 19 Apr 2025
Viewed by 1776
Abstract
This paper explores the role of agroforestry in sequestering atmospheric carbon in the tropics and subtropics, specifically in the Madhupur Sal forest of Bangladesh. Agroforestry, combining trees with crops on agricultural lands, is recognized for its potential to act as a carbon sink [...] Read more.
This paper explores the role of agroforestry in sequestering atmospheric carbon in the tropics and subtropics, specifically in the Madhupur Sal forest of Bangladesh. Agroforestry, combining trees with crops on agricultural lands, is recognized for its potential to act as a carbon sink and enhance productivity. The study assesses various agroforestry practices, including acacia–pineapple–turmeric–papaya, acacia–pineapple–ginger–banana, and sal–pineapple–aroid combinations. This study innovatively assessed both the carbon sequestration and economic viability of agroforestry in the Madhupur Sal forest, presenting a sustainable land-use model that balances environmental benefits and farm profitability. The research reveals improved farm productivity in these agroforestry systems, with different tree species sequestering varying amounts of carbon. Acacia species, ranging from 12 to 25 ft in height, sequestered an average of 23.35 lbs/year, while sal species (Shorea robusta), with trees 45 to 61 ft tall, sequestered 49.80 lbs/year on average. Factors such as tree height, diameter at breast height (DBH), number of leaves, and branches influence carbon sequestration. The paper suggests that the carbon sequestration (CS) potential of agroforestry results in greenhouse gas emission reduction in Bangladesh. By emphasizing the profitability of these practices alongside carbon sequestration, the study encourages the adoption of agroforestry as a sustainable and economically viable strategy. Full article
Show Figures

Figure 1

Back to TopTop