Plant Pathogenic and Endophytic Colletotrichum fructicola
Abstract
1. Introduction
2. Plant Pathogenic Colletotrichum fructicola
3. Common Fruit Crops Infected by Colletotrichum fructicola
Other Host Plants Infected by Colletotrichum fructicola
4. Infection and Colonization by Colletotrichum fructicola
5. Molecular Pathogenesis of Colletotrichum fructicola
5.1. Pathogenesis of Colletotrichum fructicola
5.2. Host Defense
6. Cross-Pathogenicity
7. Endophytic Colletotrichum fructicola
Host Plants | Plant Parts | Countries | References |
---|---|---|---|
Citrus | |||
Citrus reticulata ‘Nanfengmiju’ | Leaves | Jiangxi Province, China | [70] |
Fortunella margarita | Branches | Guangxi Province, China | [70] |
Grasses | |||
Dwarf napier (Pennisetum purpureum) and lemon grass (Cymbopogon citratus) | Leaves and sheaths | Muang District, Chiang Rai, Thailand | [258] |
Lawn grass (Axonopus compressus) | Leaves | Penang, Malaysia | [259] |
Coffee (Coffea arabica) | Berries | Chiang Mai, Thailand | [18] |
Cacao (Theobroma cacao) | Leaves | Panama | [19] |
Mango (Mangifera indica) | Young and mature leaves, stem fragments (with cork layer), and mature inflorescences | Pernambuco State, Brazil | [260] |
Tea (Camellia sinensis) | Leaves | Fujian, Guizhou, Henan, Jiangxi, Sichuan, Yunnan, and Zhejiang, China | [6] |
Dendrobium spp. | Leaves and roots | Mae Fah Luang District, Chiang Rai, Thailand | [261] |
Licania tomentosa | Leaves | Brazil | [262] |
Java plum (Syzygium cumini) | Fruits and seeds | Malang, East Java, Indonesia | [263] |
Tabernaemontana heyneana (medicinal plant) | Leaves | Southern Western Ghats, India | [264] |
Magnolia candolli and M. garrettii | Leaves | M. candolli: Yunnan Province, China M. garrettii: Chiang Mai Province, Thailand | [265] |
Aquatic plants | Leaves | Yunnan, Guizhou, and Sichuan Provinces, China | [266] |
Chinese boxthorn (Lycium chinense) | Leaves and fruits | South Chungcheong Province, Republic of Korea | [267] |
8. Fine Line Between Pathogenesis and Endophytism
Relatedness Between Endophytic and Pathogenic Lifestyles
9. Bioactivity of Colletotrichum fructicola
10. Management of Plant Diseases Caused by Colletotrichum fructicola
10.1. Chemical Control
10.2. Essential Oils
10.3. Biological and Other Control Methods
Diseases/Crops | Results | References | |
---|---|---|---|
Biocontrol Methods | |||
Lysobacter enzymogenes OH11
| Pear anthracnose | Potential biocontrol agent against C. fructicola causing pear anthracnose and could help reduce the use of fungicides | [326] |
Bacillus tequilensis strain YYC 155
| Camellia oleifera leaf anthracnose | Potential biocontrol agent against C. fructicola causing leaf anthracnose of Camellia oleifera | [327] |
Neutral electrolyzed water (pH 6.5–7.5): Applied through an overhead irrigation system | Strawberry anthracnose | Effective to control strawberry anthracnose | [323] |
Hot water and chitosan Hot water dip at 49 °C for 20 min combined with 1% and 2% chitosan | Papaya anthracnose | Possibly used to control papaya anthracnose during postharvest storage without exerting negative effects on fruit physicochemical quality | [324] |
Natamycin
| Apple postharvest rot | Natamycin has the potential to be used as a biopreservative against C. fructicola infection in apples | [325] |
11. Conclusions and Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cannon, P.F.; Damm, U.; Johnston, P.R.; Weir, B.S. Colletotrichum-current status and future directions. Stud. Mycol. 2012, 73, 181–213. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef]
- Prusky, D.; Alkan, N.; Mengiste, T.; Fluhr, R. Quiescent and necrotrophic lifestyle choice during postharvest disease development. Annu. Rev. Phytopathol. 2013, 51, 155–176. [Google Scholar] [CrossRef]
- Hacquard, T.; Kracher, B.; Hiruma, K.; Munch, P.C.; Garrido-Oter, G.; Thon, M.R.; Weimann, A.; Damm, U.; Dallery, J.F.; Hainaut, M.; et al. Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. Nat. Commun. 2016, 7, e11362. [Google Scholar] [CrossRef] [PubMed]
- Dini-Andreote, F. Endophytes: The second layer of plant defense. Trends Plant Sci. 2020, 25, 319–322. [Google Scholar] [CrossRef]
- Liu, F.; Weir, B.S.; Damm, U.; Crous, P.W.; Wang, Y.; Liu, B.; Wang, M.; Zhang, M.; Cai, L. Unravelling Colletotrichum species associated with Camellia: Employing ApMat and GS loci to resolve species in the C. gloeosporioides complex. Pers. Mol. Phylogeny Evol. Fungi 2015, 35, 63–86. [Google Scholar] [CrossRef] [PubMed]
- Weir, B.S.; Johnston, P.R.; Damm, U. The Colletotrichum gloeosporioides species complex. Stud. Mycol. 2012, 73, 115–180. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, R.S.; Hyde, K.D.; Damm, U.; Cai, L.; Liu, M.; Li, X.H.; Zhang, W.; Zhao, W.S.; Yan, J.Y. Notes on currently accepted species of Colletotrichum. Mycosphere 2016, 7, 1192–1260. [Google Scholar] [CrossRef]
- Talhinhas, P.; Baroncelli, R. Colletotrichum species and complexes: Geographic distribution, host range and conservation status. Fungal Divers. 2021, 110, 109–198. [Google Scholar] [CrossRef]
- Marin-Felix, Y.; Groenewald, J.Z.; Cai, L.; Chen, Q.; Marincowitz, S.; Barnes, I.; Bensch, K.; Braun, U.; Camporesi, E.; Damm, U.; et al. Genera of phytopathogenic fungi: GOPHY 1. Stud. Mycol. 2017, 86, 99–216. [Google Scholar] [CrossRef]
- Damm, U.; Sato, T.; Alizadeh, A.; Groenewald, J.Z.; Crous, P.W. The Colletotrichum dracaenophilum, C. magnum and C. orchidearum species complexes. Stud. Mycol. 2019, 92, 1–46. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, R.S.; Hyde, K.D.; Chen, Y.J.; Papp, V.; Palla, B.; Papp, D.; Bhunjun, C.S.; Hurdeal, V.G.; Senwanna, C.; Manawasinghe, I.S.; et al. One stop shop IV: Taxonomic update with molecular phylogeny for important phytopathogenic genera: 76–100. Fungal Divers. 2020, 103, 87–218. [Google Scholar] [CrossRef]
- Liu, F.; Ma, Z.Y.; Hou, L.W.; Diao, Y.Z.; Wu, W.P.; Damm, U.; Song, S.; Cai, L. Updating species diversity of Colletotrichum, with a phylogenomic overview. Stud. Mycol. 2022, 101, 1–56. [Google Scholar] [CrossRef] [PubMed]
- Doyle, V.P.; Oudemans, P.V.; Rehner, S.A.; Litt, A. Habitat and host indicate lineage identity in Colletotrichum gloeosporioides s. l. from wild and agricultural landscapes in North America. PLoS ONE 2013, 8, e62394. [Google Scholar] [CrossRef]
- Sharma, G.; Kumar, N.; Weir, B.S.; Hyde, K.D.; Shenoy, B.D. The ApMat marker can resolve Colletotrichum species: A case study with Mangifera indica. Fungal Divers. 2013, 61, 117–138. [Google Scholar] [CrossRef]
- Vieira, W.A.S.; Lima, W.G.; Nascimento, E.S.; Michereff, S.J.; Câmara, M.P.S.; Doyle, V.P. The impact of phenotypic and molecular data on the inference of Colletotrichum diversity associated with Musa. Mycologia 2017, 109, 912–934. [Google Scholar] [CrossRef]
- dos Santos Vieira, W.A.; Bezerra, P.A.; da Silva, A.C.; Veloso, J.S.; Câmara, M.P.S.; Doyle, V.P. Optimal markers for the identification of Colletotrichum species. Mol. Phylogenet. Evol. 2020, 143, 106694. [Google Scholar] [CrossRef]
- Prihastuti, H.; Cai, L.; Chen, H.; McKenzie, E.H.C.; Hyde, K.D. Characterization of Colletotrichum species associated with coffee berries in northern Thailand. Fungal Divers. 2009, 39, 89–109. [Google Scholar]
- Rojas, E.I.; Rehner, S.A.; Samuels, G.J.; Van Bael, S.A.; Herre, E.A.; Cannon, P.; Chen, R.; Pang, J.; Wang, R.; Zhang, Y.; et al. Colletotrichum gloeosporioides s.l. associated with Theobroma cacao and other plants in Panama: Multilocus phylogenies distinguish host-associated pathogens from asymptomatic endophytes. Mycologia 2010, 102, 1318–1338. [Google Scholar] [CrossRef]
- Agrios, G.N. Plant Pathology; Elsevier Academic Press: Burlington, MA, USA, 2005. [Google Scholar]
- Downer, A.J.; Swain, S.V.; Crump, A. UC IPM Pest Notes: Anthracnose (No. 7420); University of California Agriculture and Natural Resources: Davis, CA, USA, 2020; p. 16. [Google Scholar]
- Nicholson, R.L.; Moraes, W.B.C. Survival of Colletotrichum graminicola: Importance of the spore matrix. Phytopathology 1980, 70, 255–261. [Google Scholar] [CrossRef]
- Chung, P.C.; Wu, H.Y.; Chen, Y.C.; Hung, T.H.; Chung, C.L. Development of a nested PCR assay for detecting Colletotrichum siamense and Colletotrichum fructicola on symptomless strawberry plants. PLoS ONE 2022, 17, e0270687. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Sun, X.; Dong, W.; Ma, L.; Li, H. Detection and quantification of anthracnose pathogen Colletotrichum fructicola in cultivated tea-oil Camellia species from southern China using a DNA-based qPCR assay. Plant Dis. 2023, 107, 363–371. [Google Scholar] [CrossRef] [PubMed]
- McHenry, D.J.; Aćimović, S.G. New species-specific real-time PCR assays for Colletotrichum species causing bitter rot of apple. Microorganisms 2024, 12, 878. [Google Scholar] [CrossRef]
- Desprez-Loustau, M.L.; Courtecuisse, R.; Robin, C.; Husson, C.; Moreau, P.A.; Blancard, D.; Selosse, M.A.; Lung-Escarmant, B.; Piou, D.; Sache, I. Species diversity and drivers of spread of alien fungi (sensu lato) in Europe with a particular focus on France. Biol. Invasions 2010, 12, 157–172. [Google Scholar] [CrossRef]
- Liebhold, A.M.; Brockerhoff, E.G.; Garrett, L.J.; Parke, J.L.; Britton, K.O. Live plant imports: The major pathway for forest insect and pathogen invasions of the US. Front. Ecol. Environ. 2012, 10, 135–143. [Google Scholar] [CrossRef]
- Fisher, M.C.; Henk, D.A.; Briggs, C.J.; Brownstein, J.S.; Madoff, L.C.; McCraw, S.L.; Gurr, S.J. Emerging fungal threats to animal, plant and ecosystem health. Nature 2012, 484, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Gladieux, P.; Feurtey, A.; Hood, M.E.; Snirc, A.; Clavel, J.; Dutech, C.; Roy, M.; Giraud, T. The population biology of fungal invasions. In Invasion Genetics: The Baker and Stebbins Legacy; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 81–100. [Google Scholar]
- Hilário, S.; Gonçalves, M.F. Mechanisms underlying the pathogenic and endophytic lifestyles in Diaporthe: An omics-based approach. Horticulturae 2023, 9, 423. [Google Scholar] [CrossRef]
- EFSA Panel on Plant Health (PLH); Bragard, C.; Dehnen-Schmutz, K.; Di Serio, F.; Gonthier, P.; Jacques, M.A.; Jaques Miret, J.A.; Justesen, A.F.; MacLeod, A.; Magnusson, C.S.; et al. Pest categorisation of Colletotrichum fructicola. EFSA J. 2021, 19, e06803. [Google Scholar] [PubMed]
- Burgess, T.I.; Crous, C.J.; Slippers, B.; Hantula, J.; Wingfield, M.J. Tree invasions and biosecurity: Eco-evolutionary dynamics of hitchhiking fungi. AoB Plants 2016, 8, plw076. [Google Scholar] [CrossRef]
- Jeffries, P.; Dodd, J.C.; Jeger, M.J.; Plumbley, R.A. The biology and control of Colletotrichum species on tropical fruit crops. Plant Pathol. 1990, 39, 343–366. [Google Scholar] [CrossRef]
- Velho, A.C.; Stadnik, M.J.; Wallhead, M. Unraveling Colletotrichum species associated with Glomerella leaf spot of apple. Trop. Plant Pathol. 2019, 44, 197–204. [Google Scholar] [CrossRef]
- Smith, C.; Oten, K.; Anthracnose Diseases of Trees. NC Extension. 2022. Available online: https://content.ces.ncsu.edu/anthracnose#section_heading_17027 (accessed on 23 May 2025).
- Downer, A.J.; Swain, S.S. Pest Notes: Anthracnose UC ANR Publication 7420. 2020. Available online: https://ipm.ucanr.edu/home-and-landscape/anthracnose/pest-notes/#gsc.tab=0 (accessed on 23 May 2025).
- Velho, A.C.; Alaniz, S.; Casanova, L.; Mondino, P.; Stadnik, M.J. New insights into the characterization of Colletotrichum species associated with apple diseases in southern Brazil and Uruguay. Fungal Biol. 2015, 119, 229–244. [Google Scholar] [CrossRef] [PubMed]
- Rockenbach, M.F.; Velho, A.C.; Gonçalves, A.E.; Mondino, P.E.; Alaniz, S.M.; Stadnik, M.J. Genetic structure of Colletotrichum fructicola associated to apple bitter rot and Glomerella leaf spot in southern Brazil and Uruguay. Phytopathology 2016, 106, 774–781. [Google Scholar] [CrossRef]
- Casanova, L.; Hernández, L.; Martínez, E.; Velho, A.C.; Rockenbach, M.F.; Stadnik, M.J.; Alaniz, S.; Mondino, P. First report of Glomerella leaf spot of apple caused by Colletotrichum fructicola in Uruguay. Plant Dis. 2017, 101, 834. [Google Scholar] [CrossRef]
- Denardi, F.; Berton, O.; Spengler, M.M. Resistência genética à podridão amarga em maçãs, determinadas pela taxa de desenvolvimento da doença em frutos com e sem. Rev. Bras. Frutic. 2003, 25, 494–497. [Google Scholar] [CrossRef]
- Nodet, P.; Chalopin, M.; Crété, X.; Baroncelli, R.; Le Floch, G. First report of Colletotrichum fructicola causing apple bitter rot in Europe. Plant Dis. 2019, 103, 1767. [Google Scholar] [CrossRef]
- Sutton, B.C. The genus Glomerella and its anamorph Colletotrichum. In Colletotrichum: Biology, Pathology and Control; Bailey, J.A., Jeger, M.J., Eds.; CAB International: Wallingford, UK, 1992; pp. 1–26. [Google Scholar]
- Alaniz, S.; Hernández, L.; Mondino, P. Colletotrichum fructicola is the dominant and one of the most aggressive species causing bitter rot of apple in Uruguay. Trop. Plant Pathol. 2015, 40, 265–274. [Google Scholar] [CrossRef]
- Kim, C.; Hassan, O.; Lee, D.; Chang, T. First report of anthracnose of apple caused by Colletotrichum fructicola in Korea. Plant Dis. 2018, 102, 2653. [Google Scholar] [CrossRef]
- Kim, C.H.; Hassan, O.; Chang, T. Diversity, pathogenicity, and fungicide sensitivity of Colletotrichum species associated with apple anthracnose in South Korea. Plant Dis. 2020, 104, 2866–2874. [Google Scholar] [CrossRef]
- Wenneker, M.; Pham, K.T.K.; Kerkhof, E.; Harteveld, D.O. First report of preharvest fruit rot of ‘Pink Lady’apples caused by Colletotrichum fructicola in Italy. Plant Dis. 2021, 105, 1561. [Google Scholar] [CrossRef]
- Chen, Y.; Fu, D.; Wang, W.; Gleason, M.L.; Zhang, R.; Liang, X.; Sun, G. Diversity of Colletotrichum species causing apple bitter rot and Glomerella leaf spot in China. J. Fungi 2022, 8, 740. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.D.; Wang, W.; Qin, R.F.; Zhang, R.; Sunb, G.Y.; Gleason, M.L. Colletotrichum fructicola, first record of bitter rot of apple in China. Mycotaxon 2014, 126, 23–30. [Google Scholar] [CrossRef]
- Munir, M.; Amsden, B.; Dixon, E.; Vaillancourt, L.; Gauthier, N.W. Characterization of Colletotrichum species causing bitter rot of apple in Kentucky orchards. Plant Dis. 2016, 100, 2194–2203. [Google Scholar] [CrossRef]
- Yokosawa, S.; Eguchi, N.; Kondo, K.I.; Sato, T. Phylogenetic relationship and fungicide sensitivity of members of the Colletotrichum gloeosporioides species complex from apple. J. Gen. Plant Pathol. 2017, 83, 291–298. [Google Scholar] [CrossRef]
- Oo, M.M.; Yoon, H.Y.; Jang, H.A.; Oh, S.K. Identification and characterization of Colletotrichum species associated with bitter rot disease of apple in South Korea. Plant Patho. J. 2018, 34, 480. [Google Scholar] [CrossRef]
- Park, M.S.; Kim, B.R.; Park, I.H.; Hahm, S.S. First report of two Colletotrichum species associated with bitter rot on apple fruit in Korea. C. fructicola and C. siamense. Mycobiology 2018, 46, 154–158. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.T.; Jeon, Y. Research to fungicide sensitivity of Colletotrichum spp. isolated from apple fruits in Cheongsong, Korea. Res. Plant Dis. 2023, 29, 145–157. [Google Scholar] [CrossRef]
- Chowdappa, P.; Reddy, G.S.; Kumar, A.; Rao, B.M.; Rawal, R.D. Morphological and molecular characterization of Colletotrichum species causing anthracnose of grape in India. Asian Australas. J. Plant Sci. Biotechnol. 2009, 3, 71–77. [Google Scholar]
- Sawant, I.S.; Narkar, S.P.; Shetty, D.S.; Upadhyay, A.; Sawant, S.D. Emergence of Colletotrichum gloeosporioides sensu lato as the dominant pathogen of anthracnose disease of grapes in India as evidenced by cultural, morphological and molecular data. Australas. Plant Pathol. 2012, 41, 493–504. [Google Scholar] [CrossRef]
- Wilcox, W.F.; Gubler, W.D.; Uyemoto, J.K. Compendium of Grape Diseases, Disorders, and Pests, 2nd ed.; The American Phytopathological Society: St. Paul, MN, USA, 2015; p. 232. [Google Scholar]
- Ye, B.; Zhang, J.; Chen, X.; Xiao, W.; Wu, J.; Yu, H.; Zhang, C. Genetic Diversity of Colletotrichum spp. causing grape anthracnose in Zhejiang, China. Agronomy 2023, 13, 952. [Google Scholar] [CrossRef]
- Daykin, M.E.; Milholland, R.D. Ripe rot of Muscadine grape caused by Colletotrichum gloeosporioides and its control. Phytopathology 1984, 74, 710–714. [Google Scholar] [CrossRef]
- Echeverrigaray, S.; Scariot, F.J.; Fontanella, G.; Favaron, F.; Sella, L.; Santos, M.C.; Schwambach, J.; Pedrotti, C.; Delamare, A.P.L. Colletotrichum species causing grape ripe rot disease in Vitis labrusca and V. vinifera varieties in the highlands of southern Brazil. Plant Pathol. 2020, 69, 1504–1512. [Google Scholar] [CrossRef]
- Peng, L.J.; Sun, T.; Yang, Y.L.; Cai, L.; Hyde, K.D.; Bahkali, A.H.; Liu, Z.Y. Colletotrichum species on grape in Guizhou and Yunnan provinces, China. Mycoscience 2012, 54, 29–41. [Google Scholar] [CrossRef]
- Guginski-Piva, C.A.; Bogo, A.; Gomes, B.R.; Menon, J.K.; Nodari, R.O.; Welter, L.J. Morphological and molecular characterization of Colletotrichum nymphaeae and C. fructicola associated with anthracnose symptoms of grape in Santa Catarina State, southern Brazil. J. Plant Dis. Prot. 2018, 125, 405–413. [Google Scholar] [CrossRef]
- Lim, Y.S.; Hassan, O.; Chang, T. First report of anthracnose of Shine muscat caused by Colletotrichum fructicola in Korea. Mycobiology 2020, 48, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Yokosawa, S.; Eguchi, N.; Sato, T. Characterization of the Colletotrichum gloeosporioides species complex causing grape ripe rot in Nagano Prefecture, Japan. J. Gen. Plant Path. 2020, 86, 163–172. [Google Scholar] [CrossRef]
- Fu, M.; Crous, P.W.; Bai, Q.; Zhang, P.F.; Xiang, J.; Guo, Y.S.; Zhao, F.F.; Yang, M.M.; Hong, N.; Xu, W.X.; et al. Colletotrichum species associated with anthracnose of Pyrus spp. in China. Pers. Mol. Phylogeny Evol. Fungi 2019, 42, 1–35. [Google Scholar] [CrossRef]
- Jiang, J.; Zhai, H.; Li, H.; Wang, Z.; Chen, Y.; Hong, N.; Wang, G.; Chofong, G.N.; Xu, W. Identification and characterization of Colletotrichum fructicola causing black spots on young fruits related to bitter rot of pear (Pyrus bretschneideri Rehd.) in China. Crop Prot. 2014, 58, 41–48. [Google Scholar] [CrossRef]
- Choi, E.D.; Park, S.Y. First report of anthracnose caused by Colletotrichum fructicola on hybrid pear fruit in Korea. Plant Dis. 2021, 105, 3291. [Google Scholar] [CrossRef]
- Li, H.N.; Jiang, J.J.; Hong, N.; Wang, G.P.; Xu, W.X. First report of Colletotrichum fructicola causing bitter rot of pear (Pyrus bretschneideri) in China. Plant Dis. 2013, 97, 1000. [Google Scholar] [CrossRef]
- Zhang, P.F.; Zhai, L.F.; Zhang, X.K.; Huang, X.Z.; Hong, N.; Xu, W.; Wang, G. Characterization of Colletotrichum fructicola, a new causal agent of leaf black spot disease of sandy pear (Pyrus pyrifolia). Eur. J. Plant Pathol. 2015, 143, 651–662. [Google Scholar] [CrossRef]
- Peng, L.; Yang, Y.; Hyde, K.D.; Bahkali, A.H.; Liu, Z. Colletotrichum species on Citrus leaves in Guizhou and Yunnan provinces, China. Cryptogam. Mycol. 2012, 33, 267–283. [Google Scholar]
- Huang, F.; Chen, G.Q.; Hou, X.; Fu, Y.S.; Cai, L.; Hyde, K.D.; Li, H.Y. Colletotrichum species associated with cultivated citrus in China. Fungal Divers. 2013, 61, 61–74. [Google Scholar] [CrossRef]
- Hu, W.L.; Ma, Y.Z.; Chen, J.Z. First report of Citrus sinensis anthracnose caused by Colletotrichum fructicola in China. Plant Dis. 2019, 103, 1018. [Google Scholar] [CrossRef]
- Uysal, A.; Kurt, Ş.; Guarnaccia, V. Distribution and characterization of Colletotrichum species associated with citrus anthracnose in eastern Mediterranean region of Turkey. Eur. J. Plant Pathol. 2022, 163, 125–141. [Google Scholar] [CrossRef]
- Taheri, H.; Javan-Nikkhah, M.; Elahinia, S.A.; Khodaparast, S.A.; Golmohammadi, M. Species of Colletotrichum associated with citrus trees in Iran. Mycol. Iran. 2016, 3, 1–14. [Google Scholar]
- Ben Hadj Daoud, H.; Ben Salem, I.; Sánchez, J.; Gallego, E.; Boughalleb-M’Hamdi, N. Occurrence of Colletotrichum fruticola along with C. gloeosporioides in causing anthracnose disease on Citrus sinensis in Tunisia. Indian Phytopathol. 2019, 72, 409–419. [Google Scholar] [CrossRef]
- Wang, W.; de Silva, D.D.; Moslemi, A.; Edwards, J.; Ades, P.K.; Crous, P.W.; Taylor, P.W. Colletotrichum species causing anthracnose of citrus in Australia. J. Fungi 2021, 7, 47. [Google Scholar] [CrossRef]
- Wang, F.; Ma, Y.; Gao, X.Y.; Zhang, Z.H. Study on the identification techniques for determining strawberry cultivars resistance to anthracnose. J. Fruit. Sci. 2008, 25, 542–547. [Google Scholar]
- Zhang, L.; Song, L.; Xu, X.; Zou, X.; Duan, K.; Gao, Q. Characterization and fungicide sensitivity of Colletotrichum species causing strawberry anthracnose in eastern China. Plant Dis. 2020, 104, 1960–1968. [Google Scholar] [CrossRef]
- Jian, Y.; Li, Y.; Tang, G.; Zheng, X.; Khaskheli, M.I.; Gong, G. Identification of Colletotrichum species associated with anthracnose disease of strawberry in Sichuan Province, China. Plant Dis. 2021, 105, 3025–3036. [Google Scholar] [CrossRef]
- Gan, P.; Nakata, N.; Suzuki, T.; Shirasu, K. Markers to differentiate species of anthracnose fungi identify Colletotrichum fructicola as the predominant virulent species in strawberry plants in Chiba Prefecture of Japan. J. Gen. Plant Pathol. 2017, 83, 14–22. [Google Scholar] [CrossRef]
- Li, Y. Anthracnose of Strawberry. 2023. The Connecticut Agricultural Experiment Station. Available online: http://portal.ct.gov/caes (accessed on 20 January 2025).
- Zhang, Y.; Yu, H.; Hu, M.; Wu, J.; Zhang, C. Fungal pathogens associated with strawberry crown rot disease in China. J. Fungi 2022, 8, 1161. [Google Scholar] [CrossRef]
- Oliveira, M.S.; Wang, N.Y.; Peres, N.A. Multilocus phylogenetic analyses of Colletotrichum gloeosporioides species complex causing crown rot on strawberry in Florida. Phytopathology 2022, 112, 898–906. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, R.S.; Huang, J.K.; Jin, B.C.; Yan, J.Y.; Li, X.H.; Hyde, K.D.; Bahkali, A.H.; Yin, S.L.; Zhang, G.Z. An account of Colletotrichum species associated with strawberry anthracnose in China based on morphology and molecular data. Mycosphere 2016, 7, 1147–1191. [Google Scholar] [CrossRef]
- Han, Y.C.; Zeng, X.G.; Xiang, F.Y.; Ren, L.; Chen, F.Y.; Gu, Y.C. Distribution and characteristics of Colletotrichum spp. associated with anthracnose of strawberry in Hubei, China. Plant Dis. 2016, 100, 996–1006. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Li, X.; Gao, Y.; Li, B.; Mu, W.; Liu, F. Characterization and fungicide sensitivity of Colletotrichum spp. from different hosts in Shandong, China. Plant Dis. 2019, 103, 34–43. [Google Scholar] [CrossRef]
- Chen, X.Y.; Dai, D.J.; Zhao, S.F.; Shen, Y.; Wang, H.D.; Zhang, C.Q. Genetic diversity of Colletotrichum spp. causing strawberry anthracnose in Zhejiang, China. Plant Dis. 2020, 104, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Chung, P.C.; Wu, H.Y.; Wang, Y.W.; Ariyawansa, H.A.; Hu, H.P.; Hung, T.H.; Tzean, S.S.; Chung, C.L. Diversity and pathogenicity of Colletotrichum species causing strawberry anthracnose in Taiwan and description of a new species, Colletotrichum miaoliense sp. nov. Sci. Rep. 2020, 10, 14664. [Google Scholar] [CrossRef]
- Hu, S.; Zhang, Y.; Yu, H.; Zhou, J.; Hu, M.; Liu, A.; Wu, J.; Wang, H.; Zhang, C. Colletotrichum spp. diversity between leaf anthracnose and crown rot from the same strawberry plant. Front. Microbiol. 2022, 13, 860694. [Google Scholar] [CrossRef]
- Han, S.; Xu, X.; Jiang, Y.; Zheng, Z.; Yuan, H.; Li, S.; Liu, Y.; Lin, T.; Qiao, T.; Yang, C.; et al. Colletotrichum fructicola, causal agent of shot-hole symptoms on leaves of Prunus sibirica in China. Plant Dis. 2023, 107, 2530. [Google Scholar] [CrossRef]
- Saini, T.J.; Gupta, S.G.; Anandalakshmi, R. First report of papaya anthracnose caused by Colletotrichum fructicola in India. New Dis. Rep. 2016, 34, 27. [Google Scholar] [CrossRef]
- Marquez-Zequera, I.; Cruz-Lachica, I.; Ley-Lopez, N.; Carrillo-Facio, J.A.; Osuna-Garcia, L.A.; Garcia-Estrada, R.S. First report of Carica papaya fruit anthracnose caused by Colletotrichum fructicola in Mexico. Plant Dis. 2018, 102, 2649. [Google Scholar] [CrossRef]
- dos Santos Vieira, W.A.; Veloso, J.S.; da Silva, A.C.; dos Santos Nunes, A.; Doyle, V.P.; Castlebury, L.A.; Câmara, M.P.S. Elucidating the Colletotrichum spp. diversity responsible for papaya anthracnose in Brazil. Fungal Biol. 2022, 126, 623. [Google Scholar]
- Lima, N.B.; de, A. Batista, M.V.; Morais, M.A., Jr.; Barbosa, M.A.G.; Michereff, S.J.; Hyde, K.D.; Câmara, M.P.S. Five Colletotrichum species are responsible for mango anthracnose in northeastern Brazil. Fungal Divers. 2013, 61, 75–88. [Google Scholar] [CrossRef]
- Mo, J.; Zhao, G.; Li, Q.; Soalngi, G.S.; Tang, L.; Huang, S.; Guo, T.; Hsiang, T. Identification and characterization of Colletotrichum species associated with mango anthracnose in Guangxi, China. Plant Dis. 2018, 102, 283–1289. [Google Scholar] [CrossRef]
- Joa, J.H.; Lim, C.K.; Choi, I.Y.; Park, M.J.; Shin, H.D. First report of Colletotrichum fructicola causing anthracnose on mango in Korea. Plant Dis. 2016, 100, 1793. [Google Scholar] [CrossRef]
- Tovar-Pedraza, J.M.; Mora-Aguilera, J.A.; Nava-Diaz, C.; Lima, N.B.; Michereff, S.J.; Sandoval-Islas, J.S.; Camara, M.P.S.; Téliz-Ortiz, D.; Leyva-Mir, S.G. Distribution and pathogenicity of Colletotrichum species associated with mango anthracnose in Mexico. Plant Dis. 2020, 104, 137–146. [Google Scholar] [CrossRef]
- Dela Cueva, F.M.; Laurel, N.R.; Dalisay, T.U.; Sison, M.L.J. Identification and characterisation of Colletotrichum fructicola, C. tropicale and C. theobromicola causing mango anthracnose in the Philippines. Arch. Phytopathol. Plant Prot. 2021, 54, 1989–2006. [Google Scholar] [CrossRef]
- Ismail, A.M.; El-Ganainy, S.M. Characterization of Colletotrichum species associating with anthracnose disease of mango in Egypt. J. Plant Dis. Prot. 2022, 129, 449–454. [Google Scholar] [CrossRef]
- Lin, W.L.; Duan, C.H.; Wang, C.L. Identification and virulence of Colletotrichum species causing anthracnose on mango. Plant Pathol. 2023, 72, 623–635. [Google Scholar] [CrossRef]
- Serrato-Diaz, L.M.; Rivera-Vargas, L.I.; Goenaga, R.; Navarro, E.D.; French-Monar, R.D. First report of Colletotrichum fructicola and C. queenslandicum causing fruit rot of rambutan (Nephelium lappaceum). Plant Dis. 2017, 101, 1043. [Google Scholar] [CrossRef]
- Armand, A.; Hyde, K.D.; Jayawardena, R.S. First report of Colletotrichum fructicola causing fruit rot and leaf-tip dieback on pineapple in Northern Thailand. Plants 2023, 12, 971. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Luo, C.X.; Wu, H.J.; Peng, B.; Kang, B.S.; Liu, L.M.; Zhang, M.; Gu, Q.S. Colletotrichum species associated with anthracnose disease of watermelon (Citrullus lanatus) in China. J. Fungi 2022, 8, 790. [Google Scholar] [CrossRef]
- Li, W.; Ran, F.; Long, Y.; Mo, F.; Shu, R.; Yin, X. Evidence of Colletotrichum fructicola causing anthracnose on Passiflora edulis Sims in China. Pathogens 2021, 11, 6. [Google Scholar] [CrossRef]
- Evallo, E.; Taguiam, J.D.; Bengoa, J.; Maghirang, R.; Balendres, M.A. First report of Colletotrichum fructicola, causing anthracnose of Hylocereus plants, in the Philippines. Czech Mycol. 2021, 73, 79–90. [Google Scholar] [CrossRef]
- Nur-Shakirah, A.O.; Khadijah, M.S.; Kee, Y.J.; Chew, B.L.; Zakaria, L.; Nor, N.M.I.M.; Subramaniam, S.; Leong, Y.H.; Mohd, M.H. Colletotrichum species associated with fig (Ficus carica L.) in Malaysia. Crop Prot. 2023, 169, 106256. [Google Scholar] [CrossRef]
- Tang, Z.; Lou, J.; He, L.; Wang, Q.; Chen, L.; Zhong, X.; Wu, C.; Zhang, L.; Wang, Z.Q. First report of Colletotrichum fructicola causing anthracnose on cherry (Prunus avium) in China. Plant Dis. 2022, 106, 317. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, W.; Li, Y.; Ji, S.; Li, X.; Hyde, K.D.; Zhang, K.; Phillips, A.J.; Manawasinghe, I.S.; Yan, J. Identification and characterization of Colletotrichum species associated with cherry leaf spot disease in China. Plant Dis. 2023, 107, 500–513. [Google Scholar] [CrossRef]
- Carraro, T.A.; Lichtemberg, P.S.F.; Michailides, T.J.; Pereira, W.V.; Figueiredo, J.A.G.; May-De Mio, L.L. First report of Colletotrichum fructicola, C. nymphaeae, and C. melonis causing persimmon anthracnose in Brazil. Plant Dis. 2019, 103, 2692. [Google Scholar] [CrossRef]
- Evallo, E.; Taguiam, J.D.; Balendres, M.A. Colletotrichum fructicola associated with fruit anthracnose of persimmon. J. Phytopathol. 2022, 170, 194–201. [Google Scholar] [CrossRef]
- Wu, C.J.; Lin, M.C.; Ni, H.F. Colletotrichum species causing anthracnose disease on avocado fruit in Taiwan. Eur. J. Plant Pathol. 2023, 165, 629–647. [Google Scholar] [CrossRef]
- Armand, A.; Jayawardena, R.S. Morphomolecular identification and pathogenicity of Colletotrichum species associated with avocado anthracnose in northern Thailand. Plant Pathol. 2024, 73, 186–197. [Google Scholar] [CrossRef]
- Shu, J.; Guo, T.; Li, Q.; Tang, L.; Huang, S.; Mo, J.; Yu, Z.; Forte-Perri, V. First report of leaf spot caused by Colletotrichum fructicola and C. siamense on Ziziphus mauritiana in Guangxi, China. Plant Dis. 2021, 105, 2021. [Google Scholar] [CrossRef]
- Wu, J.; Wang, H.; Fang, L.; Xie, X.; Wang, L. First report of Colletotrichum fructicola and Colletotrichum nymphaeae causing leaf spot on Rubus corchorifolius in Zhejiang province, China. Plant Dis. 2021, 105, 3746. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Mo, J.; Guo, T.; Li, Q.; Tang, L.; Huang, S.; Wei, J.; Hsiang, T. First report of Colletotrichum fructicola causing anthracnose on Pouteria campechiana in China. Plant Dis. 2021, 105, 708. [Google Scholar] [CrossRef]
- Li, S.C.; Xiao, L.H.; Wu, F.; Wang, Y.B.; Jia, M.S.; Chen, M.; Chen, J.Y.; Xiang, M.L. First report of leaf spot caused by Colletotrichum fructicola on Myrica rubra in China. Plant Dis. 2022, 106, 1993. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, W. Postharvest anthracnose of carambola (Averrhoa carambola) caused by Colletotrichum fructicola in China. Plant Dis. 2023, 107, 1234. [Google Scholar] [CrossRef]
- Hu, Y.; Luo, X.; Xu, Z.; Zhang, L.; Wang, Y.; Cui, R.; Kuang, W.; Xia, Y.; Ma, J. First Report of Colletotrichum fructicola causing anthracnose on Punica granatum in China. Plant Dis. 2023, 107, 2246. [Google Scholar] [CrossRef]
- Huang, R.; Sun, W.; Guo, T.; Huang, S.; Tang, L.; Chen, X.; Li, Q. Morphological and pathological characterization of Colletotrichum species causing anthracnose of litchi leaves in Guangxi, China. J. Phytopathol. 2023, 171, 609–619. [Google Scholar] [CrossRef]
- Poti, T.; Kisaki, G.; Arita, K.; Akimitsu, K. Identification and characterization of Colletotrichum species causing kiwifruit anthracnose in Kagawa Prefecture, Japan. J. Gen. Plant Pathol. 2023, 89, 84–90. [Google Scholar] [CrossRef]
- Serrato-Diaz, L.M.; Mariño, Y.A.; Bayman, P. Pathogens causing anthracnose and fruit rots of coffee associated with the coffee berry borer and the entomopathogenic fungus Beauveria bassiana in Puerto Rico. Phytopathology 2020, 110, 1541–1552. [Google Scholar] [CrossRef]
- Gaitán, A.L.; Cristancho, M.A.; Caicedo, B.C.; Rivillas, C.A.; Gómez, G.C. Compendium of Coffee Diseases and Pests; American Phytopathological Society: St. Paul, MN, USA, 2015. [Google Scholar]
- Shi, N.N.; Du, Y.X.; Ruan, H.C.; Yang, X.J.; Dai, Y.L.; Gan, L.; Chen, F.R. First report of Colletotrichum fructicola causing anthracnose on Camellia sinensis in Guangdong Province, China. Plant Dis. 2018, 102, 241. [Google Scholar] [CrossRef]
- Lin, S.R.; Yu, S.Y.; Chang, T.D.; Lin, Y.J.; Wen, C.J.; Lin, Y.H. First report of anthracnose caused by Colletotrichum fructicola on tea in Taiwan. Plant Dis. 2021, 105, 710. [Google Scholar] [CrossRef]
- Chen, X.G.; Liu, C.L.; Liu, J.A.; Zhou, G.Y. First report of Colletotrichum fructicola causing anthracnose on Camellia yuhsienensis in China. Plant Dis. 2022, 106, 321. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Ye, N.; Chen, Y.; Lian, L.; Jin, S.; Lai, J.; Xie, Y. Identification and phylogenetic analysis of anthracnose pathogen Colletotrichum fructicola isolated from Camellia sinensis. J. Tea Sci. 2014, 34, 95–104. [Google Scholar]
- Wang, Y.C.; Hao, X.Y.; Wang, L.; Xiao, B.; Wang, X.C.; Yang, Y.J. Diverse Colletotrichum species cause anthracnose of tea plants (Camellia sinensis (L.) O. Kuntze) in China. Sci. Rep. 2016, 6, 35287. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Wang, Y.; Li, N.; Ni, D.; Yang, Y.; Wang, X. Differences in the characteristics and pathogenicity of Colletotrichum camelliae and C. fructicola isolated from the tea plant [Camellia sinensis (L.) O. Kuntze]. Front. Microbiol. 2018, 9, 3060. [Google Scholar] [CrossRef]
- Lin, S.R.; Lin, Y.H.; Ariyawansa, H.A.; Chang, Y.C.; Yu, S.Y.; Tsai, I.; Chung, C.L.; Hung, T.H. Analysis of the pathogenicity and phylogeny of Colletotrichum species associated with brown blight of tea (Camellia sinensis) in Taiwan. Plant Dis. 2023, 107, 97–106. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.Y.; Xu, X.; Cheng, J.; Zheng, L.; Huang, J.; Li, D.W. Identification and characterization of Colletotrichum species associated with anthracnose disease of Camellia oleifera in China. Plant Dis. 2020, 104, 474–482. [Google Scholar] [CrossRef]
- Zhu, H.; He, C. Identification and characterization of Colletotrichum species causing tea-oil Camellia (Camellia oleifera C. Abel) anthracnose in Hainan, China. Forests 2023, 14, 1030. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, T.; Zhang, D.P.; Wu, H.L.; Pan, L.Q.; Liao, N.Y.; Liu, W.C. First report of anthracnose caused by Colletotrichum siamense and C. fructicola of Camellia chrysantha in China. Plant Dis. 2021, 105, 2020. [Google Scholar] [CrossRef]
- Peng, X.J.; Wang, Q.C.; Zhang, S.K.; Guo, K.; Zhou, X.D. Colletotrichum species associated with Camellia anthracnose in China. Mycosphere 2023, 14, 130–157. [Google Scholar] [CrossRef]
- Sharma, G.; Shenoy, B.D. Colletotrichum fructicola and C. siamense are involved in chilli anthracnose in India. Arch. Phytopathol. Plant Prot. 2014, 47, 1179–1194. [Google Scholar] [CrossRef]
- Chethana, C.S.; Chowdappa, P.; Pavani, K.V. Colletotrichum truncatum and C. fructicola causing anthracnose on chilli in Karnataka state of India. Indian Phytopathol. 2015, 68, 270–278. [Google Scholar]
- Liu, F.; Tang, G.; Zheng, X.; Li, Y.; Sun, X.; Qi, X.; Zhou, Y.; Xu, J.; Chen, H.; Chang, X.; et al. Molecular and phenotypic characterization of Colletotrichum species associated with anthracnose disease in peppers from Sichuan Province, China. Sci. Rep. 2016, 6, 32761. [Google Scholar] [CrossRef] [PubMed]
- Diao, Y.Z.; Zhang, C.; Liu, F.; Wang, W.Z.; Liu, L.; Cai, L.; Liu, X.L. Colletotrichum species causing anthracnose disease of chilli in China. Pers. Mol. Phylogeny Evol. Fungi 2017, 38, 20–37. [Google Scholar] [CrossRef] [PubMed]
- Katoch, A.; Sharma, P.; Sharma, P.N. Identification of Colletotrichum spp. associated with fruit rot of Capsicum annuum in North Western Himalayan region of India using fungal DNA barcode markers. J.Plant Biochem. Biot. 2017, 26, 216–223. [Google Scholar] [CrossRef]
- Nuraini, M.N.; Latiffah, Z. Identification and characterization of Colletotrichum spp. associated with chili anthracnose in peninsular Malaysia. Eur. J. Plant Pathol. 2018, 151, 961–973. [Google Scholar]
- Shi, N.N.; Ruan, H.C.; Jie, Y.L.; Chen, F.R.; Du, Y.X. Characterization, fungicide sensitivity and efficacy of Colletotrichum spp. from chili in Fujian, China. Crop Prot. 2021, 143, 105572. [Google Scholar] [CrossRef]
- Nguyen, V.Q.H.; Tran, T.T.N.; Tran, L.T.; Nguyen, T.T.T.; Pham, T.T.T.; Hoang, Q.T.; Pham, T.T.D. Identification of fungal species associated with chilli fruit disease in North-Central Vietnam. J. Plant Pathol. 2023, 106, 507–526. [Google Scholar] [CrossRef]
- Narmadhavathy, S.; Nayar, K.A.; Gokulapalan, C.; Geetha, D. First report of leaf spot disease of culinary melon caused by Colletotrichum fructicola in India. Indian Phytopathol. 2016, 69, 318–319. [Google Scholar]
- Jiang, D.L.; Harata, K.; Ogawa, M.; Shirota, K.; Sasaki, A.; Nakamura, T.; Okamoto, S.; Park, E.Y.; Sato, K.; Nakamura, Y.; et al. Multiple Colletotrichum species cause anthracnose disease on Japanese pickling melon var. Katsura-uri (Cucumis melo var. conomon). J. Gen. Plant Pathol. 2023, 89, 249–259. [Google Scholar] [CrossRef]
- Li, P.; Zhu, J.Z.; Li, X.G.; Zhong, J. Identification and characterization of Colletotrichum fructicola and Colletotrichum siamense causing anthracnose on luffa sponge gourd in China. Plants 2022, 11, 1537. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Lan, G.; Yang, Y.; Tang, Y.; Li, Z.; She, X.; He, Z. First report of anthracnose caused by Colletotrichum fructicola on Brassica parachinensis in China. Crop Prot. 2022, 154, 105842. [Google Scholar] [CrossRef]
- Silva-Cabral, J.R.A.; da Silva, J.L.; Soares, L.D.S.; Costa, J.F.O.; Amorim, E.D.R.; Lima, G.D.A.; Assunção, I.P. First report of Colletotrichum fructicola and C. tropicale causing anthracnose on orchids in Brazil. Plant Dis. 2019, 103, 2672. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, Q.; Liang, S.; Li, C.; Chen, X.; Li, Z. Colletotrichum species causing Bletilla striata anthracnose in the Guizhou Province, China. Crop Prot. 2023, 170, 106277. [Google Scholar] [CrossRef]
- Wang, S.; Huang, J.; Zheng, M.; Wang, Y.; Yuan, Q.; Gao, Q.; Zhou, H. First report of anthracnose on Bletilla striata caused by Colletotrichum fructicola in China. Plant Dis. 2022, 106(2), 756. [Google Scholar] [CrossRef]
- Ma, J.; Wang, X.; Guo, M. First report of anthracnose on Dendrobium officinale caused by Colletotrichum fructicola in Anhui Province, China. Plant Dis. 2020, 104, 574. [Google Scholar] [CrossRef]
- Qing, Z.; Xiao, D.; Chen, H.; Shen, Y.; Pan, L.; Wen, R. First report of Colletotrichum fructicola causing anthracnose on Crinum asiaticum in Guangxi province, China. J. Plant Pathol. 2020, 102, 971. [Google Scholar] [CrossRef]
- Guarnaccia, V.; Gilardi, G.; Martino, I.; Garibaldi, A.; Gullino, M.L. Species diversity in Colletotrichum causing anthracnose of aromatic and ornamental Lamiaceae in Italy. Agronomy 2019, 9, 613. [Google Scholar] [CrossRef]
- Sun, M.; Zhao, J.; Li, Q.; Forte-Perri, V.; Bu, Z.; La, Y.; Tao, D. First report of anthracnose of Mandevilla× amabilis caused by Colletotrichum fructicola in Guangxi, Southern China. Plant Dis. 2020, 104, 3258. [Google Scholar] [CrossRef]
- Guarnaccia, V.; Martino, I.; Gilardi, G.; Garibaldi, A.; Gullino, M.L. High fungal species diversity in association with woody ornamental plants: Colletotrichum as a case study. Acta Hortic. 2021, 1331, 293–302. [Google Scholar] [CrossRef]
- Wan, Y.; Jin, G.Q.; Li, D.W.; Wu, S.; Zhu, L.H. First report of Colletotrichum fructicola causing leaf spots on Liriodendron chinense × tulipifera in China. For. Pathol. 2022, 52, e12779. [Google Scholar] [CrossRef]
- Yin, Q.; Shi, X.; Zhu, Z.; Wang, Y.; Tian, L.; Sang, Z.; Jia, Z.; Ma, L. First report of leaf spot caused by Colletotrichum fructicola on Magnolia wufengensis in Hubei, China. Plant Dis. 2022, 106, 2987. [Google Scholar] [CrossRef]
- Qin, R.; Zhang, Y.; Li, Q.; Huang, S.; Chen, X.; Guo, T.; Tang, L. Leaf spot caused by Colletotrichum siamense, C. fructicola, and C. aeschynomenes on Ixora chinensis in Guangxi, China. Plant Dis. 2024, 108, 225. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Du, C.; Ding, C. First report of Colletotrichum fructicola causing anthracnose on Rosa chinensis in China. Plant Dis. 2023, 107, 3316. [Google Scholar] [CrossRef] [PubMed]
- Kang, N.; Xiang, M.; Xiao, L.; Zheng, Z.; Yang, H.; Zeng, J.; Jiang, H.; Chen, J.; Chen, M. First report of Colletotrichum fructicola causing anthracnose on Paeonia lactiflora in China. Plant Dis. 2023, 107, 4022. [Google Scholar] [CrossRef]
- He, J.; Li, D.W.; Bian, J.Y.; Zhu, L.H.; Huang, L. Unravelling species diversity and pathogenicity of Colletotrichum associated with anthracnose on Osmanthus fragrans in Quanjiao, China. Plant Dis. 2023, 107, 350–362. [Google Scholar] [CrossRef]
- Zhang, M.; Li, D.; Si, Y.; Ju, Y.; Zhu, L. Colletotrichum species associated with anthracnose in Salix babylonica in China. Plants 2023, 12, 1679. [Google Scholar] [CrossRef]
- Wang, Q.H.; Li, D.W.; Duan, C.H.; Liu, X.H.; Niu, S.G.; Hou, L.Q.; Wu, X.Q. First report of walnut anthracnose caused by Colletotrichum fructicola in China. Plant Dis. 2018, 102, 247. [Google Scholar] [CrossRef]
- Chang, J.; Zhai, F.; Zhang, Y.; Wang, D.; Shu, J.; Yao, X. Identification and characterization of Colletotrichum fioriniae and C. fructicola that cause anthracnose in pecan. Front. Plant Sci. 2022, 13, 1043750. [Google Scholar] [CrossRef]
- Gong, J.; Sun, D.; Bian, N.; Wang, R.; Wang, X.; Wang, X. First report of Colletotrichum fructicola causing anthracnose on peanut (Arachis hypogaea) in China. Plant Dis. 2023, 107, 2879. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Qiu, F.; Xie, C.P.; Zhang, C.; Li, X. First report of Colletotrichum fructicola causing anthracnose on macadamia in China. Plant Dis. 2023, 107, 1230. [Google Scholar] [CrossRef]
- Ma, J.; Xue, Q.; Min, L.J.; Zhang, L.Q. First report of Colletotrichum fructicola causing anthracnose on Carya cathayensis Sarg. in China. Plant Dis. 2023, 107, 2253. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, M.; Rao, B.; Chen, Y.; Cai, C.; Gao, H. First report of anthracnose on Paris. polyphylla var. chinensis caused by Colletotrichum fructicola in Northern Fujian, China. Plant Dis. 2020, 104, 2728. [Google Scholar]
- Song, L.; Lin, W.; Jiang, N.; Zhang, Z.; Tan, G.; Wei, S. Anthracnose disease of Amomum villosum caused by Colletotrichum fructicola in China. J. Gen. Plant Pathol. 2021, 87, 259–263. [Google Scholar] [CrossRef]
- Jiang, G.H.; Jiang, A.M.; Fan, C.L.; Wei, J.G.; Ren, L.Y.; Luo, J.T. First report of anthracnose on Kadsura coccinea Caused by Colletotrichum fructicola in China. Plant Dis. 2022, 106, 1757. [Google Scholar] [CrossRef]
- Zheng, X.; Yang, J.; Wang, A.; Zhang, Y.; Song, Y.; Lin, Z.; Jia, X.; Feng, Z.; Zeng, C.; Zhang, W. Occurrence of anthracnose caused by Colletotrichum fructicola on Ficus hirta in Southern China. Plant Dis. 2023, 108, 205. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Lin, S.; Guo, J.; Shi, Y.P.; Gao, Q.; Zhou, H. First report of Colletotrichum fructicola causing leaf spot on Smilax glabra Roxb in China. Plant Dis. 2024, 104, 1112. [Google Scholar] [CrossRef]
- Shu, J.; Ning, P.; Guo, T.; Tang, L.; Huang, S.; Li, Q.; Mo, J.; Yu, Z.; Hsiang, T. First report of leaf spot caused by Colletotrichum fructicola on Callerya speciosa (Millettia speciosa) in Guangxi, China. Plant Dis. 2020, 104, 1–6. [Google Scholar] [CrossRef]
- Hou, W.; Chu, L.; Yang, L.; Dong, N.; Dan, Z.; Zhong, H.; Dong, C. First report of Colletotrichum fructicola causing anthracnose on Epimedium sagittatum (Sieb. et Zucc.) Maxim. in China. Plant Dis. 2024, 108, 813. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Lin, Z.; Zhang, Z.; Chen, J. First report of Colletotrichum fructicola causing anthracnose on water hyacinth in China. Plant Dis. 2021, 105, 2246. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, Y.; Asano, S.; Okayama, K.O.; Ohki, S.T.; Tojo, M. Weeds as the potential inoculum source of Colletotrichum fructicola responsible for strawberry anthracnose in Nara, Japan. J. Gen. Plant Pathol. 2018, 84, 12–19. [Google Scholar] [CrossRef]
- Li, Q.; Yu, J.; Liu, Y.; Zhang, W.; Liu, Y.; Guo, W.; Huo, J. First report of Colletotrichum fructicola causing anthracnose of Japanese brome (Bromus japonicus Thunb.) in China. J. Plant Pathol. 2023, 105, 1167. [Google Scholar] [CrossRef]
- Atghia, O.; Alizadeh, A.; Fotouhifar, K.B.; Damm, U.; Stukenbrock, E.H.; Javan-Nikkhah, M. First report of Colletotrichum fructicola as the causal agent of anthracnose on common bean and cowpea. Mycol. Iran. 2015, 2, 139–140. [Google Scholar]
- Wang, H.C.; Huang, Y.F.; Chen, Q.; Wang, M.S.; Xia, H.Q.; Shang, S.H.; Zhang, C.Q. Anthracnose caused by Colletotrichum fructicola on tobacco (Nicotiana tabacum) in China. Plant Dis. 2016, 100, 1235. [Google Scholar] [CrossRef]
- Niu, X.P.; Gao, H.; Chen, Y.; Qi, J.M. First report of anthracnose on white jute (Corchorus capsularis) caused by Colletotrichum fructicola and C. siamense in China. Plant Dis. 2016, 100, 1243. [Google Scholar] [CrossRef]
- Shi, N.N.; Du, Y.X.; Chen, F.R.; Ruan, H.C.; Yang, X.J. First report of leaf spot caused by Colletotrichum fructicola on Japanese fatsia (Fatsia japonica) in Fujian Province in China. Plant Dis. 2017, 101, 1552. [Google Scholar] [CrossRef]
- Conforto, C.; Lima, N.B.; Garcete-Gómez, J.M.; Câmara, M.P.S.; Michereff, S.J. First report of Colletotrichum siamense and C. fructicola causing cladode brown spot in Nopalea cochenillifera in Brazil. J. Plant Pathol. 2017, 99, 812. [Google Scholar]
- Sun, J.W.; Si, Y.Z.; Li, D.W.; Jin, G.Q.; Zhu, L.H. First report of leaf blotch of Aesculus chinensis caused by Colletotrichum gloeosporioides and Colletotrichum fructicola in China. Plant Dis. 2020, 104, 3065. [Google Scholar] [CrossRef]
- Mangwende, E.; Truter, M.; Aveling, T.A.S.; Chirwa, P.W. Anthracnose leaf spot pathogens, Colletotrichum fructicola and Colletotrichum cigarro, associated with Eucalyptus seed produced in South Africa. Australas. Plant Pathol. 2021, 50, 533–543. [Google Scholar] [CrossRef]
- Zhou, Y.; Ye, R.; Ying, Q.; Zhang, Y.; Zhang, L. First report of leaf spot caused by Colletotrichum fructicola on Dalbergia hupeana in China. Plant Dis. 2022, 106, 1526. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yu, Z.; Li, Q.; Tang, L.; Guo, T.; Huang, S.; Mo, J.; Hsiang, T. Leaf spot caused by Colletotrichum fructicola on star anise (Illicium verum) in China. Plant Dis. 2022, 106, 1060. [Google Scholar] [CrossRef] [PubMed]
- Hassan, O.; Shin, Y.U.; Lee, K.S.; Lee, D.W.; Chang, T. First report of anthracnose on spotted laurel caused by Colletotrichum fructicola in South Korea. Plant Dis. 2023, 107, 2522. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, Y.; Zhuo, D.; Yang, T.; Dai, L.; Li, L.; Zhao, H.; Liu, X.; Cai, Z. Characterization of Colletotrichum causing anthracnose on rubber trees in Yunnan: Two new records and two new species from China. Plant Dis. 2023, 107, 3037–3050. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Li, P.; Meng, H.; Liu, J.; Wu, X.; Gong, G.; Chen, H.; Shang, J.; Yang, W.; Chang, X. First report of Colletotrichum fructicola causing anthracnose on Glycine max in China. Plant Dis. 2023, 107, 2240. [Google Scholar] [CrossRef]
- Dos Santos, G.C.; Lima Horn, L.M.; Trezzi Casa, R.; Gorayeb, E.S.; Nascimento da Silva, F.; Bogo, A.; Nascimento, S.C.D.; Soardi, K.; Sartori Pereira, F.; Gonçalves, M.J. First Report of Colletotrichum fructicola causing anthracnosis on Glycine max in Brazil. Plant Dis. 2024, 108, 814. [Google Scholar] [CrossRef]
- Norphanphoun, C.; Hyde, K.D. First report of Colletotrichum fructicola, C. rhizophorae sp. nov. and C. thailandica sp. nov. on mangrove in Thailand. Pathogens 2023, 12, 1436. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, W.; Yang, G.; Liu, J.; Xu, L.; Li, G.; Wang, J. First report of anthracnose on Paeonia delavayi caused by Colletotrichum fructicola in China. Plant Dis. 2023, 107, 3309. [Google Scholar] [CrossRef]
- Wang, C.B.; Li, Y.; Xue, H.; Piao, C.G.; Jiang, N. Diversity of Colletotrichum species causing anthracnose on three oak species (Quercus acutissima, Q. mongolica and Q. variabilis) in China. Plant Pathol. 2023, 72, 1699–1715. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, K.; Li, C.; Wei, C.; Luan, F.; Li, D.; Song, Q. First Report of anthracnose leaf spot caused by Colletotrichum fructicola on Manglietia decidua (Magnoliaceae) in China. Plant Dis. 2023, 107, 1950. [Google Scholar] [CrossRef]
- Zhao, W.; Hu, A.; Ren, M.; Wei, G.; Xu, H. First report on Colletotrichum fructicola causing anthracnose in Chinese sorghum and its management using phytochemicals. J. Fungi 2023, 9, 279. [Google Scholar] [CrossRef] [PubMed]
- Duarte, I.G.; Amaral, A.G.G.; Vieira, W.A.D.S.; Veloso, J.S.; Silva, A.C.D.; Silva, C.D.F.B.D.; Balbino, V.D.Q.; Castlebury, L.A.; Câmara, M.P.S. Diversity of Colletotrichum species associated with torch ginger anthracnose. Mycologia 2023, 115, 661–673. [Google Scholar] [CrossRef] [PubMed]
- Shang, S.; Wang, B.; Zhang, S.; Liu, G.; Liang, X.; Zhang, R.; Gleason, M.L.; Sun, G. A novel effector CfEC92 of Colletotrichum fructicola contributes to Glomerella leaf spot virulence by suppressing plant defences at the early infection phase. Mol. Plant Pathol. 2020, 21, 936–950. [Google Scholar] [CrossRef]
- Li, J.; Xiong, C.; Ruan, D.; Du, W.; Li, H.; Ruan, C. Identification of Camellia oleifera WRKY transcription factor genes and functional characterization of CoWRKY78. Front. Plant Sci. 2023, 14, 1110366. [Google Scholar] [CrossRef] [PubMed]
- Perfect, S.E.; Hughes, H.B.; O’Connell, R.J.; Green, J.R. Colletotrichum: A model genus for studies on pathology and fungal plant interactions. Fungal Genet. Biol. 1999, 27, 186–198. [Google Scholar] [CrossRef]
- Wharton, P.S.; Schilder, A.C. Novel infection strategies of Colletotrichum acutatum on ripe blueberry fruit. Plant Pathol. 2008, 57, 122–134. [Google Scholar] [CrossRef]
- Mendgen, K.; Hahn, M. Plant infection and the establishment of fungal biotrophy. Trends Plant Sci. 2002, 7, 352–356. [Google Scholar] [CrossRef]
- Cannon, P.F.; Simmons, C.M. Diversity and host preference of leaf endophytic fungi in the Iwokrama Forest Reserve, Guyana. Mycologia 2002, 94, 210–220. [Google Scholar] [CrossRef]
- Prusky, D. Pathogen quiescence in postharvest diseases. Annu. Rev. Phytopathol. 1996, 34, 413. [Google Scholar] [CrossRef] [PubMed]
- Páez-Redondo, A.; Prusky, D.; Hoyos-Carvajal, L. Quiescence as a strategic stage for the infective process of Colletotrichum species. Rev. U.D.C.A Act. Div. Cient. 2022, 25, e2073. [Google Scholar] [CrossRef]
- Sharma, M.; Kulshrestha, S. Colletotrichum gloeosporioides: An anthracnose causing pathogen of fruits and vegetables. Biosci. Biotechnol. Res. Asia 2015, 12, 1233–1246. [Google Scholar] [CrossRef]
- de Silva, D.D.; Crous, P.W.; Ades, P.K.; Hyde, K.D.; Taylor, P.W. Lifestyles of Colletotrichum species and implications for plant biosecurity. Fungal Biol. Rev. 2017, 31, 155–168. [Google Scholar] [CrossRef]
- Latunde-Dada, A.O. Colletotrichum: Tales of forcible entry, stealth, transient confinement and breakout. Mol. Plant Pathol. 2001, 2, 187–198. [Google Scholar] [CrossRef]
- Liang, X.; Wang, B.; Dong, Q.; Li, L.; Rollins, J.A.; Zhang, R.; Sun, G. Pathogenic adaptations of Colletotrichum fungi revealed by genome wide gene family evolutionary analyses. PLoS ONE 2018, 13, e0196303. [Google Scholar] [CrossRef]
- O’Connell, R.J.; Thon, M.R.; Hacquard, S.; Amyotte, S.G.; Kleemann, J.; Torres, M.F. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat. Genet. 2012, 44, 1060–1065. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, X.; He, C.; Zhang, Q.-Y.; Zou, X.; Duan, K.; Gao, Q. Novel fungal pathogenicity and leaf defense strategies are revealed by simultaneous transcriptome analysis of Colletotrichum fructicola and strawberry infected by this fungus. Front. Plant Sci. 2018, 9, 434. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, Y.; Li, S.; Zhou, G.; Liu, J.; Xu, J.; Li, H. Functional analysis of CfSnf1 in the development and pathogenicity of anthracnose fungus Colletotrichum fructicola on tea-oil tree. BMC Genet. 2019, 20, 94. [Google Scholar] [CrossRef]
- Liu, W.; Liang, X.; Gleason, M.L.; Cao, M.; Zhang, R.; Sun, G. Transcription factor CfSte12 of Colletotrichum fructicola is a key regulator of early apple Glomerella leaf spot pathogenesis. Appl. Environ. Microbiol. 2020, 87, e02212-20. [Google Scholar] [CrossRef]
- Li, S.; Zhang, S.; Li, B.; Li, H. The SNARE protein CfVam7 is required for growth, endoplasmic reticulum stress response, and pathogenicity of Colletotrichum fructicola. Front. Microbiol. 2021, 12, 736066. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, S.; Li, H. H3K4 methyltransferase CfSet1 is required for development and pathogenesis in Colletotrichum fructicola. J. Fungi 2022, 8, 363. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, Y.; Chen, S.; Li, H. The histone acetyltransferase CfGcn5 regulates growth, development, and pathogenicity in the anthracnose fungus Colletotrichum fructicola on the tea-oil tree. Front. Microbiol. 2021, 12, 680415. [Google Scholar] [CrossRef]
- Liu, W.; Han, L.; Chen, J.; Liang, X.; Wang, B.; Gleason, M.L.; Zhang, R.; Sun, G. The CfMcm1 regulates pathogenicity, conidium germination, and sexual development in Colletotrichum fructicola. Phytopathology® 2022, 112, 2159–2173. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Jin, J.; Li, Y.; Jiao, H.; Luo, L.; Chen, Q.; Li, H.; Zhang, S. The CfAtg5 regulates the autophagy and pathogenicity of Colletotrichum fructicola on Camellia oleifera. Agronomy 2023, 13, 1237. [Google Scholar] [CrossRef]
- Kong, Y.; Yuan, Y.; Yang, M.; Lu, Y.; Liang, X.; Gleason, M.L.; Zhang, R.; Sun, G. CfCpmd1 regulates pathogenicity and sexual development of plus and minus strains in Colletotrichum fructicola causing Glomerella leaf spot on apple in China. Phytopathology 2023, 113, 1985–1993. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Bruno, J.C.; Alonzo, F., III; Xayarath, B.; Cianciotto, N.P.; Freitag, N.E. Contribution of chitinases to Listeria monocytogenes pathogenesis. Appl. Environ. Microbiol. 2010, 76, 7302–7305. [Google Scholar] [CrossRef]
- Dou, D.; Zhou, J.M. Phytopathogen effectors subverting host immunity: Different foes, similar battleground. Cell Host Microbe 2012, 12, 484–495. [Google Scholar] [CrossRef]
- Bozkurt, T.O.; Schornack, S.; Banfield, M.J.; Kamoun, S. Oomycetes, effectors, and all that jazz. Curr. Opin. Plant Biol. 2012, 15, 483–492. [Google Scholar] [CrossRef]
- Gan, P.; Ikeda, K.; Irieda, H.; Narusaka, M.; O’Connell, R.J.; Narusaka, Y. Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol. 2013, 197, 1236–1249. [Google Scholar] [CrossRef]
- Lelwala, R.V.; Korhonen, P.K.; Young, N.D.; Scott, J.B.; Ades, P.K.; Gasser, R.B.; Taylor, P.W.J.; Coleman, C.E. Comparative genome analysis indicates high evolutionary potential of pathogenicity genes in Colletotrichum tanaceti. PLoS ONE 2019, 14, e0212248. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Miao, J.; Shen, D.; Dou, D. Proteinaceous effector discovery and characterization in plant pathogenic Colletotrichum fungi. Front. Microbiol. 2022, 13, 914035. [Google Scholar] [CrossRef]
- da Silva, L.L.; Correia, H.L.N.; Gonçalves, O.S.; Vidigal, P.M.P.; Rosa, R.O.; Santana, M.F.; de Queiroz, M.V. What lies behind the large genome of Colletotrichum lindemuthianum. Front. Fungal Biol. 2024, 5, 1459229. [Google Scholar] [CrossRef]
- Tsushima, A.; Narusaka, M.; Gan, P.; Kumakura, N.; Hiroyama, R.; Kato, N.; Takahashi, S.; Takano, Y.; Narusaka, Y.; Shirasu, K. The conserved Colletotrichum spp. effector candidate CEC3 induces nuclear expansion and cell death in plants. Front. Microbiol. 2021, 12, 682155. [Google Scholar] [CrossRef]
- Wang, C.; Han, M.; Min, Y.; Hu, J.; Pan, Y.; Huang, L.; Nie, J. Colletotrichum fructicola co-opts cytotoxic ribonucleases that antagonize host competitive microorganisms to promote infection. Mbio 2024, 15, e01053-24. [Google Scholar] [CrossRef] [PubMed]
- Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 2005, 43, 205–227. [Google Scholar] [CrossRef]
- He, C.; Duan, K.; Zhang, L.; Zhang, L.; Song, L.; Yang, J.; Zou, X.; Wang, Y.; Gao, Q. Fast quenching the burst of host salicylic acid is common in early strawberry/Colletotrichum fructicola interaction. Phytopathology 2019, 109, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Bai, Q.; Zhang, H.; Guo, Y.; Peng, Y.; Zhang, P.; Shen, L.; Hong, N.; Xu, W.; Wang, G. Transcriptome analysis of the molecular patterns of pear plants infected by two Colletotrichum fructicola pathogenic strains causing contrasting sets of leaf symptoms. Front. Plant Sci. 2022, 13, 761133. [Google Scholar] [CrossRef]
- Passardi, F.; Cosio, C.; Penel, C.; Dunand, C. Peroxidases have more functions than a Swiss army knife. Plant Cell Rep. 2005, 24, 255–265. [Google Scholar] [CrossRef]
- Heller, J.; Tudzynski, P. Reactive oxygen species in phytopathogenic fungi: Signaling, development, and disease. Annu. Rev. Phytopathol. 2011, 49, 369–390. [Google Scholar] [CrossRef]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hao, X.; Lu, Q.; Wang, L.; Qian, W.; Li, N.; Ding, C.; Wang, X.; Yang, Y.W. Transcriptional analysis and histochemistry reveal that hypersensitive cell death and H2O2 have crucial roles in the resistance of tea plant (Camellia sinensis (L.) O. Kuntze) to anthracnose. Hortic. Res. 2018, 5, 18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.K.; Zhou, Z.W.; Guo, T.L.; Peng, C.; Chen, M.; Liu, W. Sequence and Annotation of Colletotrichum fructicola N425 Genome on Tea Plant. Fujian J. Agric. Sci. 2023, 38, 1437–1444. [Google Scholar]
- Eulgem, T.; Somssich, I.E. Networks of WRKY transcription factors in defense signaling. Curr. Opin. Plant Biol. 2007, 10, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Freeman, S.; Katan, T.; Shabi, E. Characterization of Colletotrichum species responsible for anthracnose diseases of various fruits. Plant Dis. 1998, 82, 596–605. [Google Scholar] [CrossRef]
- Giblin, F.R.; Coates, L.M.; Irwin, J.A.G. Pathogenic diversity of avocado and mango isolates of Colletotrichum gloeosporioides causing anthracnose and pepper spot in Australia. Australas. Plant Path. 2010, 39, 50–62. [Google Scholar] [CrossRef]
- Phoulivong, S.; McKenzie, E.; Hyde, K. Cross infection of Colletotrichum species; a case study with tropical fruits. Curr. Res. Environ. Appl. Mycol. 2012, 2, 99–111. [Google Scholar] [CrossRef]
- de Silva, D.D.; Ades, P.K.; Crous, P.W.; Taylor, P.W.J. Colletotrichum species associated with chili anthracnose in Australia. Plant Pathol. 2016, 66, 254–267. [Google Scholar] [CrossRef]
- Lakshmi, B.K.M.; Reddy, P.N.; Prasad, R.D. Cross-infection potential of Colletotrichum gloeosporioides Penz. isolates causing anthracnose in subtropical fruit crops. Trop. Agric. Res. 2011, 22, 183–193. [Google Scholar] [CrossRef]
- Freeman, S.; Horowitz-Brown, S.; Afanador-Kafuri, L.; Maymon, M.; Minz, D. Colletotrichum: Host specificity and pathogenicity on selected tropical and subtropical crops. Acta Hortic. 2013, 975, 209–216. [Google Scholar] [CrossRef]
- Eaton, M.J.; Edwards, S.; Inocencio, H.A.; Machado, F.J.; Nuckles, E.M.; Farman, M.; Gauthier, N.A.; Vaillancourt, L.J. Diversity and cross-infection potential of Colletotrichum causing fruit rots in mixed-fruit orchards in Kentucky. Plant Dis. 2021, 105, 115–1128. [Google Scholar] [CrossRef]
- Alahakoon, P.W.; Sreenivasaprasad, S.; Brown, A.E.; Mills, P.R. Selection of a genetic variant within Colletotrichum gloeosporioides isolates pathogenic on mango by passaging through wounded tomato fruits. Physiol. Mol. Plant Pathol. 1992, 41, 227–240. [Google Scholar] [CrossRef]
- Sanders, G.M.; Korsten, L. Comparison of cross inoculation potential of South African avocado and mango isolates of Colletotrichum gloeosporioides. Microbiol. Res. 2003, 158, 143–150. [Google Scholar] [CrossRef]
- Freeman, S.; Shabi, E. Cross-infection of subtropical and temperate fruits by Colletotrichum species from various hosts. Physiol. Mol. Plant Pathol. 1996, 49, 395–404. [Google Scholar] [CrossRef]
- Photita, W.; Lumyong, S.; Lumyong, P.; McKenzie, E.H.C.; Hyde, K.D. Are some endophytes of Musa acuminata latent pathogens? Fungal Divers. 2004, 16, 131–140. [Google Scholar]
- Alahakoon, P.W.; Brown, A.E.; Sreenivasaprasad, S. Cross infection potential of genetic groups of Colletotrichum gloeosporioides on tropical fruits. Physiol. Mol. Plant. Pathol. 1994, 44, 93–103. [Google Scholar] [CrossRef]
- Hyde, K.D.; Cai, L.; Cannon, P.F.; Crouch, J.A.; Crous, P.W.; Damm, U.; Zhang, J.Z. Colletotrichum—Names in current use. Fungal Divers. 2009, 39, 147–182. [Google Scholar]
- Vega, F.E.; Simpkins, A.; Aime, M.C.; Posada, F.; Peterson, S.W.; Rehner, S.A.; Arnold, A.E. Fungal endophyte diversity in coffee plants from Colombia, Hawai’i, Mexico and Puerto Rico. Fungal Ecol. 2010, 3, 122–138. [Google Scholar] [CrossRef]
- Gazis, R.; Rehner, S.; Chaverri, P. Species delimitation in fungal endophyte diversity studies and its implications in ecological and biogeographic inferences. Mol. Ecol. 2011, 20, 3001–3013. [Google Scholar] [CrossRef]
- Arnold, A.E.; Mejía, L.C.; Kyllo, D.; Rojas, E.I.; Maynard, Z.; Robbins, N.; Herre, E.A. Fungal endophytes limit pathogen damage in a tropical tree. Proc. Natl. Acad. Sci. USA 2003, 100, 15649–15654. [Google Scholar] [CrossRef]
- Prusky, D.; Freeman, S.; Rodriguez, R.J.; Keen, N.T. A nonpathogenic mutant strain of Colletotrichum magna induces resistance to C. gloeosporioides in avocado fruits. MPMI-Mol. Plant-Microbe Interact. 1994, 7, 326–333. [Google Scholar] [CrossRef]
- Redman, R.S.; Dunigan, D.D.; Rodriguez, R.J. Fungal symbiosis from mutualism to parasitism: Who controls the outcome, host or invader? New Phytol. 2001, 151, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Redman, R.S.; Sheehan, K.B.; Stout, R.G.; Rodriguez, R.J.; Henson, J.M. Thermotolerance generated by plant/fungal symbiosis. Science 2002, 298, 1581. [Google Scholar] [CrossRef] [PubMed]
- Freeman, S.; Horowitz, S.; Sharon, A. Pathogenic and nonpathogenic lifestyles in Colletotrichum acutatum from strawberry and other plants. Phytopathology 2001, 91, 986–992. [Google Scholar] [CrossRef]
- Promputtha, I.; Lumyong, S.; Dhanasekaran, V.; McKenzie, E.H.C.; Hyde, K.D.; Jeewon, R. A phylogenetic evaluation of whether endophytes become saprotroph at host senescence. Microb. Ecol. 2007, 53, 579–590. [Google Scholar] [CrossRef]
- Promputtha, I.; Hyde, K.D.; McKenzie, E.H.; Peberdy, J.F.; Lumyong, S. Can leaf degrading enzymes provide evidence that endophytic fungi becoming saprobes? Fungal Divers. 2010, 41, 89–99. [Google Scholar] [CrossRef]
- Rodriguez, R.J.; White, J.F., Jr.; Arnold, A.E.; Redman, R.S. Fungal endophytes: Diversity and functional roles. New Phytol. 2009, 182, 314–330. [Google Scholar] [CrossRef]
- Crouch, J.; O’Connell, R.; Gan, P.; Buiate, E.; Torres, M.F.; Beirn, L.; Shirasu, K.; Vaillancourt, L. The genomics of Colletotrichum. In Genomics of Plant-Associated Fungi: Monocot Pathogens; Dean, R.A., Lichens-Park, A., Kole, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 69–102. [Google Scholar]
- Manamgoda, D.S.; Udayanga, D.; Cai, L.; Chukeatirote, E.; Hyde, K.D. Endophytic Colletotrichum from tropical grasses with a new species C. endophytica. Fungal Divers. 2013, 61, 107–115. [Google Scholar] [CrossRef]
- Azuddin, N.F.; Mohamad Noor Azmy, M.S.; Zakaria, L. Molecular identification of endophytic fungi in lawn grass (Axonopus compressus) and their pathogenic ability. Sci. Rep. 2023, 13, 4239. [Google Scholar] [CrossRef]
- Vieira, W.A.; Michereff, S.J.; de Morais, M.A.; Hyde, K.D.; Câmara, M.P. Endophytic species of Colletotrichum associated with mango in northeastern Brazil. Fungal Divers. 2014, 67, 181–202. [Google Scholar] [CrossRef]
- Ma, X.; Nontachaiyapoom, S.; Jayawardena, R.S.; Hyde, K.D.; Gentekaki, E.; Zhou, S.; Qian, Y.; Wen, T.; Kang, J. Endophytic Colletotrichum species from Dendrobium spp. in China and Northern Thailand. MycoKeys 2018, 43, 23–57. [Google Scholar] [CrossRef] [PubMed]
- Lisboa, D.O.; Silva, M.A.; Pinho, D.B.; Pereira, O.L.; Furtado, G.Q. Diversity of pathogenic and endophytic Colletotrichum isolates from Licania tomentosa in Brazil. For. Pathol. 2018, 48, e12448. [Google Scholar] [CrossRef]
- Hanin, N.A.; Fitriasari, P.D. Identification of endophytic fungi from fruits and seeds of jambolana (Syzygium cumini L.) skeels. In IOP Conf. Ser. Earth Environ. Sci. 2019, 276, 012060. [Google Scholar] [CrossRef]
- Bhavana, N.S.; Prakash, H.S.; Nalini, M.S. Fungal endophytes from Tabernaemontana heyneana Wall. (Apocynaceae), their molecular characterization, L-asparaginase and Antioxidant Activities. Jordan. J. Biol. Sci. 2020, 13, 543–550. [Google Scholar]
- de Silva, N.I.; Maharachchikumbura, S.S.N.; Thambugala, K.M.; Bhat, D.J.; Karunarathna, S.C.; Tennakoon, D.S.; Phookamsak, R.; Jayawardena, R.S.; Lumyong, S.; Hyde, K.D. Morpho-molecular taxonomic studies reveal a high number of endophytic fungi from Magnolia candolli and M. garrettii in China and Thailand. Mycosphere 2021, 12, 163–237. [Google Scholar] [CrossRef]
- Zheng, H.; Yu, Z.; Jiang, X.; Fang, L.; Qiao, M. Endophytic Colletotrichum species from aquatic plants in southwest China. J. Fungi 2022, 8, 87. [Google Scholar] [CrossRef] [PubMed]
- Paul, N.C.; Lee, H.B.; Lee, J.H.; Shin, K.S.; Ryu, T.H.; Kwon, H.R.; Kim, Y.K.; Youn, Y.N.; Yu, S.H. Endophytic fungi from Lycium chinense Mill and characterization of two new Korean records of Colletotrichum. Int.J. Mol. Sci. 2014, 15, 15272–15286. [Google Scholar] [CrossRef]
- Ernst, M.; Mendgen, K.W.; Wirsel, S.G.R. Endophytic fungal mutualists: Seed-borne Stagonospora spp. Enhance reed biomass production in axenic microcosms. Mol. Plant–Microb. Interact. 2003, 16, 580–587. [Google Scholar] [CrossRef]
- Gao, K.X.; Mendgen, K. Seed-transmitted beneficial endophytic Stagonospora sp. can penetrate the walls of the root epidermis, but does not proliferate in the cortex, of Phragmites australis. Botany 2006, 84, 981–988. [Google Scholar] [CrossRef]
- Weber, R.W.S.; Stenger, E.; Meffert, A.; Hahn, M. Brefeldin a production by Phoma medicaginis in dead pre-colonized plant tissue: A strategy for habitat conquest? Mycol. Res. 2004, 108, 662–671. [Google Scholar] [CrossRef]
- Photita, W.; Lumyong, S.; Lumyong, P.; Hyde, K.D. Endophytic fungi of wild banana (Musa acuminata) at doi Suthep Pui National Park, Thailand. Mycol. Res. 2001, 105, 1508–1513. [Google Scholar] [CrossRef]
- Carroll, G. Fungal endophytes in stems and leaves—From latent pathogen to mutualistic symbiont. Ecology 1988, 69, 2–9. [Google Scholar] [CrossRef]
- Saikkonen, K.; Faeth, S.H.; Helander, M.; Sullivan, T.J. Fungal endophytes: A continuum of interactions with host plants. Annu. Rev. Ecol. Syst. 1998, 29, 319–343. [Google Scholar] [CrossRef]
- Schulz, B.; Boyle, C. The endophytic continuum. Mycol. Res. 2005, 109, 661–686. [Google Scholar] [CrossRef] [PubMed]
- Higgins, K.L.; Arnold, A.E.; Miadlikowska, J.; Sarvate, S.D.; Lutzoni, F. Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Mol. Phylogenet. Evol. 2007, 42, 543–555. [Google Scholar] [CrossRef]
- Redman, R.S.; Ranson, J.C.; Rodriguez, R.J. Conversion of the pathogenic fungus Colletotrichum magna to a nonpathogenic, endophytic mutualist by gene disruption. Mol. Plant–Microb. Interact. 1999, 12, 969–975. [Google Scholar] [CrossRef]
- Freeman, S.; Rodrigues, R.J. Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist. Science 1993, 260, 75–78. [Google Scholar] [CrossRef]
- Baron, N.C.; Rigobelo, E.C. Endophytic Fungi: A Tool for Plant Growth Promotion and Sustainable Agriculture. Mycology 2022, 13, 39–55. [Google Scholar] [CrossRef]
- Collinge, D.B.; Jensen, B.; Jørgensen, H.J. Fungal Endophytes in Plants and Their Relationship to Plant Disease. Curr. Opin. Microbiol. 2022, 69, 102177. [Google Scholar] [CrossRef]
- Mengistu, A.A. Endophytes: Colonization, behaviour, and their role in defense mechanism. Int. J. Microbiol. 2020, 2020, 6927219. [Google Scholar] [CrossRef]
- Rai, M.; Agarkar, G. Plant-fungal interactions: What triggers the fungi to switch among lifestyles? Crit. Rev. Microbiol. 2016, 42, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Hiruma, K.; Gerlach, N.; Sacristán, S.; Nakano, R.T.; Hacquard, S.; Kracher, B.; Neumann, U.; Ramírez, D.; Bucher, M.; O’Connell, R.J.; et al. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 2016, 165, 464–474. [Google Scholar] [CrossRef]
- Shi, X.; Qin, T.; Gao, Y.; Zhao, N.; Ren, A. Comparative genome and transcriptome analysis of the endophytic fungus Epichloë sibirica reveals biological control mechanism in host Achnatherum sibiricum. Biol. Control 2025, 205, 105778. [Google Scholar] [CrossRef]
- Newfeld, J.; Ujimatsu, R.; Hiruma, K. Uncovering the host range–lifestyle relationship in the endophytic and anthracnose pathogenic genus Colletotrichum. Microorganisms 2025, 13, 428. [Google Scholar] [CrossRef]
- Kaul, S.; Sharma, T.; Dhar, M.K. “Omics” tools for better understanding the plant–endophyte interactions. Front. Plant Sci. 2016, 7, 955. [Google Scholar] [CrossRef]
- Delaye, L.; García-Guzmán, G.; Heil, M. Endophytes versus biotrophic and necrotrophic pathogens—Are fungal lifestyles evolutionarily stable traits? Fungal Diver. 2013, 60, 125–135. [Google Scholar] [CrossRef]
- Stukenbrock, E.H.; McDonald, B.A. The origins of plant pathogens in agro-ecosystems. Annu. Rev. Phytopathol. 2008, 46, 75–100. [Google Scholar] [CrossRef]
- Eaton, C.J.; Cox, M.P.; Scott, B. What triggers grass endophytes to switch from mutualism to pathogenism? Plant Sci. 2011, 180, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Kogel, K.H.; Franken, P.; Hückelhoven, R. Endophyte or parasite–what decides? Curr. Opin. Plant Biol. 2006, 9, 358–363. [Google Scholar] [CrossRef]
- Choi, O.; Choi, O.; Kwak, Y.-S.; Kim, J.; Kwon, J.-H. Spot anthracnose disease caused by Colletotrichum gloeosporioides on tulip tree in Korea. Mycobiology 2012, 40, 82–84. [Google Scholar] [CrossRef]
- Guozhong, L.U.; Cannon, P.F.; Alex, R.E.I.D.; Simmons, C.M. Diversity and molecular relationships of endophytic Colletotrichum isolates from the Iwokrama Forest Reserve, Guyana. Mycol. Res. 2004, 108, 53–63. [Google Scholar]
- Torres-Mendoza, D.; Ortega, H.E.; Cubilla-Rios, L. Patents on endophytic fungi related to secondary metabolites and biotransformation applications. J. Fungi 2020, 6, 58. [Google Scholar] [CrossRef]
- Moraga, J.; Gomes, W.; Pinedo, C.; Cantoral, J.M.; Hanson, J.R.; Carbú, M.; Garrido, C.; Durán-Patrón, R.; Collado, I.G. The current status on secondary metabolites produced by plant pathogenic Colletotrichum species. Phytochem. Rev. 2019, 18, 215–239. [Google Scholar] [CrossRef]
- Kim, J.W.; Shim, S.H. The fungus Colletotrichum as a source for bioactive secondary metabolites. Arch. Pharm. Res. 2019, 42, 735–753. [Google Scholar] [CrossRef] [PubMed]
- Bhalkar, B.N.; Patil, S.M.; Govindwar, S.P. Camptothecine production by mixed fermentation of two endophytic fungi from Nothapodytes nimmoniana. Fungal Biol. 2016, 120, 873–883. [Google Scholar] [CrossRef] [PubMed]
- Numponsak, T.; Kumla, J.; Suwannarach, N.; Matsui, K.; Lumyong, S. Biosynthetic pathway and optimal conditions for the production of indole-3-acetic acid by an endophytic fungus, Colletotrichum fructicola CMU-A109. PLoS ONE 2018, 13, e0205070. [Google Scholar] [CrossRef]
- Velho, A.C.; Mondino, P.; Stadnik, M.J. Extracellular enzymes of Colletotrichum fructicola isolates associated to apple bitter rot and Glomerella leaf spot. Mycology 2018, 9, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Jiang, H.; Li, X.; Lu, Q.; Wang, X.; Wang, Y. Draft genome sequence of Colletotrichum fructicola causing leaf spot on tea plants (Camellia sinensis). Plant Pathol. 2024, 73, 144–156. [Google Scholar] [CrossRef]
- Liang, X.; Shang, S.; Dong, Q.; Wang, B.; Zhang, R.; Gleason, M.L.; Sun, G. Transcriptomic analysis reveals candidate genes regulating development and host interactions of Colletotrichum fructicola. BMC Genom. 2018, 19, 1–21. [Google Scholar] [CrossRef]
- Shih, J.; Wei, Y.; Goodwin, P.H. A comparison of the pectate lyase genes, pel-1 and pel-2, of Colletotrichum gloeosporioides f. sp. malvae and the relationship between their expression in culture and during necrotrophic infection. Gene 2000, 243, 139–150. [Google Scholar] [CrossRef]
- Huang, J.S. Chapter 2, Degradation of cell walls by plant pathogens. In Plant Pathogenesis and Resistance: Biochemistry and Physiology of Plant-Microbe Interactions; Springer: Dordrecht, The Netherlands, 2001; pp. 51–130. [Google Scholar]
- Kubicek, C.P.; Starr, T.L.; Glass, N.L. Plant cell wall–degrading enzymes and their secretion in plant-pathogenic fungi. Annu. Rev. Phytopathol. 2014, 52, 427–451. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.K.S.; Balio, A.; Graniti, A. Phytotoxins in Plant Disease; Academic Press: New York, NY, USA, 1972; p. 530. [Google Scholar]
- Evidente, A.; Cimmino, A.; Masi, M. Phytotoxins produced by pathogenic fungi of agrarian plants. Phytochem. Rev. 2019, 18, 843–870. [Google Scholar] [CrossRef]
- Möbius, N.; Hertweck, C. Fungal phytotoxins as mediators of virulence. Curr. Opin. Plant Biol. 2009, 12, 390–398. [Google Scholar] [CrossRef]
- Gohbara, M.; Hyeon, S.B.; Suzuki, A.; Tamura, S. Isolation and structure elucidation of colletopyrone from Colletotrichum nicotianae. Agric. Biol. Chem. 1976, 40, 1453–1455. [Google Scholar] [CrossRef]
- Gohbara, M.; Kosuge, Y.; Yamasaki, S.; Kimura, Y.; Suzuki, A.; Tamura, S. Isolation, structures and biological activities of colletotrichins, phytotoxic substances from Colletotrichum nicotianae. Agric. Biol. Chem. 1978, 42, 1037–1043. [Google Scholar] [CrossRef]
- Masi, M.; Cimmino, A.; Boari, A.; Zonno, M.C.; Gorecki, M.; Pescitelli, G.; Tuzi, A.; Vurro, M.; Evidente, A. Colletopyrandione, a new phytotoxic tetrasubstituted indolylidenepyran-2,4-dione, and colletochlorins G and H, new tetrasubstituted chroman- and isochroman-3,5-diols isolated from Colletothichum higginsianum. Tetrahedron 2017, 73, 6644–6650. [Google Scholar] [CrossRef]
- Singh, S.; Singh, N.; Kumar, V.; Datta, S.; Wani, A.B.; Singh, D.; Singh, K.; Singh, J. Toxicity, monitoring and biodegradation of the fungicide carbendazim. Environ. Chem. Lett. 2016, 14, 317–329. [Google Scholar] [CrossRef]
- Tian, S.; Torres, R.; Ballester, A.R.; Li, B.; Vilanova, L.; Gonz’alez-Candelas, L. Molecular aspects in pathogen-fruit interactions: Virulence and resistance. Postharvest Biol. Technol. 2016, 122, 11–21. [Google Scholar] [CrossRef]
- Dowling, M.; Peres, N.; Villani, S.; Schnabel, G. Managing Colletotrichum on fruit crops: A complex challenge. Plant Dis. 2020, 104, 2301–2316. [Google Scholar] [CrossRef]
- Han, Y.C.; Zeng, X.G.; Xiang, F.Y.; Zhang, Q.H.; Guo, C.; Chen, F.Y.; Gu, Y.C. Carbendazim sensitivity in populations of Colletotrichum gloeosporioides complex infecting strawberry and yams in Hubei Province of China. J. Integr. Agric. 2018, 17, 1391–1400. [Google Scholar] [CrossRef]
- Hu, M.J.; Grabke, A.; Dowling, M.E.; Holstein, H.J.; Schnabel, G. Resistance in Colletotrichum siamense from peach and blueberry to thiophanate-methyl and azoxystrobin. Plant Dis. 2015, 99, 806–814. [Google Scholar] [CrossRef]
- Ren, L.; Wang, S.F.; Shi, X.J.; Cao, J.Y.; Zhou, J.B.; Zhao, X.J. Characterization of sensitivity of Colletotrichum gloeosporioides and Colletotrichum capsici, causing pepper anthracnose, to picoxystrobin. J. Plant Dis. Prot. 2020, 127, 657–666. [Google Scholar] [CrossRef]
- Jiang, H.; Meng, X.; Ma, J.; Sun, X.; Wang, Y.; Hu, T.; Cao, K.; Wang, S. Control effect of fungicide pyraclostrobin alternately applied with Bordeaux mixture against apple Glomerella leaf spot and its residue after preharvest application in China. Crop Prot. 2021, 142, 105489. [Google Scholar] [CrossRef]
- Usman, H.M.; Tan, Q.; Karim, M.M.; Adnan, M.; Yin, W.X.; Zhu, F.X.; Luo, C.X. Sensitivity of Colletotrichum fructicola and Colletotrichum siamense of peach in China to multiple classes of fungicides and characterization of pyraclostrobin-resistant isolates. Plant Dis. 2021, 105, 3459–3465. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, K.A.R.; Berger, L.R.R.; de Araújo, S.A.; Câmara, M.P.S.; de Souza, E.L. Synergistic mixtures of chitosan and Mentha piperita L. essential oil to inhibit Colletotrichum species and anthracnose development in mango cultivar Tommy Atkins. Food Microbiol. 2017, 66, 96–103. [Google Scholar] [CrossRef]
- Oliveira, P.D.L.; de Oliveira, K.Á.R.; Vieira, W.A.D.S.; Câmara, M.P.S.; de Souza, E.L. Control of anthracnose caused by Colletotrichum species in guava, mango and papaya using synergistic combinations of chitosan and Cymbopogon citratus (D.C. exNees) Stapf. essential oil. Int. J. Food Microbiol. 2018, 266, 87–94. [Google Scholar] [CrossRef]
- Issouffou, C.; Suwansri, S.; Salaipeth, L.; Domig, K.J.; Hwanhlem, N. Synergistic effect of essential oils and enterocin KT2W2G on the growth of spoilage microorganisms isolated from spoiled banana peel. Food Control 2018, 89, 260–269. [Google Scholar] [CrossRef]
- da Costa Gonçalves, D.; Ribeiro, W.R.; Goncalves, D.C.; Menini, L.; Costa, H. Recent advances and future perspective of essential oils in control Colletotrichum spp.: A sustainable alternative in postharvest treatment of fruits. Food Res. Int. 2021, 150, 110758. [Google Scholar] [CrossRef]
- Pei, S.; Liu, R.; Gao, H.; Chen, H.; Wu, W.; Fang, X.; Han, Y. Inhibitory effect and possible mechanism of carvacrol against Colletotrichum fructicola. Postharvest Biol. Technol. 2020, 163, 111126. [Google Scholar] [CrossRef]
- Shi, X.C.; Wang, S.Y.; Duan, X.C.; Wang, Y.Z.; Liu, F.Q.; Laborda, P. Biocontrol strategies for the management of Colletotrichum species in postharvest fruits. Crop Prot. 2021, 141, 105454. [Google Scholar] [CrossRef]
- Hirayama, Y.; Asano, S.; Watanabe, K.; Sakamoto, Y.; Ozaki, M.; Okayama, K.O.; Ohki, S.T.; Tojo, M. Control of Colletotrichum fructicola on strawberry with a foliar spray of neutral electrolyzed water through an overhead irrigation system. J. Gen. Plant Pathol. 2016, 82, 186–189. [Google Scholar] [CrossRef]
- Valencia-Chamorro, S.; Chicaiza, G.; Vilaplana, R. Control of postharvest anthracnose in papayas (Carica papaya L.) by hot water and chitosan. Acta Hortic. 2021, 1325, 141–146. [Google Scholar] [CrossRef]
- Cao, Y.; Song, X.; Xu, G.; Zhang, X.; Yan, H.; Feng, J.; Ma, Z.; Liu, X.; Wang, Y. Study on the antifungal activity and potential mechanism of natamycin against Colletotrichum fructicola. J. Agric. Food Chem. 2023, 71, 17713–17722. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, T.; Xu, H.; Xu, G.; Qian, G.; Liu, F. Characterization of Lysobacter spp. strains and their potential use as biocontrol agents against pear anthracnose. Microbiol. Res. 2021, 242, 126624. [Google Scholar] [CrossRef]
- Zhou, A.; Wang, F.; Yin, J.; Peng, R.; Deng, J.; Shen, D.; Wu, J.; Liu, X.; Ma, H. Antifungal action and induction of resistance by Bacillus sp. strain YYC 155 against Colletotrichum fructicola for control of anthracnose disease in Camellia oleifera. Front. Microbiol. 2022, 13, 956642. [Google Scholar] [CrossRef]
- Rabha, A.J.; Naglot, A.; Sharma, G.D.; Gogoi, H.K.; Veer, V. In vitro evaluation of antagonism of endophytic Colletotrichum gloeosporioides against potent fungal pathogens of Camellia sinensis. Indian J. Microbiol. 2014, 54, 302–309. [Google Scholar] [CrossRef] [PubMed]
- da Silva Santos, S.D.S.; da Silva, A.A.; Polonio, J.C.; Polli, A.D.; Orlandelli, R.C.; Dos Santos Oliveira, J.A.D.S.; Brandão Filho, J.U.T.; Azevedo, J.L.; Pamphile, J.A. Influence of plant growth-promoting endophytes Colletotrichum siamense and Diaporthe masirevici on tomato plants (Lycopersicon esculentum Mill.). Mycology 2022, 13, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Gu, K.-X.; Song, X.-S.; Xiao, X.-M.; Duan, X.-X.; Wang, J.-X.; Duan, Y.-B.; Hou, Y.-P.; Zhou, M.-G. A β2-tubulin dsRNA derived from Fusarium asiaticum confers plant resistance to multiple phytopathogens and reduces fungicide resistance. Pestic. Biochem. Phys. 2019, 153, 36–46. [Google Scholar] [CrossRef]
- Mahto, B.K.; Singh, A.; Pareek, M.; Rajam, M.V.; Dhar-Ray, S.; Reddy, P.M. Host-induced silencing of the Colletotrichum gloeosporioides conidial morphology 1 gene (CgCOM1) confers resistance against Anthracnose disease in chilli and tomato. Plant Mol. Biol. 2020, 104, 381–395. [Google Scholar] [CrossRef]
- Qiao, L.; Lan, C.; Capriotti, L.; Ah-Fong, A.; Nino Sanchez, J.; Hamby, R.; Heller, J.; Zhao, H.; Glass, N.L.; Judelson, H.S.; et al. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake. Plant Biotechnol. J. 2021, 19, 1756–1768. [Google Scholar] [CrossRef]
- Goulin, E.H.; de Lima, T.A.; dos Santos, P.J.C.; Machado, M.A. RNAi-induced silencing of the succinate dehydrogenase subunits gene in Colletotrichum abscissum, the causal agent of postbloom fruit drop (PFD) in citrus. Microbiol. Res. 2022, 260, 126938. [Google Scholar] [CrossRef] [PubMed]
- Ciofini, A.; Negrini, F.; Baroncelli, R.; Baraldi, E. Management of post-harvest anthracnose: Current approaches and future perspectives. Plants 2022, 11, 1856. [Google Scholar] [CrossRef] [PubMed]
- Vineeth, V.K.; Reshma, T.R.; Babu, S.; Philip, S.; Mahadevan, C. Comprehensive whole-genome sequencing reveals genetic characteristics of Colletotrichum fructicola (Nara gc5) the causative organism of circular leaf spot disease of rubber (Hevea brasiliensis). J. Plant Pathol. 2024, 106, 579–591. [Google Scholar] [CrossRef]
- Li, Q.; Bu, J.; Yu, Z.; Tang, L.; Huang, S.; Guo, T.; Mo, J.; Hsiang, T. Draft genome sequence of an isolate of Colletotrichum fructicola, a causal agent of mango anthracnose. Genome Announc. 2018, 6, 10–1128. [Google Scholar] [CrossRef]
- Armitage, A.D.; Nellist, C.F.; Bates, H.J.; Zhang, L.; Zou, X.; Gao, Q.H.; Harrison, R.J. Draft genome sequence of the strawberry anthracnose pathogen Colletotrichum fructicola. Microbiol. Resour. Announc. 2020, 19, 01598-19. [Google Scholar] [CrossRef]
Plant Part | Symptom |
---|---|
Fruits |
|
Leaves |
|
Stems/Twig |
|
Diseases | Countries | References |
---|---|---|
Glomerella leaf spot | Brazil (culture collection of the Federal University of Santa Catarina) and Uruguay (culture collection of the University of the Republic) | [38] |
Glomerella leaf spot and bitter rot | Uruguay | [39] |
Glomerella leaf spot | Southern Brazil, Brazil, Uruguay | [34,37] |
Glomerella leaf spot and bitter rot | Liaoning, Shandong, Henan, and Shaanxi, China | [47] |
Bitter rot | Henan Province, China | [48] |
Bitter rot (Honeycrisp, Jona Gold, Jonathan, Gibson Golden, Empire, Pink Lady, and Granny Smith) | Kentucky, USA | [49] |
Bitter rot | Japan | [50] |
Bitter rot | Republic of Korea | [51] |
Bitter rot | Andong, Republic of Korea | [52] |
Bitter rot (Joya Cripps Red, Granny Smith, and Pink Lady) | Region of Occitanie, France | [41] |
Bitter rot | Cheongsong, Republic of Korea | [53] |
Anthracnose (Fuji, Granny Smith, Red Delicious, Cripps Pink, and Early Red One) | Montevideo, Canelones, Uruguay | [43] |
Anthracnose (Fuji) | Sangju, Republic of Korea | [44] |
Anthracnose (Fuji, Tsugaru, and Hongro) | Gyeongbuk Province, Republic of Korea | [45] |
Fruit rot (Pink Lady) | Emilia-Romagna (Northern Italy) | [46] |
Species | Diseases | Countries | References |
---|---|---|---|
Grapes (Vitis vinifera) |
Anthracnose/ripe rot (fruit and leaf) | Guizhou and Yunnan Provinces, China | [60] |
Grapes (V. vinifera) | Anthracnose (leaf and shoot) | Santa Catarina State, Southern Brazil | [61] |
Shine muscat (V. labruscana × V. vinifera) | Anthracnose (fruit) | Daegu, Republic of Korea | [62] |
Grapes (V. labrusca and V. vinifera) |
Ripe rot (fruit) | Southern Brazil | [59] |
Grapes (V. vinifera) |
Ripe rot (fruit) | Nagano Prefecture, Japan | [63] |
Grapes (V. vinifera ‘Kyoho’) | Anthracnose (fruit) | Hangzhou, Taizhou, Jinhua, and Shaoxing (Zhejiang Province, China) | [57] |
Species | Diseases | Countries | References |
---|---|---|---|
Pear (Pyrus pyrifolia and P. bretschneideri) | Black spot/bitter rot (fruit) | Anhui, Fujian, Hubei, Jiangsu, Jiangxi, and Zhejiang, China | [64] |
Pear (P. bretschneideri Rehd. var. ‘Suli’) | Black spot/bitter rot (fruit) | Dangshan County, Anhui Province, China | [65] |
Pear (P. pyrifolia × P. communis) | Anthracnose (fruit) | Naju, Jeonnam Province, Republic of Korea | [66] |
Pear (P. bretschneideri) | Bitter rot (fruit) | Dangshan County, Anhui Province, China | [67] |
Sandy pear (P. pyrifolia Nakai) | Leaf black spot (leaf) | Southern China | [68] |
Citrus spp. | Diseases | Countries | References |
---|---|---|---|
Citrus bergamia and Ci. grandis | Anthracnose (leaf) | Guizhou and Yunnan Provinces, China. | [69] |
Citrus spp. and Fortunella spp. | Anthracnose (fruit, leaf, and shoot) |
Zhejiang, Jiangxi, Guangdong, Guangxi, Yunnan, Fujian, and Shaanxi Provinces (China) | [70] |
Ci. sinensis | Anthracnose (fruit) | Shimen, Changde, Hunan Province, China | [71] |
Citrus spp. | Anthracnose (leaf, fruit, and stem) | Golestan, Mazandaran, Guilan, and Kerman Provinces, Iran | [73] |
Citrus spp. | Anthracnose (fruit and leaf) | Tunisia | [74] |
Ci. reticulata | Anthracnose (fruit) | Australia | [75] |
Diseases | Countries | References |
---|---|---|
Anthracnose (fruit, leaf, and seedling) | Anhui, Hainan, Hebei, Hubei, Liaoning, and Shandong Provinces, and Beijing, Shanghai, China | [83] |
Anthracnose (leaf and petiole) | Hubei, China | [84] |
Anthracnose (diseased plant) | Chiba Prefecture, Japan | [79] |
Anthracnose (leaf) | Shandong Province, China | [85] |
Anthracnose (leaf and stolon) | Sichuan Province, China | [78] |
Anthracnose (leaf) | Zhejiang Province, China | [86] |
Anthracnose (leaf and petiole) | Eastern China | [77] |
Anthracnose (leaf) | Miaoli, Hsinchu, Nantou, and Chiayi Counties, Taiwan | [87] |
Anthracnose (leaf and crown) | Jiande and Zhoushan, Zhejiang Province, China | [88] |
Crown rot | Zhoushan, Jiande, and Yuhang, Zhejiang Province, China | [81] |
Crown rot | Florida, USA | [82] |
Fruit Crops | Diseases | Countries | References |
---|---|---|---|
Mango (Mangifera indica) | Anthracnose (fruit) | Aurangabad Maharashtra, India | [90] |
Anthracnose (fruit) | Oaxaca State, Mexico | [91] | |
Anthracnose (fruit) | Brazil | [92] | |
Anthracnose (fruit) | São Francisco Valley, Assú Valley, and Zona da Mata Pernambucana, northeastern Brazil | [93] | |
Anthracnose (fruit) | Uttar Pradesh, Delhi, Chandigarh U.T., Gujarat, Maharashtra, and Goa States, India | [15] | |
Anthracnose (leaf and fruit) | Guangxi, China | [94] | |
Anthracnose (fruit) | Jeju, Republic of Korea | [95] | |
Anthracnose (fruit) | Mexico | [96] | |
Anthracnose (leaf) | Luzon, Visayas, and Mindanao, Philippines | [97] | |
Black spot (young leaves) | Wady El-Mollak, Egypt | [98] | |
Anthracnose (fruit) | Taiwan | [99] | |
Rambutan (Nephelium lappaceum) | Fruit rot | Puerto Rico | [100] |
Pineapple (Ananas comosus) | Fruit rot and leaf-tip dieback | Northern Thailand | [101] |
Watermelon (Citrullus lanatus) | Anthracnose (fruit, stem, leaf) | Henan, Jiangsu, Zhejiang, Jilin, Liaoning, Hebei, Jiangxi, and Hainan, China | [102] |
Passion fruit (Passiflora edulis) | Anthracnose (fruit) | Zhenfeng, Qianxinan, and Guizhou Provinces, China | [103] |
Dragon fruits (Hylocereus undatus and H. monacanthus) | Anthracnose | Philippines | [104] |
Fig (Ficus carica L.) | Leaf blight | Malaysia | [105] |
Cherry (Prunus avium) | Leaf spot/ anthracnose | Taizhou Academy of Agriculture Sciences, Zhejiang, China. | [106] |
Leaf spot | Beijing City, Sichuan, Shandong, and Liaoning Provinces, China | [107] | |
Persimmon (Diospyros kaki) | Anthracnose (young twig, fruit, and flower) | São Paulo and Paraná States, Brazil | [108] |
Anthracnose (fruit) | Philippines | [109] | |
Avocado (Persea americana) | Anthracnose (fruit) | Taiwan | [110] |
Anthracnose (leaf and fruit) | Chiang Rai Province, Thailand | [111] | |
Indian jujube (Ziziphus mauritiana) | Leaf spot | Nanning, Guangxi, China | [112] |
Jute-leaved raspberry (Rubus corchorifolius) | Leaf spot | Longquan County, Zhejiang Province, China | [113] |
Eggfruit/canistel (Pouteria campechiana) | Leaf spot | Baoshan, Yunnan, China | [114] |
Chinese bayberry (Myrica rubra) | Leaf spot | Jiujiang City, Jiangxi Province, China | [115] |
Carambola (Averrhoa carambola) | Anthracnose (fruit) | Yuancun District, Guangzhou, China | [116] |
Pomegranate (Punica granatum L.) | Leaf spot/ anthracnose | Jiangxi Agricultural University, Nanchang, Jiangxi Province, China | [117] |
Litchi (Litchi chinensis Sonn.) | Anthracnose (leaf) | Qinzhou City, Guangxi Province, Southern China | [118] |
Kiwifruit (Actinidia deliciosa) | Anthracnose (leaf and fruit) | Kagawa Prefecture, Japan | [119] |
Siberian apricot (Prunus sibirica L.) | Shot hole leaf | Chengdu, Sichuan Province, China | [89] |
Diseases | Countries | References |
---|---|---|
Anthracnose (berries) | Northern Thailand | [18] |
Fruit rot (berries) | Puerto Rico | [120] |
Camellia spp. | Diseases | Countries | References |
---|---|---|---|
Camellia sinensis | Anthracnose (leaf) | Fujian Province, China | [125] |
Anthracnose (leaf) | China | [6] | |
Anthracnose (leaf) | China | [126] | |
Anthracnose (leaf) | Zhejiang Province, China. | [127] | |
Anthracnose (leaf) | Guanxi Township, Hsinchu County, Taiwan | [123] | |
Brown blight (foliar blight) | Taiwan | [128] | |
Ca. yuhsienensis | Anthracnose (leaf) | Youxian, Zhuzhou, Hunan Province, China | [124] |
Ca. oleifera | Anthracnose (leaf and fruit) | Southern China | [129] |
Anthracnose (leaf) | Wenchang, Qiongzhong, and Wuzhishan, Hainan Province, China | [130] | |
Camellia spp. | Anthracnose (leaf) | Jiaoling County, Guangdong Province, China | [122] |
Ca. chrysantha | Anthracnose (leaf) | Fangchenggang City, Guangxi Zhuang Autonomous Region of China | [131] |
Ca. oleifera, Ca. sinensis, and Ca. japonica | Anthracnose (leaf) | Zhejiang, Jiangxi, Yunnan, and Shanghai, China | [132] |
Vegetable Crops | Diseases | Countries | References |
---|---|---|---|
Chili (Capsicum annuum) | Anthracnose (fruit) | Southern India | [133] |
Cap. annuum var. Arka Lohit | Anthracnose | Karnataka, India | [134] |
Capsicum spp. | Anthracnose | Sichuan Province, China | [135] |
Capsicum spp. | Anthracnose (fruit and leaf) | 29 districts in China | [136] |
Cap. annuum | Fruit rot | Northwestern Himalayan Region, India | [137] |
Green and red Cap. annuum and Cap. frutescens | Anthracnose | Peninsula Malaysia | [138] |
Cap. annuum | Anthracnose | Fujian, China | [139] |
Capsicum spp. | Anthracnose (fruit) | North-Central Vietnam | [140] |
Culinary melon (Cucumis melo var. acidulus) | Anthracnose (leaf spot) | Thiruvananthapuram District, Kerala, India | [141] |
Japanese pickling melon (Cucumis melo var. conomon) | Anthracnose (fruit) | Kyoto, Japan | [142] |
Luffa sponge gourd (Luffa cylindrica) | Anthracnose (leaf) | Hunan Province, China | [143] |
Chinese flowering cabbage (Brassica parachinensis) | Anthracnose (leaf) | Guangdong Province, southern China | [144] |
Ornamentals | Diseases | Countries | References |
---|---|---|---|
Orchidaceae | |||
Cattleya | Anthracnose (leaf) | Alagoas, northeastern region of Brazil | [145] |
Phalaenopsis | Anthracnose (petal) | Alagoas, northeastern region of Brazil | [145] |
Bletilla striata | Anthracnose (leaf) | Zunyi and Xingyi, Guizhou Province, China | [146] |
Bletilla striata | Leaf spot/Anthracnose | Guilin, Guangxi Province, China | [147] |
Dendrobium officinale | Anthracnose (leaf) | Ningguo City, Anhui Province, China | [148] |
Crinum asiaticum | Leaf and stem rot | Nanning Botanical Garden of Medicinal Plants, Guangxi Province, China | [149] |
Other ornamental plants | |||
Salvia leucantha (Mexican bush sage), S. nemorosa (woodland sage), and S. greggii (Autumn sage) | Leaf spot/ anthracnose | Northern Italy | [150] |
Mandevilla × amabilis | Anthracnose (leaf) | Nanning, Guangxi, China | [151] |
Ceanothus thyrsiflorus (blue blossom), Hydrangea paniculata (hortensia), Cyclamen persicum (cyclamen), and Liquidambar styraciflua (American sweetgum) | Leaf spot/ anthracnose | Northern Italy | [152] |
Liriodendron chinense × tulipifera (Chinese tulip tree) | Leaf spot | Nanjing Forestry University, Jiangsu Province, China | [153] |
Magnolia wufengensis (China red) | Leaf spot | Yuyangguan Township, Wufeng County, Hubei Province, China | [154] |
Ixora chinensis (Chinese Ixora) | Leaf spot/ anthracnose | Nanning, Guangxi, China | [155] |
Rosa chinensis (China rose) | Leaf spot/ anthracnose | Nanyang Academy of Agricultural Sciences in Nanyang, Henan Province, China | [156] |
Paeonia lactiflora (peony) | Anthracnose (leaf) | Poyang County, Shangrao City, Jiangxi Province, China | [157] |
Osmanthus fragrans (fragrant olive) | Anthracnose (leaf) | Quanjiao, China | [158] |
Salix babylonica (weeping willow) | Anthracnose (leaf) | Jiangsu, Shandong, Hubei Province, China | [159] |
Nuts | Diseases | Countries | References |
---|---|---|---|
Tree nuts | |||
Walnuts (Juglans regia L.) | Anthracnose (fruit and leaf) | Jinan, Shandong, China | [160] |
Pecan (Carya illinoinensis) | Anthracnose (fruit and leaf) | Jiande, Zhejiang Province; Ji’an, Jiangxi Province; and Yuxi, Yunnan Province, China | [161] |
Peanut | |||
Peanut (Arachis hypogaea L.) | Leaf spot/ anthracnose | Xuzhou Academy of Agriculture Sciences, Jiangsu, China | [162] |
Macadamia (Macadamia ternifolia) | Anthracnose (leaf) | Changping, Fangshan, Haidian, Huairou, Mentougou, Miyun, and Pinggu: districts in Beijing, China | [163] |
Chinese hickory (Carya cathayensis) | Leaf spot/ anthracnose | Huzhou, Zhejiang, China | [164] |
Medicinal Plants | Diseases | Countries | References |
---|---|---|---|
Paris polyphylla Smith var. chinensis | Leaf and stem rot | Guangze and Shaxian Counties, China | [165] |
Amomum villosum | Leaf spot | Guangxi Province, China | [166] |
Kadsura coccinea | Leaf spot | Longan, Guangxi, China | [167] |
Ficus hirta (hairy fig) | Leaf spot/ anthracnose | Qinzhou and Zhanjiang Cities, China | [168] |
Smilax glabra (sarsaparilla) | Leaf spot | Qinzhou City, Guangxi Province, China | [169] |
Callerya speciosa (climbing shrub) | Leaf spot | Nanning, Guangxi, China | [170] |
Epimedium sagittatum | Leaf spot | Zhumadian City, China | [171] |
Weeds | Diseases | Countries | References |
---|---|---|---|
Eichhornia crassipes (water hyacinth) | Leaf spot, stem rot, crown rot, and petiole rot | Minjiang and Xiyuanjiang, Fuzhou, China | [172] |
Amaranthus blitum (pigweed) | Leaf spot | Nara, Japan | [173] |
Bromus japonicus Thunb. (Japanese brome) | Leaf spot/ anthracnose | Wuqing District, Tianjin, China | [174] |
Crops/Plants | Diseases | Countries | References |
---|---|---|---|
Common bean (Phaseolus vulgaris) and cowpea (Vigna unguiculata) | Anthracnose | Mazandaran, Guilan, and Zanjan Provinces, Iran | [175] |
Tobacco (Nicotiana tabacum) | Anthracnose (leaf) | Guizhou, China | [176] |
White jute (Corchorus capsularis) | Anthracnose (leaf and stem) | Fujian, Henan, Guangxi, and Zhejiang Provinces, China | [177] |
Japanese fatsia (Fatsia japonica) | Leaf spot | Fujian Province, China | [178] |
Tree-like cactus (Nopalea cochenillifera) | Cladode brown spot | Pernambuco, Brazil | [179] |
Climbing shrub (Callerya speciosa) | Leaf spot | Nanning, Guangxi, China | [170] |
Aesculus chinensis (landscaping tree) | Leaf blotch | China | [180] |
Eucalyptus dunnii, Eu. nitens, and Eu. macarthurii | Leaf spot | South Africa | [181] |
Dalbergia hupeana (wood and medicinal tree) | Leaf spot | Jiangxi Province, China | [182] |
Star anise (Illicium verum) | Leaf spot | Shanglin and Jinxiu Counties, Guangxi Province, China | [183] |
Spotted laurel (Aucuba japonica) | Anthracnose (leaf) | Jeju Island, Republic of Korea | [184] |
Rubber (Hevea brasiliensis) | Anthracnose (leaf) | Yunnan Province, China | [185] |
Soybean (Glycine max) | Anthracnose (pod) | Chongzhou, Sichuan Province, China | [186] |
Soybean | Anthracnose (stem) | Campos Novos, Santa Catarina, Brazil | [187] |
Mangrove tree (Rhizophora apiculata) | Leaf spot | Thailand | [188] |
Tree peony (Paeonia delavayi) | Leaf spot/ anthracnose | Yuxi, Yunnan Province, China | [189] |
Oak (Quercus acutissima, Q. mongolica, and Q. variabilis) | Anthracnose (leaf) | Anhui, Hainan, Henan, Shaanxi, and Shandong Provinces, Inner Mongolia Autonomous Region, and Beijing City, China | [190] |
Manglietia decidua (Magnoliaceae—deciduous tree) | Leaf spot/ anthracnose | Jiangxi Province, China | [191] |
Sorghum (Sorghum bicolor) | Leaf spot | Guizhou Province, Southwest China | [192] |
Torch ginger | Bract | Brazil | [193] |
Genes/Proteins | Diseases/Host Plants | Functions | References |
---|---|---|---|
CfPMK1 [pathogenicity MAPK (PMK)] | Glomerella leaf spot (apple leaf) | Appressorium development, pathogenesis, sexual development, and stress tolerance | [205] |
CfSnf1 (protein kinase) | Anthracnose (tea oil leaf) | Utilization of specific carbon sources, conidiation, appressorium formation, and stress responses | [208] |
CfEC92 (effector) | Glomerella leaf spot (apple fruit and leaf) | Functional at an early stage of infection, appressorium-mediated penetration, differentiation of primary hyphae, and suppresses host plant defense reactions | [194] |
CfSte12 (transcription factor) | Glomerella leaf spot (apple fruit and leaf) | Conidial germination, appressorium formation, appressorium-mediated penetration, colonization, and development of sexual reproductive structures | [209] |
CfVAM7 (SNARE protein) | Anthracnose (tea oil leaf) | Hyphal growth, sporogenesis, appressorium formation, responses to stress, vacuole fusion, and pathogenicity | [210] |
CfSet1 (H3K4 methyltransferase) | Anthracnose (tea oil leaf) | Vegetative growth, asexual reproduction, appressorium formation, and penetration | [211] |
CfGcn5 (histone acetyltransferase) | Anthracnose (tea oil leaf) | Involved in ribosomes, catalytic and metabolic processes, primary metabolism, and autophagy | [212] |
CfMcm1 (transcription factor) | Glomerella leaf spot (apple leaf) | Plays a role in pathogenicity, sexual and asexual reproduction, and melanin synthesis | [213] |
CfAtg5 (autophagy-related protein) | Tea oil leaf and apple fruit | Required for autophagy, growth and conidiation, and appressoria formation | [214] |
CfCpmd1 (transcription factor) | Glomerella leaf spot (apple leaf) | Strain compatibility during sexual reproduction, hyphal growth, sporulation, and formation of appressoria | [215] |
Colletotrichum Species | Primary Host | Cross-Host Infection | References |
---|---|---|---|
C. gloeosporioides, C. siamense, C. fructicola, C. truncatum, C. scovillei, C. brevisporum, C. sichuanensis | chili | pear | [135] |
C. gloeosporioides | avocado | mango | [235] |
mango | avocado | ||
C asianum | coffee | chili and rose apple | [236] |
mango | chili and mango | ||
C. cordylinicola | rose apples | guava, mango, chili, rose apple, papaya | |
Cordyline fruticosa | papaya | ||
C. fructicola | coffee | orange, chili, rose apple, papaya | |
C. fructicola | papaya | orange, chili, rose apple | |
C. fructicola | longan | mango, chili, rose apple, papaya | |
C. siamense | coffee | orange, guava, mango, chili, papaya | |
C. siamense | chili | guava, mango | |
C. simmondsii | papaya | guava, mango, chili, rose apple | |
C. gloeosporioides | acid lime, custard apple, pomegranate, cashew and guava | mango leaves and fruits | [238] |
C. gloeosporioides | limonium | peach, pear, mango, nectarine, and strawberry | [239] |
C. acutatum | strawberry | peach, pear, mango, nectarine, and strawberry | |
C. nymphaeae, C. siamense C. fioriniae | strawberry | apple, blueberry | [240] |
C. fioriniae | blueberry | apple, strawberry | |
C. fioriniae | apple | blueberry, strawberry | |
C. gloeosporioides | mango | tomato | [241] |
C. gloeosporioides | avocado, mango | strawberry, pepper, guava, papaya | [242] |
Endophytic C. fructicola-Produced Biocompounds | ||
---|---|---|
Host Plants | Biocompounds | References |
Nothapodytes nimmoniana | Camptothecin | [295] |
Coffea arabica | Indole-3-acetic acid | [296] |
Bioactivity of pathogenic C. fructicola | ||
Bioactivity | ||
Apple bitter rot and Glomerella leaf spot | Extracellular enzymes (pectin lyase, polygalacturonase, and laccase) | [297] |
Control Methods | Diseases/Crops | Results | References |
---|---|---|---|
Fungicide sensitivity | |||
Mycelia growth
| Strawberry anthracnose (leaf) | Difenoconazole was the most effective for inhibiting the growth of C. fructicola isolates | [85] |
Mycelia growth (µg/mL)
| Strawberry anthracnose (leaf, stolon, and crown) | Difenoconazole and tebuconazole could be used as alternative fungicides to prevent infections | [77] |
Mycelia growth
| Passion fruit anthracnose | Difenoconazole and trifloxystrobin + tebuconazole have the potential to prevent infections | [103] |
Mycelia growth
| Chilli fruit anthracnose | Inhibition of mycelial growth indicated pathogen sensitivity to the fungicides tested | [139] |
Greenhouse trials (preventive efficacy)
| Fungicides tested showed good preventive efficacy to reduce anthracnose incidence | ||
Mycelia growth
| Apple Glomerella leaf spot | Fungicides tested highly inhibited mycelial growth and conidia germination | [315] |
Field trial Alternate application of pyraclostrobin and Bordeaux mixture | Alternate application of pyraclostrobin and Bordeaux mixture was highly effective in controlling the disease | ||
Mycelia growth
| Peach anthracnose | Prochloraz has the potential to control peach anthracnose | [316] |
Mycelia growth
| Apple bitter rot | Provided information on fungicide sensitivity for the effective management of apple bitter rot | [53] |
Essential Oils | Diseases/Crops | Results | References |
---|---|---|---|
Carvacrol:
| Red pitaya fruit anthracnose | Carvacrol showed antifungal activity and the potential to control anthracnose of the red pitaya fruit | [321] |
Lemongrass (Cymbopogon citratus) combined with a chitosan coating inhibited fungal growth, as well as partial and total inhibition of lesion development | Postharvest guava, mango, and papaya | Possibly effective to control postharvest anthracnose development in tested fruits | [318] |
Mint (Mentha piperita) combined with a chitosan coating inhibited mycelial growth and reduced the severity of anthracnose lesions during storage | Mango (Tommy Atkins) anthracnose | Alternative method for controlling anthracnose development during postharvest | [317] |
Mycelial growth (sensitivity to fungicides):
| Sorghum leaf spot | Honokiol, magnolol, thymol, and carvacrol inhibited mycelial growth, indicating good antifungal effects, with honokiol showing the most significant effect | [192] |
Field trial:
| Sorghum leaf spot | Honokiol and magnolol effectively controlled the disease and increased yield | [192] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakaria, L. Plant Pathogenic and Endophytic Colletotrichum fructicola. Microorganisms 2025, 13, 1465. https://doi.org/10.3390/microorganisms13071465
Zakaria L. Plant Pathogenic and Endophytic Colletotrichum fructicola. Microorganisms. 2025; 13(7):1465. https://doi.org/10.3390/microorganisms13071465
Chicago/Turabian StyleZakaria, Latiffah. 2025. "Plant Pathogenic and Endophytic Colletotrichum fructicola" Microorganisms 13, no. 7: 1465. https://doi.org/10.3390/microorganisms13071465
APA StyleZakaria, L. (2025). Plant Pathogenic and Endophytic Colletotrichum fructicola. Microorganisms, 13(7), 1465. https://doi.org/10.3390/microorganisms13071465