Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (401)

Search Parameters:
Keywords = tropical Atlantic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4148 KiB  
Article
Disastrous Effects of Hurricane Helene in the Southern Appalachian Mountains Including a Review of Mechanisms Producing Extreme Rainfall
by Jeff Callaghan
Hydrology 2025, 12(8), 201; https://doi.org/10.3390/hydrology12080201 - 31 Jul 2025
Viewed by 222
Abstract
Hurricane Helene made landfall near Perry (Latitude 30.1 N) in the Big Bend area of Florida with a central pressure of 939 hPa. It moved northwards creating devastating damage and loss of life; however, the greatest damage and number of fatalities occurred well [...] Read more.
Hurricane Helene made landfall near Perry (Latitude 30.1 N) in the Big Bend area of Florida with a central pressure of 939 hPa. It moved northwards creating devastating damage and loss of life; however, the greatest damage and number of fatalities occurred well to the north around the City of Ashville (Latitude 35.6 N) where extreme rainfall fell and some of the strongest wind gusts were reported. This paper describes the change in the hurricane’s structure as it tracked northwards, how it gathered tropical moisture from the Atlantic and a turning wind profile between the 850 hPa and 500 hPa elevations, which led to such extreme rainfall. This turning wind profile is shown to be associated with extreme rainfall and loss of life from drowning and landslides around the globe. The area around Ashville suffered 157 fatalities, which is a considerable proportion of the 250 fatalities so far recorded in the whole United Stares from Helene. This is of extreme concern and should be investigated in detail as the public expect the greatest impact from hurricanes to be confined to coastal areas near the landfall site. It is another example of increased death tolls from tropical cyclones moving inland and generating heavy rainfall. As the global population increases and inland centres become more urbanised, run off from such rainfall events increases, which causes greater devastation. Full article
Show Figures

Figure 1

17 pages, 3919 KiB  
Article
On the Links Between Tropical Sea Level and Surface Air Temperature in Middle and High Latitudes
by Sergei Soldatenko, Genrikh Alekseev and Yaromir Angudovich
Atmosphere 2025, 16(8), 913; https://doi.org/10.3390/atmos16080913 - 28 Jul 2025
Viewed by 197
Abstract
Change in sea level (SL) is an important indicator of global warming, since it reflects alterations in several components of the climate system at once. The main factors behind this phenomenon are the melting of glaciers and thermal expansion of ocean water, with [...] Read more.
Change in sea level (SL) is an important indicator of global warming, since it reflects alterations in several components of the climate system at once. The main factors behind this phenomenon are the melting of glaciers and thermal expansion of ocean water, with the latter contributing about 40% to the overall rise in SL. Rising SL indirectly indicates an increase in ocean heat content and, consequently, its surface temperature. Previous studies have found that tropical sea surface temperature (SST) is critical to regulating the Earth’s climate and weather patterns in high and mid-latitudes. For this reason, SST and SL in the tropics can be considered as precursors of both global climate change and the emergence of climate anomalies in extratropical latitudes. Although SST has been used in this capacity in a number of studies, similar research regarding SL had not been conducted until recently. In this paper, we examine the links between SL in the tropical North Atlantic and North Pacific Oceans and surface air temperature (SAT) at mid- and high latitudes, with the aim of assessing the potential of SL as a predictor in forecasting SAT anomalies. To identify similarities between the variability of tropical SL and SST and that of SAT in high- and mid-latitude regions, as well as to estimate possible time lags, we applied factor analysis, clustering, cross-correlation and cross-spectral analyses. The results reveal a structural similarity in the internal variability of tropical SL and extratropical SAT, along with a significant lagged relationship between them, with a time lag of several years. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

14 pages, 1855 KiB  
Article
Response of Tree-Ring Oxygen Isotopes to Climate Variations in the Banarud Area in the West Part of the Alborz Mountains
by Yajun Wang, Shengqian Chen, Haichao Xie, Yanan Su, Shuai Ma and Tingting Xie
Forests 2025, 16(8), 1238; https://doi.org/10.3390/f16081238 - 28 Jul 2025
Viewed by 224
Abstract
Stable oxygen isotopes in tree rings (δ18O) serve as important proxies for climate change and offer unique advantages for climate reconstruction in arid and semi-arid regions. We established an annual δ18O chronology spanning 1964–2023 using Juniperus excelsa tree-ring samples [...] Read more.
Stable oxygen isotopes in tree rings (δ18O) serve as important proxies for climate change and offer unique advantages for climate reconstruction in arid and semi-arid regions. We established an annual δ18O chronology spanning 1964–2023 using Juniperus excelsa tree-ring samples collected from the Alborz Mountains in Iran. We analyzed relationships between δ18O and key climate variables: precipitation, temperature, Palmer Drought Severity Index (PDSI), vapor pressure (VP), and potential evapotranspiration (PET). Correlation analysis reveals that tree-ring δ18O is highly sensitive to hydroclimatic variations. Tree-ring cellulose δ18O shows significant negative correlations with annual total precipitation and spring PDSI, and significant positive correlations with spring temperature (particularly maximum temperature), April VP, and spring PET. The strongest correlation occurs with spring PET. These results indicate that δ18O responds strongly to the balance between springtime moisture supply (precipitation and soil moisture) and atmospheric evaporative demand (temperature, VP, and PET), reflecting an integrated signal of both regional moisture availability and energy input. The pronounced response of δ18O to spring evaporative conditions highlights its potential for capturing high-resolution changes in spring climatic conditions. Our δ18O series remained stable from the 1960s to the 1990s, but showed greater interannual variability after 2000, likely linked to regional warming and climate instability. A comparison with the δ18O variations from the eastern Alborz Mountains indicates that, despite some differences in magnitude, δ18O records from the western and eastern Alborz Mountains show broadly similar variability patterns. On a larger climatic scale, δ18O correlates significantly and positively with the Niño 3.4 index but shows no significant correlation with the Arctic Oscillation (AO) or the North Atlantic Oscillation (NAO). This suggests that ENSO-driven interannual variability in the tropical Pacific plays a key role in regulating regional hydroclimatic processes. This study confirms the strong potential of tree-ring oxygen isotopes from the Alborz Mountains for reconstructing hydroclimatic conditions and high-frequency climate variability. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

24 pages, 6552 KiB  
Article
Assessing Flooding from Changes in Extreme Rainfall: Using the Design Rainfall Approach in Hydrologic Modeling
by Anna M. Jalowska, Daniel E. Line, Tanya L. Spero, J. Jack Kurki-Fox, Barbara A. Doll, Jared H. Bowden and Geneva M. E. Gray
Water 2025, 17(15), 2228; https://doi.org/10.3390/w17152228 - 26 Jul 2025
Viewed by 410
Abstract
Quantifying future changes in extreme events and associated flooding is challenging yet fundamental for stormwater managers. Along the U.S. Atlantic Coast, Eastern North Carolina (ENC) is frequently exposed to catastrophic floods from extreme rainfall that is typically associated with tropical cyclones. This study [...] Read more.
Quantifying future changes in extreme events and associated flooding is challenging yet fundamental for stormwater managers. Along the U.S. Atlantic Coast, Eastern North Carolina (ENC) is frequently exposed to catastrophic floods from extreme rainfall that is typically associated with tropical cyclones. This study presents a novel approach that uses rainfall data from five dynamically and statistically downscaled (DD and SD) global climate models under two scenarios to visualize a potential future extent of flooding in ENC. Here, we use DD data (at 36-km grid spacing) to compute future changes in precipitation intensity–duration–frequency (PIDF) curves at the end of the 21st century. These PIDF curves are further applied to observed rainfall from Hurricane Matthew—a landfalling storm that created widespread flooding across ENC in 2016—to project versions of “Matthew 2100” that reflect changes in extreme precipitation under those scenarios. Each Matthew-2100 rainfall distribution was then used in hydrologic models (HEC-HMS and HEC-RAS) to simulate “2100” discharges and flooding extents in the Neuse River Basin (4686 km2) in ENC. The results show that DD datasets better represented historical changes in extreme rainfall than SD datasets. The projected changes in ENC rainfall (up to 112%) exceed values published for the U.S. but do not exceed historical values. The peak discharges for Matthew-2100 could increase by 23–69%, with 0.4–3 m increases in water surface elevation and 8–57% increases in flooded area. The projected increases in flooding would threaten people, ecosystems, agriculture, infrastructure, and the economy throughout ENC. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

16 pages, 5628 KiB  
Article
Contrasting Impacts of North Pacific and North Atlantic SST Anomalies on Summer Persistent Extreme Heat Events in Eastern China
by Jiajun Yao, Lulin Cen, Minyu Zheng, Mingming Sun and Jingnan Yin
Atmosphere 2025, 16(8), 901; https://doi.org/10.3390/atmos16080901 - 24 Jul 2025
Viewed by 284
Abstract
Under global warming, persistent extreme heat events (PHEs) in China have increased significantly in both frequency and intensity, posing severe threats to agriculture and socioeconomic development. Combining observational analysis (1961–2019) and numerical simulations, this study investigates the distinct impacts of Northwest Pacific (NWP) [...] Read more.
Under global warming, persistent extreme heat events (PHEs) in China have increased significantly in both frequency and intensity, posing severe threats to agriculture and socioeconomic development. Combining observational analysis (1961–2019) and numerical simulations, this study investigates the distinct impacts of Northwest Pacific (NWP) and North Atlantic (NA) sea surface temperature (SST) anomalies on PHEs over China. Key findings include the following: (1) PHEs exhibit heterogeneous spatial distribution, with the Yangtze-Huai River Valley as the hotspot showing the highest frequency and intensity. A regime shift occurred post-2000, marked by a threefold increase in extreme indices (+3σ to +4σ). (2) Observational analyses reveal significant but independent correlations between PHEs and SST anomalies in the tropical NWP and mid-high latitude NA. (3) Numerical experiments demonstrate that NWP warming triggers a meridional dipole response (warming in southern China vs. cooling in the north) via the Pacific–Japan teleconnection pattern, characterized by an eastward-retreated and southward-shifted sub-tropical high (WPSH) coupled with an intensified South Asian High (SAH). In contrast, NA warming induces uniform warming across eastern China through a Eurasian Rossby wave train that modulates the WPSH northward. (4) Thermodynamically, NWP forcing dominates via asymmetric vertical motion and advection processes, while NA forcing primarily enhances large-scale subsidence and shortwave radiation. This study elucidates region-specific oceanic drivers of extreme heat, advancing mechanistic understanding for improved heatwave predictability. Full article
Show Figures

Figure 1

20 pages, 3788 KiB  
Article
Assessing Forest Succession Along Environment, Trait, and Composition Gradients in the Brazilian Atlantic Forest
by Carem Valente, Renan Hollunder, Cristiane Moura, Geovane Siqueira, Henrique Dias and Gilson da Silva
Forests 2025, 16(7), 1169; https://doi.org/10.3390/f16071169 - 16 Jul 2025
Viewed by 401
Abstract
Tropical forests face increasing threats and are often replaced by secondary forests that regenerate after disturbances. In the Atlantic Forest, this creates fragments of different successional stages. The aim of this study is to understand how soil nutrients and light availability gradients influence [...] Read more.
Tropical forests face increasing threats and are often replaced by secondary forests that regenerate after disturbances. In the Atlantic Forest, this creates fragments of different successional stages. The aim of this study is to understand how soil nutrients and light availability gradients influence the species composition and structure of trees and regenerating strata in remnants of lowland rainforest. We sampled 15 plots for the tree stratum (DBH ≥ 5 cm) and 45 units for the regenerating stratum (height ≥ 50 cm, DBH < 5 cm), obtaining phytosociological, entropy and equitability data for both strata. Canopy openness was assessed with hemispherical photos and soil samples were homogenized. To analyze the interactions between the vegetation of the tree layer and the environmental variables, we carried out three principal component analyses and two redundancy analyses and applied a linear model. The young fragments showed good recovery, significant species diversity, and positive successional changes, while the older ones had higher species richness and were in an advanced stage of succession. In addition, younger forests are associated with sandy, nutrient-poor soils and greater exposure to light, while mature forests have more fertile soils, display a greater diversity of dispersal strategies, are rich in soil clay, and have less light availability. Mature forests support biodiversity and regeneration better than secondary forests, highlighting the importance of preserving mature fragments and monitoring secondary ones to sustain tropical biodiversity. Full article
Show Figures

Graphical abstract

23 pages, 6713 KiB  
Article
Global Aerosol Climatology from ICESat-2 Lidar Observations
by Shi Kuang, Matthew McGill, Joseph Gomes, Patrick Selmer, Grant Finneman and Jackson Begolka
Remote Sens. 2025, 17(13), 2240; https://doi.org/10.3390/rs17132240 - 30 Jun 2025
Viewed by 545
Abstract
This study presents a global aerosol climatology derived from six years (October 2018–October 2024) of the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) observations, using a U-Net Convolutional Neural Network (CNN) machine learning algorithm for Cloud–Aerosol Discrimination (CAD). Despite ICESat-2’s design primarily as [...] Read more.
This study presents a global aerosol climatology derived from six years (October 2018–October 2024) of the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) observations, using a U-Net Convolutional Neural Network (CNN) machine learning algorithm for Cloud–Aerosol Discrimination (CAD). Despite ICESat-2’s design primarily as an altimetry mission with a single-wavelength, low-power, high-repetition-rate laser, ICESat-2 effectively captures global aerosol distribution patterns and can provide valuable insights to bridge the observational gap between the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) missions to support future spaceborne lidar mission design. The machine learning approach outperforms traditional thresholding methods, particularly in complex conditions of cloud embedded in aerosol, owing to a finer spatiotemporal resolution. Our results show that annually, between 60°S and 60°N, 78.4%, 17.0%, and 4.5% of aerosols are located within the 0–2 km, 2–4 km, and 4–6 km altitude ranges, respectively. Regional analyses cover the Arabian Sea (ARS), Arabian Peninsula (ARP), South Asia (SAS), East Asia (EAS), Southeast Asia (SEA), the Americas, and tropical oceans. Vertical aerosol structures reveal strong trans-Atlantic dust transport from the Sahara in summer and biomass burning smoke transport from the Savanna during dry seasons. Marine aerosol belts are most prominent in the tropics, contrasting with earlier reports of the Southern Ocean maxima. This work highlights the importance of vertical aerosol distributions needed for more accurate quantification of the aerosol–cloud interaction influence on radiative forcing for improving global climate models. Full article
Show Figures

Figure 1

20 pages, 14382 KiB  
Article
Exploring the Causes of Multicentury Hydroclimate Anomalies in the South American Altiplano with an Idealized Climate Modeling Experiment
by Ignacio Alonso Jara, Orlando Astudillo, Pablo Salinas, Limbert Torrez-Rodríguez, Nicolás Lampe-Huenul and Antonio Maldonado
Atmosphere 2025, 16(7), 751; https://doi.org/10.3390/atmos16070751 - 20 Jun 2025
Viewed by 350
Abstract
Paleoclimate records have long documented the existence of multicentury hydroclimate anomalies in the Altiplano of South America. However, the causes and mechanisms of these extended events are still unknown. Here, we present a climate modeling experiment that explores the oceanic drivers and atmospheric [...] Read more.
Paleoclimate records have long documented the existence of multicentury hydroclimate anomalies in the Altiplano of South America. However, the causes and mechanisms of these extended events are still unknown. Here, we present a climate modeling experiment that explores the oceanic drivers and atmospheric mechanisms conducive to long-term precipitation variability in the southern Altiplano (18–25° S; 70–65 W; >3500 masl). We performed a series of 100-year-long idealized simulations using the Weather Research and Forecasting (WRF) model, configured to repeat annually the oceanic and atmospheric forcing leading to the exceptionally humid austral summers of 1983/1984 and 2011/2012. The aim of these cyclical experiments was to evaluate if these specific conditions can sustain a century-long pluvial event in the Altiplano. Unlike the annual forcing, long-term negative precipitation trends are observed in the simulations, suggesting that the drivers of 1983/1984 and 2011/2012 wet summers are unable to generate a century-scale pluvial event. Our results show that an intensification of the anticyclonic circulation along with cold surface air anomalies in the southwestern Atlantic progressively reinforce the lower and upper troposphere features that prevent moisture transport towards the Altiplano. Prolonged drying is also observed under persistent La Niña conditions, which contradicts the well-known relationship between precipitation and ENSO at interannual timescales. Contrasting the hydroclimate responses between the Altiplano and the tropical Andes result from a sustained northward migration of the Atlantic trade winds, providing a useful analog for explaining the divergences in the Holocene records. This experiment suggests that the drivers of century-scale hydroclimate events in the Altiplano were more diverse than previously thought and shows how climate modeling can be used to test paleoclimate hypotheses, emphasizing the necessity of combining proxy data and numerical models to improve our understanding of past climates. Full article
(This article belongs to the Special Issue Extreme Climate in Arid and Semi-arid Regions)
Show Figures

Figure 1

12 pages, 3793 KiB  
Article
Semi-Annual Climate Modes in the Western Hemisphere
by Mark R. Jury
Climate 2025, 13(6), 111; https://doi.org/10.3390/cli13060111 - 27 May 2025
Viewed by 437
Abstract
Semi-annual climate oscillations in the Western Hemisphere (20 S–35 N, 150 W–20 E) were studied via empirical orthogonal function (EOF) eigenvector loading patterns and principal component time scores from 1980 to 2023. The spatial loading maximum for 850 hPa zonal wind extended from [...] Read more.
Semi-annual climate oscillations in the Western Hemisphere (20 S–35 N, 150 W–20 E) were studied via empirical orthogonal function (EOF) eigenvector loading patterns and principal component time scores from 1980 to 2023. The spatial loading maximum for 850 hPa zonal wind extended from the north Atlantic to the east Pacific; channeling was evident over the southwestern Caribbean. The eigenvector loading maximum for precipitation reflected an equatorial trough, while the semi-annual SST formed a dipole with loading maxima in upwelling zones off Angola (10 E) and Peru (80 W). Weakened Caribbean trade winds and strengthened tropical convection correlated with a warm Atlantic/cool Pacific pattern (R = 0.46). Wavelet spectral analysis of principal component time scores found a persistent 6-month rhythm disrupted only by major El Nino Southern Oscillation events and anomalous mid-latitude conditions associated with negative-phase Arctic Oscillation. Historical climatologies revealed that 6-month cycles of wind, precipitation, and sea temperature were tightly coupled in the Western Hemisphere by heat surplus in the equatorial ocean diffused by meridional overturning Hadley cells. External forcing emerged in early 2010 when warm anomalies over Canada diverted the subtropical jet, suppressing subtropical trade winds and evaporative cooling and intensifying the equatorial trough across the Western Hemisphere. Climatic trends of increased jet-stream instability suggest that the semi-annual amplitude may grow over time. Full article
Show Figures

Figure 1

16 pages, 6912 KiB  
Article
The Interannual Cyclicity of Precipitation in Xinjiang During the Past 70 Years and Its Contributing Factors
by Wenjie Ma, Xiaokang Liu, Shasha Shang, Zhen Wang, Yuyang Sun, Jian Huang, Mengfei Ma, Meihong Ma and Liangcheng Tan
Atmosphere 2025, 16(5), 629; https://doi.org/10.3390/atmos16050629 - 21 May 2025
Viewed by 498
Abstract
Precipitation cyclicity plays a crucial role in regional water supply and climate predictions. In this study, we used observational data from 34 representative meteorological stations in the Xinjiang region, a major part of inland arid China, to characterize the interannual cyclicity of regional [...] Read more.
Precipitation cyclicity plays a crucial role in regional water supply and climate predictions. In this study, we used observational data from 34 representative meteorological stations in the Xinjiang region, a major part of inland arid China, to characterize the interannual cyclicity of regional precipitation from 1951 to 2021 and analyze its contributing factors. The results indicated that the mean annual precipitation in Xinjiang (MAP_XJ) was dominated by a remarkably increasing trend over the past 70 years, which was superimposed by two bands of interannual cycles of approximately 3 years with explanatory variance of 56.57% (Band I) and 6–7 years with explanatory variance of 23.38% (Band II). This is generally consistent with previous studies on the cyclicity of precipitation in Xinjiang for both seasonal and annual precipitation. We analyzed the North Tropical Atlantic sea-surface temperature (NTASST), El Niño-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Arctic Oscillation (AO), and Indian Summer Monsoon (ISM) as potential forcing factors that show similar interannual cycles and may contribute to the identified precipitation variability. Two approaches, multivariate linear regression and the Random Forest model, were employed to ascertain the relative significance of each factor influencing Bands I and II, respectively. The multivariate linear regression analysis revealed that the AO index contributed the most to Band I, with a significance score of −0.656, whereas the ENSO index with a one-year lead (ENSO−1yr) played a dominant role in Band II (significance score = 0.457). The Random Forest model also suggested that the AO index exhibited the highest significance score (0.859) for Band I, whereas the AO index with a one-year lead (AO−1yr) had the highest significance score (0.876) for Band II. Overall, our findings highlight the necessity of employing different methods that consider both the linear and non-linear response of climate variability to driving factors crucial for future climate prediction. Full article
(This article belongs to the Special Issue Desert Climate and Environmental Change: From Past to Present)
Show Figures

Figure 1

15 pages, 7730 KiB  
Article
The Importance of Different Biomes (Atlantic Forest, Cerrado, and Caatinga) in the Regional Structuring of Neotropical Dragonfly Assemblages
by Karolina Teixeira, Acácio de Sá Santos, Diogo Silva Vilela, Cíntia Ribeiro and Marciel Elio Rodrigues
Diversity 2025, 17(5), 345; https://doi.org/10.3390/d17050345 - 14 May 2025
Viewed by 528
Abstract
Understanding how assemblages are structured is important for ecology, especially in tropical regions that exhibit high biodiversity and are currently experiencing high rates of loss and modification of natural environments caused by anthropogenic impacts. Understanding the structuring of assemblages across different regions at [...] Read more.
Understanding how assemblages are structured is important for ecology, especially in tropical regions that exhibit high biodiversity and are currently experiencing high rates of loss and modification of natural environments caused by anthropogenic impacts. Understanding the structuring of assemblages across different regions at different spatial scales allows us to comprehend how environmental modifications can affect biodiversity on a local and regional scale. The objective of this study was to evaluate the biodiversity of Odonata species using taxonomic diversity metrics (richness and composition) in areas of Cerrado, Atlantic Forest, and Caatinga and to evaluate which sets of local and spatial environmental variables are associated with these assemblages among the different areas evaluated. The study was conducted in the state of Bahia, where 49 streams were sampled, including 17 in the Atlantic Forest, 18 in the Caatinga, and 15 in the Cerrado. Our results demonstrate a high diversity of Odonata species, with 95 species collected. We found a similar species richness among the regions sampled. However, each region presented a distinct composition, with greater similarity between the Cerrado and the Caatinga. Spatial predictors along with some environmental variables were associated with the Caatinga and Cerrado. Some environmental variables, such as the amount of riparian vegetation and aquatic vegetation, were associated with the Cerrado. The results highlighted that each of the evaluated regions are fundamental for maintaining and conserving the regional dragonfly biodiversity. The lack of conservation of aquatic ecosystems in the different regions leads to local species loss and, consequently, to a loss of regional Odonata biodiversity. Full article
(This article belongs to the Special Issue Tropical Aquatic Biodiversity)
Show Figures

Figure 1

18 pages, 11692 KiB  
Article
Water Balance in an Atlantic Forest Remnant: Focus on Representative Tree Species
by Adérito C. Cau, José A. Junqueira Junior, Alejandra B. Vega, Severino J. Macôo, André F. Rodrigues, Marcela C. N. S. Terra, Li Guo and Carlos R. Mello
Forests 2025, 16(5), 812; https://doi.org/10.3390/f16050812 - 13 May 2025
Viewed by 419
Abstract
The Atlantic Forest has undergone deforestation and prolonged droughts, affecting ecosystem services. This study assesses the water balance using hydrological observations from representative tree species within a Montane Semideciduous Seasonal Forest (MF) remnant. Gross precipitation (GP), canopy interception (CI), and effective precipitation (EP [...] Read more.
The Atlantic Forest has undergone deforestation and prolonged droughts, affecting ecosystem services. This study assesses the water balance using hydrological observations from representative tree species within a Montane Semideciduous Seasonal Forest (MF) remnant. Gross precipitation (GP), canopy interception (CI), and effective precipitation (EP = Throughfall + Stemflow) were recorded daily, and soil moisture was measured down to 1.80 m every two days during the dry period of the 2023/2024 hydrological year. Additionally, aboveground biomass (AGB), fresh root biomass (BR), and soil hydrological properties in the soil profile were obtained to support the water balance results. The highest EP values were recorded in Miconia willdenowii, while the lowest were in Xylopia brasiliensis. Root zone water storage exhibited a declining trend, with the highest values in Miconia willdenowii. ET remained low, mainly in April, July, and September, with Miconia willdenowii and Copaifera langsdorffii showing the highest values, and AGB correlated with CI and ET. The dynamic of this ecosystem is apparent in the temporal variations (CVt) of soil moisture, influenced by EP and ET. The greatest variability was recorded in the surface layer (0–20 cm), stabilizing with depth, especially below 120 cm. The Temporal Stability Index (TSI) of soil water storage indicated greater stability in Blepharocalyx salicifolius. This study highlights the significance of soil water storage and ET in a tropical forest ecosystem, particularly under drought conditions, suggesting potential species that may be more effective in recovering degraded areas. Full article
(This article belongs to the Section Forest Hydrology)
Show Figures

Figure 1

18 pages, 12955 KiB  
Article
New Records of Stolidobranchia (Tunicata: Ascidiacea) from Brazil
by Gustavo Antunes Gamba and Rosana Moreira da Rocha
Taxonomy 2025, 5(2), 27; https://doi.org/10.3390/taxonomy5020027 - 8 May 2025
Viewed by 516
Abstract
New surveys on the Brazilian tropical coast revealed new occurrences of five species in Styelidae (Stolonia sabulosa, Amphicarpa paucigonasPolyandrocarpa anguinea Polycarpa insulsaStyela plicata) and one in Molgulidae (Molgula davidi). The species here described represent either [...] Read more.
New surveys on the Brazilian tropical coast revealed new occurrences of five species in Styelidae (Stolonia sabulosa, Amphicarpa paucigonasPolyandrocarpa anguinea Polycarpa insulsaStyela plicata) and one in Molgulidae (Molgula davidi). The species here described represent either the expansion of their geographic distribution in the country or new records for the country. Some of these species have disjunct or wide geographical distributions, and the possibility of their introduction as exotic fauna is discussed. We also present the first field pictures of Stolonia sabulosa and Amphicarpa paucigonas and a detailed description and figures for all species. Full article
Show Figures

Figure 1

26 pages, 7930 KiB  
Article
Sargassum Biomass Movement and Proliferation in the Eastern Tropical Atlantic
by Yanna Alexia Fidai, Jadu Dash, Emma Tompkins, Donatus Yaw Atiglo, Philip-Neri Jayson-Quashigah, Winnie Naa Adjorkor Sowah and Kwasi Appeaning Addo
Phycology 2025, 5(2), 17; https://doi.org/10.3390/phycology5020017 - 2 May 2025
Cited by 1 | Viewed by 1154
Abstract
Since 2011, pelagic sargassum blooms (S. fluitans and S. natans) have impacted coastal communities, aquaculture, tourism, and biodiversity across the Tropical Atlantic region. Whilst the initial event is generally attributed to an anomalous North Atlantic Oscillation (2009–2010), the drivers of sargassum movement [...] Read more.
Since 2011, pelagic sargassum blooms (S. fluitans and S. natans) have impacted coastal communities, aquaculture, tourism, and biodiversity across the Tropical Atlantic region. Whilst the initial event is generally attributed to an anomalous North Atlantic Oscillation (2009–2010), the drivers of sargassum movement and proliferation remain unclear. This research gap is particularly evident in West Africa, where annual and seasonal sargassum variability is under-researched, and a lack of consensus exists on seasonal and annual trends. This paper addresses these gaps by (1) providing a first attempt at characterising the seasonal and annual trends of sargassum biomass in the Eastern Tropical Atlantic, through using satellite imagery to create a time-series for 2011–2022; and (2) exploring the hypothetical drivers of movement and proliferation of sargassum for this area, through assessing its co-variation with potential drivers including atmospheric, oceanic, and policy, establishing a historical timeline of events. The time-series analysis reveals an annual biomass peak in September and a second peak between March and May. The exploration of potential drivers reveals that alongside sea surface temperature there are multiple factors that could be influencing sargassum biomass, and that further research is necessary to clarify primary and secondary drivers. The results contribute to understanding drivers, impacts, and predictions of sargassum blooms in the Eastern Tropical Atlantic. We anticipate that our findings will enable sargassum-affected areas to better anticipate the size and timing of sargassum events in West Africa and offer researchers a new perspective on possible drivers of proliferation within the wider Tropical Atlantic region. Full article
Show Figures

Figure 1

14 pages, 2616 KiB  
Article
The Leaf Thermotolerance of Nine Tree Species with Varying Geographic Range Sizes in a Climate Change-Threatened Hotspot
by Carolina Reis de Brito, Junior Pastor Pérez-Molina, Martielly Santana dos Santos, Larissa Rocha-Santos and Marcelo Schramm Mielke
Forests 2025, 16(5), 764; https://doi.org/10.3390/f16050764 - 30 Apr 2025
Viewed by 561
Abstract
The Brazilian Atlantic Forest (AF) is recognized as one of the most threatened biodiversity hotspots by global climate change. Here, we examined the leaf traits (leaf mass area, leaf thickness, and chlorophyll content) and leaf thermotolerance (T50 and T [...] Read more.
The Brazilian Atlantic Forest (AF) is recognized as one of the most threatened biodiversity hotspots by global climate change. Here, we examined the leaf traits (leaf mass area, leaf thickness, and chlorophyll content) and leaf thermotolerance (T50 and TCrit) of seedlings of nine species of AF trees grown experimentally in order to foresee how extreme heat events will affect the forest’s regeneration and diversity. Based on geographic range size, the species were classified into three groups, namely, species with a restricted-range distribution (endemic to the AF), species with an intermediate-range distribution (throughout the Brazilian tropical territory), and species with a wide-range distribution (Latin America). We found that the restricted-range group did not present lower thermotolerance compared to intermediate- and wide-range species groups. Surprisingly, leaf mass area had no effect on thermotolerance indices, while chlorophyll content and leaf thickness positively influenced T50 and TCrit. Some species-specific responses to high-temperature stress deserve attention for tropical tree conservation, as is the case of Arapatiella psylophylla, a vulnerable endemic species with a very restricted-range distribution. Our results suggest that the species-specific leaf thermotolerance is an important criterion to be considered for tropical tree forest conservation in the context of global climate change. Full article
Show Figures

Graphical abstract

Back to TopTop