The Leaf Thermotolerance of Nine Tree Species with Varying Geographic Range Sizes in a Climate Change-Threatened Hotspot
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tree Species and Growth Conditions
2.2. Leaf Traits
2.3. Test of Photosynthesis Thermotolerance
2.4. Statistical Analysis
3. Results
3.1. Thermal Tolerance in AF Species
3.2. Leaf Traits and Thermotolerance
3.3. Species Range Distribution and Tolerance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. The Physical Science Basis Summary for Policymakers Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- IPCC. Climate Change 2023: Synthesis Report; Arias, P., Bustamante, M., Elgizouli, I., Flato, G., Howden, M., Méndez-Vallejo, C., Pereira, J.J., Pichs-Madruga, R., Rose, S.K., Saheb, Y., et al., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Niu, S.; Luo, Y.; Li, D.; Cao, S.; Xia, J.; Li, J.; Smith, M.D. Plant Growth and Mortality under Climatic Extremes: An Overview. Environ. Exp. Bot. 2014, 98, 13–19. [Google Scholar] [CrossRef]
- Browne, L.; Markesteijn, L.; Engelbrecht, B.M.J.; Jones, F.A.; Lewis, O.T.; Manzané-Pinzón, E.; Wright, S.J.; Comita, L.S. Increased Mortality of Tropical Tree Seedlings during the Extreme 2015–2016 El Niño. Glob. Chang. Biol. 2021, 27, 5043–5053. [Google Scholar] [CrossRef]
- Wright, S.J.; Muller-landau, H.C.; Schipper, J.A.N. The Future of Tropical Species on a Warmer Planet. Conserv. Biol. 2009, 23, 1418–1426. [Google Scholar] [CrossRef]
- Perez, T.M.; Feeley, K.J. Photosynthetic Heat Tolerances and Extreme Leaf Temperatures. Funct. Ecol. 2020, 34, 2236–2245. [Google Scholar] [CrossRef]
- Bellard, C.; Leclerc, C.; Leroy, B.; Bakkenes, M.; Veloz, S.; Thuiller, W.; Courchamp, F. Vulnerability of Biodiversity Hotspots to Global Change. Glob. Ecol. Biogeogr. 2014, 23, 1376–1386. [Google Scholar] [CrossRef]
- Cezar, M.; Paul, J.; Camargo, A.; Jorge, F. The Brazilian Atlantic Forest: How Much Is Left, and How Is the Remaining Forest Distributed ? Implications for Conservation. Biol. Conserv. 2009, 142, 1141–1153. [Google Scholar] [CrossRef]
- Wayt Thomas, W.;  V De Carvalho, A.M.;  A Amorim, A.M.; Garrison, J.; Arbela  Ez, A.L. Plant Endemism in Two Forests in Southern Bahia, Brazil. Biodivers. Conserv. 1998, 7, 311–322. [Google Scholar]
- Amorim, A.M.; Jardim, J.G.; Fiaschi, P.; Augusto, R.; Borges, X.; Perdiz, R.D.O.; Thomas, W.W.; Estadual, U.; Cruz, D.S.; De Janeiro, R.; et al. Angiospermas Em Remanescentes de Floresta Montana No Sul Da Bahia, Brasil. Biota. Neotrop. 2012, 9, 313–348. [Google Scholar]
- Martini, A.M.Z.; Fiaschi, P.; Amorim, A.M.; Paixão, J.L. Da A Hot-Point within a Hot-Spot: A High Diversity Site in Brazil’s Atlantic Forest. Biodivers. Conserv. 2007, 16, 3111–3128. [Google Scholar] [CrossRef]
- Carnaval, A.C.; Hickerson, M.J.; Haddad, C.F.B.; Rodrigues, M.T.; Moritz, C. Stability Predicts Genetic Diversity Inthe Brazilian Atlantic Forest Hotspot. Science 2009, 323, 785–789. [Google Scholar] [CrossRef]
- Colombo, A.; Joly, C. Brazilian Atlantic Forest Lato Sensu: The Most Ancient Brazilian Forest, and a Biodiversity Hotspot, Is Highly Threatened by Climate Change. Braz. J. Biol. 2010, 70, 697–708. [Google Scholar] [PubMed]
- Vancine, M.H.; Muylaert, R.L.; Niebuhr, B.B.; Oshima, J.E.d.F.; Tonetti, V.; Bernardo, R.; De Angelo, C.; Rosa, M.R.; Grohmann, C.H.; Ribeiro, M.C. The Atlantic Forest of South America: Spatiotemporal Dynamics of the Vegetation and Implications for Conservation. Biol. Conserv. 2024, 291, 110499. [Google Scholar] [CrossRef]
- Manes, S.; Costello, M.J.; Beckett, H.; Debnath, A.; Devenish-Nelson, E.; Grey, K.A.; Jenkins, R.; Khan, T.M.; Kiessling, W.; Krause, C.; et al. Endemism Increases Species’ Climate Change Risk in Areas of Global Biodiversity Importance. Biol. Conserv. 2021, 257, 109070. [Google Scholar] [CrossRef]
- Sambuichi, R.H.R.; de Oliveira, R.M.; Neto, E.M.; Thévenin, J.M.R.; Júnior, C.P.d.J.; Oliveira, R.L.; Pelição, M.C. Conservation Status of Ten Endemic Trees from the Atlantic Forest in the South of Bahia-Brazil. Nat. E Conservação. 2008, 6, 208–225. [Google Scholar]
- Staude, I.R.; Navarro, L.M.; Pereira, H.M. Range Size Predicts the Risk of Local Extinction from Habitat Loss. Glob. Ecol. Biogeogr. 2020, 29, 16–25. [Google Scholar] [CrossRef]
- Slatyer, R.A.; Hirst, M.; Sexton, J.P. Niche Breadth Predicts Geographical Range Size: A General Ecological Pattern. Ecol. Lett. 2013, 16, 1104–1114. [Google Scholar]
- Feeley, K.J.; Rehm, E.M.; Machovina, B. The Responses of Tropical Forest Species to Global Climate Change: Acclimate, Adapt, Migrate or Go Extinct? Front. Biogeogr. 2012, 4, 69–84. [Google Scholar] [CrossRef]
- Yu, F.; Groen, T.A.; Wang, T.; Skidmore, A.K.; Huang, J.; Ma, K. Climatic Niche Breadth Can Explain Variation in Geographical Range Size of Alpine and Subalpine Plants. Int. J. Geogr. Inf. Sci. 2017, 31, 190–212. [Google Scholar] [CrossRef]
- Godoy, O.; de Lemos-Filho, J.P.; Valladares, F. Invasive Species Can Handle Higher Leaf Temperature under Water Stress than Mediterranean Natives. Environ. Exp. Bot. 2011, 71, 207–214. [Google Scholar] [CrossRef]
- Geange, S.R.; Arnold, P.A.; Catling, A.A.; Coast, O.; Cook, A.M.; Gowland, K.M.; Leigh, A.; Notarnicola, R.F.; Posch, B.C.; Venn, S.E.; et al. The Thermal Tolerance of Photosynthetic Tissues: A Global Systematic Review and Agenda for Future Research. New Phytol. 2021, 229, 2497–2513. [Google Scholar] [CrossRef]
- Slot, M.; Kitajima, K. Whole-Plant Respiration and Its Temperature Sensitivity during Progressive Carbon Starvation. Funct. Plant Biol. 2015, 42, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Slot, M.; Nardwattanawong, T.; Hernández, G.G.; Bueno, A.; Riederer, M.; Winter, K. Large Differences in Leaf Cuticle Conductance and Its Temperature Response among 24 Tropical Tree Species from across a Rainfall Gradient. New Phytol. 2021, 232, 1618–1631. [Google Scholar] [CrossRef]
- Winter, K.; Krüger Nuñez, C.R.; Slot, M.; Virgo, A. In Thermotolerance Tests of Tropical Tree Leaves, the Chlorophyll Fluorescence Parameter Fv/Fm Measured Soon after Heat Exposure Is Not a Reliable Predictor of Tissue Necrosis. Plant Biol. 2024, 27, 146–153. [Google Scholar] [CrossRef]
- Münchinger, I.K.; Hajek, P.; Akdogan, B.; Caicoya, A.T.; Kunert, N. Leaf Thermal Tolerance and Sensitivity of Temperate Tree Species Are Correlated with Leaf Physiological and Functional Drought Resistance Traits. J. Res. 2023, 34, 63–76. [Google Scholar] [CrossRef]
- Slot, M.; Cala, D.; Aranda, J.; Michaletz, S.T.; Winter, K. Leaf Heat Tolerance of 147 Tropical Forest Species Varies with Elevation and Leaf Functional Traits, but Not with Phylogeny. Plant Cell Environ. 2021, 44, 2414–2427. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, C.; Reid, J.L.; Ferreira de Lima, R.A.; Pinto, L.F.G.; Viani, R.A.G. Restoration Plantings in the Atlantic Forest Use a Small, Biased, and Homogeneous Set of Tree Species. Ecol. Manag. 2024, 553, 121628. [Google Scholar] [CrossRef]
- Sambuichi, R.H.R.; Vidal, D.B.; Piasentin, F.B.; Jardim, J.G.; Viana, T.G.; Menezes, A.A.; Mello, D.L.N.; Ahnert, D.; Baligar, V.C. Cabruca Agroforests in Southern Bahia, Brazil: Tree Component, Management Practices and Tree Species Conservation. Biodivers. Conserv. 2012, 21, 1055–1077. [Google Scholar] [CrossRef]
- Thomas, W.W.; Jardim, J.G.; Fiaschi, P.; Mariano, E.; Amorim, A.M. Composição Florística e Estrutura Do Componente Arbóreo de Uma Área Transicional de Floresta Atlântica No Sul Da Bahia, Brasil. Rev. Bras. Botânica 2009, 32, 65–78. [Google Scholar] [CrossRef]
- IUCN IUCN Red List of Threatened Species. Available online: https://www.iucnredlist.org/ (accessed on 1 June 2024).
- Stolarski, O.C.; Gorenstein, M.R.; Lubke, M.; Lubke, L.; O’connor, P.H.P.; Bechara, F.C. Trema micrantha (L.) Blume. in Plantations for Ecological Restoration: Early Development in the Brazilian Subtropical Forest. Cienc. Florest. 2018, 28, 1217–1229. [Google Scholar] [CrossRef]
- Rocha, A.P.; Matoc, V.P.; Sena, L.H.d.M.; Pacheco, M.V.; Ferreira, R.L.C. Métodos Para Superação Da Dormência Em Sementes de Garcinia Gardneriana(Planch. & Triana) Zappi. Ciência Florest. 2018, 28, 505–514. [Google Scholar]
- Barros, S.S.; da Silva, A.; Aguiari, I.B. Germinação de Sementes de Gallesia Integrifolia (Spreng.) Harms (Pau-d’alho) Sob Diferentes Condições de Temperatura, Luz e Umidade Do Substrato. Rev. Bras. Botânica 2005, 28, 727–733. [Google Scholar] [CrossRef]
- Santos, A.S.; Borges, D.B.; Vivas, C.V.; Van Den Berg, C.; Rodrigues, P.S.; Tarazi, R.; Gaiotto, F.A. Gene Pool Sharing and Genetic Bottleneck Effects in Subpopulations of Eschweilera Ovata (Cambess.) Mart. Ex Miers (Lecythidaceae) in the Atlantic Forest of Southern Bahia, Brazil. Genet. Mol. Biol. 2019, 42, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Fontana, C.; Pérez-de-Lis, G.; Nabais, C.; Lousada, J.L.P.C.; Olmedo, G.M.; Botosso, P.C.; Oliveira, J.M. Climatic Signal in Growth-Rings of Copaifera Lucens: An Endemic Species of a Brazilian Atlantic Forest Hotspot, Southeastern Brazil. Dendrochronologia 2018, 50, 23–32. [Google Scholar] [CrossRef]
- Cavers, S.; Navarro, C.; Lowe, A.J. Chloroplast DNA Phylogeography Reveals Colonization History of a Neotropical Tree, Cedrela odorata L., in Mesoamerica. Mol. Ecol. 2003, 12, 1451–1460. [Google Scholar] [CrossRef]
- Sanches, M.C.; Ribeiro, S.P.; Dalvi, V.C.; da Silva Junior, M.B.; de Sousa, H.C.; de Lemos-Filho, J.P. Differential Leaf Traits of a Neotropical Tree Cariniana Legalis (Mart.) Kuntze (Lecythidaceae): Comparing Saplings and Emergent Trees. Trees-Struct. Funct. 2010, 24, 79–88. [Google Scholar] [CrossRef]
- Brasil Flora Do Brasil. Jardim Botânico do Rio de Janeiro. 2019. Available online: https://floradobrasil.jbrj.gov.br (accessed on 2 July 2024).
- Coste, S.; Baraloto, C.; Leroy, C.; Marcon, É.; Renaud, A.; Richardson, A.D.; Roggy, J.; Schimann, H.; Uddling, J.; Hérault, B. Assessing Foliar Chlorophyll Contents with the SPAD-502 Chlorophyll Meter: A Calibration Test with Thirteen Tree Species of Tropical Rainforest in French Guiana. Ann. Sci. 2010, 67, 607. [Google Scholar]
- Abràmoff, M.D.; Magalhães, P.J.; Ram, S.J. Image Processing with ImageJ Part II. Biophotonics Int. 2005, 11, 36–43. [Google Scholar]
- Brito-Rocha, E.; dos Anjos, L.; Schilling, A.C.; Dalmolin, Â.C.; Mielke, M.S. Individual Leaf Area Estimations of a Dioecious Tropical Tree Species Carpotroche Brasiliensis (Raddi) A. Gray, Achariaceae. Agrofor. Syst. 2017, 91, 9–15. [Google Scholar] [CrossRef]
- Molina-bravo, R.; Arellano, C.; Sosinski, B.R.; Fernandez, G.E. A Protocol to Assess Heat Tolerance in a Segregating Population of Raspberry Using Chlorophyll Fluorescence. Sci. Hortic. 2011, 130, 524–530. [Google Scholar] [CrossRef]
- Marias, D.E.; Meinzer, F.C.; Still, C. Leaf Age and Methodology Impact Assessments of Thermotolerance of Coffea Arabica. Trees 2017, 31, 1091–1099. [Google Scholar] [CrossRef]
- Chaves, C.J.N.; Leal, B.S.S.; Lemos-filho, J.P. de How Are Endemic and Widely Distributed Bromeliads Responding to Warming Temperatures ? A Case Study in a Brazilian Hotspot. Flora 2018, 238, 110–118. [Google Scholar] [CrossRef]
- Kumarathunge, D.P.; Medlyn, B.E.; Drake, J.E.; Tjoelker, M.G.; Michael, J.; Battaglia, M.; Cano, F.J.; Carter, K.R.; Cavaleri, M.A.; Lucas, A.; et al. Acclimation and Adaptation Components of the Temperature Dependence of Plant Photosynthesis at the Global Scale. New Phytol. 2019, 222, 768–784. [Google Scholar] [CrossRef]
- Elzhov, V.; Mullen, K.M.; Spiess, A.-N.; Maintainer, B.B. minpack.lm: R interface to the Levenberg-Marquardt nonlinear least-squares algorithm found in minpack, plus support for bounds 2022. Available online: https://cran.r-project.org/web/packages/minpack.lm/index.html (accessed on 1 March 2025).
- Berk, M. Smoothing-Splines Mixed-Effects Models in R Using the Sme Package: A Tutorial. R. Found. Stat. Comput. 2018, 1–17. Available online: https://rdrr.io/cran/sme/f/inst/doc/Tutorial.pdf (accessed on 1 July 2024).
- Brooks, M.; Bolker, B.; Kristensen, K.; Maechler, M.; Magnusson, A.; McGillycuddy, M.; Skaug, H.; Nielsen, A.; Berg, C.; van Bentham, K.; et al. Package “glmmTMB” Title Generalized Linear Mixed Models Using Template Model Builder 2023. Available online: https://www.researchgate.net/publication/323384790_glmmTMB_Generalized_linear_mixed_models_using_Template_Model_Builder (accessed on 1 June 2024).
- Vleminckx, J.; Barrantes, O.V.; Fortunel, C.; Paine, C.E.T.; Bauman, D.; Engel, J.; Petronelli, P.; Dávila, N.; Rios, M.; Valderrama Sandoval, E.H.; et al. Niche Breadth of Amazonian Trees Increases with Niche Optimum across Broad Edaphic Gradients. Ecology 2023, 104, e4053. [Google Scholar] [CrossRef]
- Sampayo-maldonado, S.; Ordoñez-salanueva, C.A.; Mattana, E.; Ulian, T.; Way, M.; Castillo-lorenzo, E.; Patricia, D.D.; Lira-saade, R.; Oswaldo, T.; Rodriguez-arevalo, N.I.; et al. Thermal Time and Cardinal Temperatures for Germination of Cedrela odorata L. Forests 2019, 10, 1–17. [Google Scholar] [CrossRef]
- Sambuichi, R.H.R. Nossas Árvores: Conservação, Uso e Manejo de Árvores Nativas No Sul Da Bahia; EDITUS: Ilhéus, Brazil, 2009. [Google Scholar]
- ICMBio Plano de Manejo Parque Nacional Do Pau Brasil—Volume I 2015. Available online: https://www.gov.br/icmbio/pt-br/assuntos/biodiversidade/unidade-de-conservacao/unidades-de-biomas/mata-atlantica/lista-de-ucs/parna-do-pau-brasil (accessed on 1 March 2025).
- Mark, J.; Rivers, M.C. Cedrela odorata. The IUCN Red List of Threatened Species 2017. e.T32292A68080590. Available online: https://www.iucnredlist.org/species/32292/68080590 (accessed on 1 June 2024).
- Gratani, L.; Bombelli, A. Leaf Anatomy, Inclination, and Gas Exchange Relationships in Evergreen Sclerophqldous and Drought Semideciduous Shrub Species. Photosynthetica 2000, 37, 573–585. [Google Scholar] [CrossRef]
- Pariyar, S.; Chang, S.C.; Zinsmeister, D.; Zhou, H.; Grantz, D.A.; Hunsche, M.; Burkhardt, J. Xeromorphic Traits Help to Maintain Photosynthesis in the Perhumid Climate of a Taiwanese Cloud Forest. Oecologia 2017, 184, 609–621. [Google Scholar] [CrossRef]
- Sastry, A.; Barua, D. Leaf Thermotolerance in Tropical Trees from a Seasonally Dry Climate Varies along the Slow-Fast Resource Acquisition Spectrum. Sci. Rep. 2017, 7, 11246. [Google Scholar] [CrossRef]
- Kitajima, K. Ecophysiology of Tropical Tree Seedlings. In Tropical Forest Plant Ecophysiology; Mulkey, S.S., Chazdon, R.L., Smith, A.P., Eds.; Springer: Boston, MA, USA, 1996; pp. 559–596. [Google Scholar] [CrossRef]
- Lusk, C.H.; Reich, P.B.; Montgomery, R.A.; Ackerly, D.D.; Cavender-Bares, J. Why Are Evergreen Leaves so Contrary about Shade? Trends Ecol. Evol. 2008, 23, 299–303. [Google Scholar] [CrossRef]
- Nabeshima, E.; Murakami, M.; Hiura, T. Effects of Herbivory and Light Conditions on Induced Defense in Quercus Crispula. J. Plant Res. 2001, 114, 403–409. [Google Scholar] [CrossRef]
- Mielke, M.S.; Oliveira, L.A.; dos Santos, M.S.; Pérez-Molina, J.P.; Cerqueira, A.F.; Dalmolin, Â.C.; Sousa-Santos, C.; de Brito, C.R. Photochemical Efficiency and Lethal Leaf Dehydration in Seedlings of Nine Tropical Tree Species. New For. 2023, 55, 505–521. [Google Scholar] [CrossRef]
- Krause, G.H.; Winter, K.; Krause, B.; Virgo, A. Light-Stimulated Heat Tolerance in Leaves of Two Neotropical Tree Species, Ficus insipida and Calophyllum longifolium. Funct. Plant Biol. 2015, 42, 42–51. [Google Scholar] [CrossRef]
- Slot, M.; Winter, K. The Effects of Rising Temperature on the Ecophysiology of Tropical Forest Trees. In Tropical Tree Physiology; Goldstein, G., Santiago, L.S., Eds.; Springer: Cham, Switzerland, 2016; pp. 385–412. [Google Scholar]
- Ntawuhiganayo, E.B.; Uwizeye, F.K.; Zibera, E.; Dusenge, M.E.; Ziegler, C.; Ntirugulirwa, B.; Nsabimana, D.; Wallin, G.; Uddling, J. Traits Controlling Shade Tolerance in Tropical Montane Trees. Tree Physiol. 2019, 40, 183–197. [Google Scholar] [CrossRef]
- Perkins-Kirkpatrick, S.E.; Lewis, S.C. Increasing Trends in Regional Heatwaves. Nat. Commun. 2020, 11, 3357. [Google Scholar] [CrossRef]
- Torres, R.R.; Benassi, R.B.; Martins, F.B.; Lapola, D.M. Projected Impacts of 1.5 and 2 °C Global Warming on Temperature and Precipitation Patterns in South America. Int. J. Climatol. 2022, 42, 1597–1611. [Google Scholar] [CrossRef]
- Cavaleri, M.A.; Reed, S.C.; Smith, W.K.; Wood, T.E. Urgent Need for Warming Experiments in Tropical Forests. Glob. Chang. Biol. 2014, 21, 2111–2121. [Google Scholar] [CrossRef]
- Oukarroum, A.; El Madidi, S.; Strasser, R.J. Differential Heat Sensitivity Index in Barley Cultivars (Hordeum vulgare L.) Monitored by Chlorophyll a Fluorescence OKJIP. Plant Physiol. Biochem. 2016, 105, 102–108. [Google Scholar] [CrossRef]
- Zhu, L.; Bloomfield, K.J.; Hocart, C.H.; Egerton, J.J.G.; O’Sullivan, O.S.; Penillard, A.; Weerasinghe, L.K.; Atkin, O.K. Plasticity of Photosynthetic Heat Tolerance in Plants Adapted to Thermally Contrasting Biomes. Plant Cell Environ. 2018, 41, 1251–1262. [Google Scholar] [CrossRef]
- Konôpková, A.; Kurjak, D.; Kmeť, J.; Klumpp, R.; Longauer, R.; Ditmarová, Ľ.; Gömöry, D. Differences in Photochemistry and Response to Heat Stress between Silver Fir (Abies Alba Mill.) Provenances. Trees 2018, 32, 73–86. [Google Scholar] [CrossRef]
- Cooke, S.J.; Sack, L.; Franklin, C.E.; Farrell, A.P.; Beardall, J.; Wikelski, M.; Chown, S.L. What Is Conservation Physiology? Perspectives on an Increasingly Integrated and Essential Science. Conserv. Physiol. 2013, 1, cot001. [Google Scholar] [CrossRef]
- Wikelski, M.; Cooke, S.J. Conservation Physiology. Trends Ecol. Evol. 2006, 21, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Lorenzi, H. Árvores Brasileiras; Plantarum: Nova Odessa, Brazil, 1992; Volume 1, 368p. [Google Scholar]
- Lorenzi, H. Árvores Brasileiras; Plantarum: Nova Odessa, Brazil, 1998; Volume 2, 1088p. [Google Scholar]
- Firmino, T.P.; Barbeiro, C.; Romagnolo, M.B.; Pastorini, L.H. Gallesia Integrifolia (Spreng.) Harms. Growth under Different Shade and Water Availability Conditions. Floresta E Ambiente 2020, 27, e20180452. [Google Scholar] [CrossRef]
- Lopes, C.G.R.; Ferraz, E.M.N.; Araújo, E.D.L. Physiognomic-Structural Characterization of Dry- and Humid-Forest Fragments (Atlantic Coastal Forest) in Pernambuco State, NE Brazil. Plant Ecol. 2008, 198, 1–18. [Google Scholar] [CrossRef]
- Barros, M.D.C.R.; Schliewe, M.A.; Schliewe, M.A. Morfo-Anatomia de Folhas de Apeiba Tibourbou Aubl. Malvaceae. Fronteiras 2017, 6, 212–229. [Google Scholar] [CrossRef]
Species | Distribution Range | Conservation Status | Habitat |
---|---|---|---|
Arapatiella psilophylla | Restricted | Vulnerable | Occurs mainly in primary forests with fertile, loamy, and well-drained soils |
Byrsonima stipulacea | Wide range | Least Concern | Occurs mainly in poor, loamy soils, in primary or secondary forests |
Cariniana legalis | Restricted | Vulnerable | Semi-deciduous forests in the lowlands; has a wide distribution from eastern to western South America, typical of regions with a pronounced dry season |
Cedrela odorata | Wide range | Vulnerable | Grows in dry and humid habitats |
Copaifera lucens | Restricted | Least Concern | Rainforests and semi-deciduous forests; primary and secondary formations and riparian forests; reduced radial growth associated with low rainfall |
Eschweilera ovata | Intermediate | Least Concern | Degraded areas, forest gaps, and dry fragments, but grows better in moist forests |
Gallesia integrifolia | Intermediate | Least Concern | Presents acclimation to increased shade and low water availability |
Garcinia gardneriana | Wide range | Least Concern | Riverbanks and streams |
Trema micrantha | Wide range | Least Concern | Occurs in all types of environments except very humid ones |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brito, C.R.d.; Pérez-Molina, J.P.; Santos, M.S.d.; Rocha-Santos, L.; Mielke, M.S. The Leaf Thermotolerance of Nine Tree Species with Varying Geographic Range Sizes in a Climate Change-Threatened Hotspot. Forests 2025, 16, 764. https://doi.org/10.3390/f16050764
Brito CRd, Pérez-Molina JP, Santos MSd, Rocha-Santos L, Mielke MS. The Leaf Thermotolerance of Nine Tree Species with Varying Geographic Range Sizes in a Climate Change-Threatened Hotspot. Forests. 2025; 16(5):764. https://doi.org/10.3390/f16050764
Chicago/Turabian StyleBrito, Carolina Reis de, Junior Pastor Pérez-Molina, Martielly Santana dos Santos, Larissa Rocha-Santos, and Marcelo Schramm Mielke. 2025. "The Leaf Thermotolerance of Nine Tree Species with Varying Geographic Range Sizes in a Climate Change-Threatened Hotspot" Forests 16, no. 5: 764. https://doi.org/10.3390/f16050764
APA StyleBrito, C. R. d., Pérez-Molina, J. P., Santos, M. S. d., Rocha-Santos, L., & Mielke, M. S. (2025). The Leaf Thermotolerance of Nine Tree Species with Varying Geographic Range Sizes in a Climate Change-Threatened Hotspot. Forests, 16(5), 764. https://doi.org/10.3390/f16050764