Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = tritium label

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3221 KB  
Article
Pharmacokinetic Profiling Using 3H-Labeled Eggshell Membrane and Effects of Eggshell Membrane and Lysozyme Oral Supplementation on DSS-Induced Colitis and Human Gut Microbiota
by Miho Shimizu, Wataru Sugai, Eri Ohto-Fujita, Aya Atomi, Norio Nogawa, Koichi Takamiya, Hisao Yoshinaga, Yoshihide Asano, Takashi Yamashita, Shinichi Sato, Atsushi Enomoto, Nozomi Hatakeyama, Shunsuke Yasuda, Kazuya Tanaka, Tomoaki Atomi, Kenji Harada, Yukio Hasebe, Toshiyuki Watanabe and Yoriko Atomi
Int. J. Mol. Sci. 2025, 26(18), 9102; https://doi.org/10.3390/ijms26189102 - 18 Sep 2025
Viewed by 1141
Abstract
Eggshell membrane (ESM) is composed of approximately 90% protein. Our previous studies in healthy adults demonstrated that two months of daily ESM intake improved respiratory function, zigzag walking speed, and skin elasticity. The present study aims to address the knowledge gap regarding the [...] Read more.
Eggshell membrane (ESM) is composed of approximately 90% protein. Our previous studies in healthy adults demonstrated that two months of daily ESM intake improved respiratory function, zigzag walking speed, and skin elasticity. The present study aims to address the knowledge gap regarding the in vivo effects of ESM in the context of inflammatory bowel disease (IBD). Proteomic analysis was performed on powdered ESM used as a dietary supplement. To investigate its pharmacokinetics in mice, tritium (3H)-labeled ESM was prepared using the 6Li(n,α)3H nuclear reaction. The therapeutic potential of ESM was further examined in a 2.0% dextran sulfate sodium (DSS)-induced murine model of IBD. In addition, fecal samples from both mice and healthy human subjects were analyzed using a modified terminal restriction fragment length polymorphism (T-RFLP) method. Lysozyme C (LYZ) was the most abundant protein (47%), followed by lysyl oxidase (12%) in ESM used in this study. 3H-ESM was mixed with MediGel, and orally administered to mice. Radioactivity levels were measured in blood, organs (duodenum, small intestine, large intestine, liver, kidney, lung, skin), and rectal feces at 0.5, 2, 5, 24, 48, and 72 h post-administration. Radioactivity in feces indicated excretion of undigested components, while systemic distribution suggested potential whole-body effects of ESM. Oral ESM and LYZ significantly alleviated body weight loss, diarrhea, and hematochezia in a DSS-induced murine model of IBD, leading to a significantly lower disease activity index on day 3 and showing a similar trend on day 5. Gut microbiota analysis showed increased Bacteroidales in the DSS group, while the ESM + DSS group maintained levels similar to the control. In humans, a double-blind, randomized controlled trial was conducted to evaluate the effects of ESM on gut microbiota in healthy adults. Participants received either ESM or placebo for 8 weeks. revealed a significant increase in alpha diversity at weeks 1 and 8 in the ESM group (p < 0.05), with between-group differences evident from week 1 (p < 0.01). ESM intake reduced Bacteroides and significantly increased Bifidobacterium and Lactobacillales at weeks 4 and 8. These findings suggest ESM supplementation promotes beneficial modulation of gut microbiota. These findings suggest that ESM, through its major protein components such as LYZ, may serve as a promising dietary intervention for maintaining intestinal health and mitigating inflammation in the context of IBD. Full article
Show Figures

Graphical abstract

10 pages, 676 KB  
Communication
Synthesis of a Hydrogen Isotope-Labeled SGLT1 C-Glucoside Ligand for Distribution and Metabolic Fate Studies
by Giuseppe D’Orazio and Barbara La Ferla
Molbank 2025, 2025(1), M1982; https://doi.org/10.3390/M1982 - 21 Mar 2025
Viewed by 713
Abstract
Over the last decades, a novel immunological function was established for the sodium–glucose co-transporter 1 (SGLT1), a protein involved in sugar absorption in the small intestine. High-glucose dosage and pharmacological concentrations of a C-glucoside analog showed a protective role in in vitro [...] Read more.
Over the last decades, a novel immunological function was established for the sodium–glucose co-transporter 1 (SGLT1), a protein involved in sugar absorption in the small intestine. High-glucose dosage and pharmacological concentrations of a C-glucoside analog showed a protective role in in vitro and in vivo models of severe inflammation states; experimental evidence suggests the engagement of SGLT1 in these processes. The mechanism of action underlying the protection is still unclear. To enhance our understanding of the molecular mechanisms responsible for this protection, we have developed a synthesis for the preparation of hydrogen isotope-labeled versions of the C-glucoside hit compound. Specifically, we report the synthesis of the deuterium-labeled derivative, which can be utilized for mass spectrometry-based research to examine the compound’s metabolic pathway, distribution, and cellular/tissue localization. The synthetic method developed can be extended to produce the tritiated analog, serving as a radioactive tracer. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

15 pages, 2655 KB  
Review
The Development and Application of Tritium-Labeled Compounds in Biomedical Research
by Yu Teng, Hong Yang and Yulin Tian
Molecules 2024, 29(17), 4109; https://doi.org/10.3390/molecules29174109 - 29 Aug 2024
Cited by 5 | Viewed by 3210
Abstract
With low background radiation, tritiate compounds exclusively emit intense beta particles without structural changes. This makes them a useful tool in the drug discovery arsenal. Thanks to the recent rapid progress in tritium chemistry, the preparation and analysis of tritium-labeled compounds are now [...] Read more.
With low background radiation, tritiate compounds exclusively emit intense beta particles without structural changes. This makes them a useful tool in the drug discovery arsenal. Thanks to the recent rapid progress in tritium chemistry, the preparation and analysis of tritium-labeled compounds are now much easier, simpler, and cheaper. Pharmacokinetics, autoradiography, and protein binding studies have been much more efficient with the employment of tritium-labeled compounds. This review provides a comprehensive overview of tritium-labeled compounds regarding their properties, synthesis strategies, and applications. Full article
Show Figures

Figure 1

6 pages, 1847 KB  
Proceeding Paper
Study of Carbon Nanotube–Bovine Serum Albumin Interaction Using the Tritium Radiotracer Technique and Supercomputer Simulation
by Vitalii A. Bunyaev, Artem V. Sinolits and Gennadii A. Badun
Biol. Life Sci. Forum 2024, 35(1), 5; https://doi.org/10.3390/blsf2024035005 - 21 Aug 2024
Cited by 1 | Viewed by 1241
Abstract
Bovine serum albumin (BSA) was 3H-labeled via a tritium thermal activation method that allowed quantifying BSA adsorption on single-walled carbon nanotubes (SWCNTs) to be 740 mg/mg, which leads to the ζ-potential of the BSA–SWCNT complex changing from −10 to −16 mV. Supercomputer [...] Read more.
Bovine serum albumin (BSA) was 3H-labeled via a tritium thermal activation method that allowed quantifying BSA adsorption on single-walled carbon nanotubes (SWCNTs) to be 740 mg/mg, which leads to the ζ-potential of the BSA–SWCNT complex changing from −10 to −16 mV. Supercomputer simulations were carried out with Gromacs and PM7 with MOPAC2016 with Berendsen, Nosè–Hoover and Parrinello–Rahman algorithms. The dominant interactions between BSA and SWCNTs are found to be hydrophobic, and hydrogen bonds are also present. The mean total energy of the Coulomb and Van der Waals interactions is −646 ± 8 kJ/mol, by gmx energy. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Biomolecules)
Show Figures

Figure 1

12 pages, 23396 KB  
Article
Tritium-Labeled Nanodiamonds as an Instrument to Analyze Bioprosthetic Valve Coatings: A Case of Using a Nanodiamond Containing Coating on a Pork Aorta
by Maria G. Chernysheva, Tianyi Shen, Gennadii A. Badun, Ivan V. Mikheev, Ivan S. Chaschin, Yuriy M. Tsygankov, Dmitrii V. Britikov, Georgii A. Hugaev and Natalia P. Bakuleva
Molecules 2024, 29(13), 3078; https://doi.org/10.3390/molecules29133078 - 28 Jun 2024
Cited by 1 | Viewed by 1642
Abstract
Coatings with xenogenic materials, made of detonation nanodiamonds, provide additional strength and increase elasticity. A functionally developed surface of nanodiamonds makes it possible to apply antibiotics. Previous experiments show the stability of such coatings; however, studies on stability in the bloodstream and calcification [...] Read more.
Coatings with xenogenic materials, made of detonation nanodiamonds, provide additional strength and increase elasticity. A functionally developed surface of nanodiamonds makes it possible to apply antibiotics. Previous experiments show the stability of such coatings; however, studies on stability in the bloodstream and calcification of the material in natural conditions have yet to be conducted. Tritium-labeled nanodiamonds (negative and positive) were obtained by the tritium activation method and used to develop coatings for a pork aorta to analyze their stability in a pig’s bloodstream using a radiotracer technique. A chitosan layer was applied from a solution of carbonic acid under high-pressure conditions to prevent calcification. The obtained materials were used to prepare a porcine conduit, which was surgically stitched inside the pig’s aorta for four months. The aorta samples, including nanodiamond-coated and control samples, were analyzed for nanodiamond content and calcium, using the radiotracer and ICP-AES methods. A histological analysis of the materials was also performed. The obtained coatings illustrate a high in vivo stability and low levels of calcification for all types of nanodiamonds. Even though we did not use additional antibiotics in this case, the development of infection was not observed for negatively charged nanodiamonds, opening up prospects for their use in developing coatings. Full article
(This article belongs to the Special Issue Advance in Radiochemistry)
Show Figures

Graphical abstract

11 pages, 1264 KB  
Communication
Total Outflow of High-Density Lipoprotein–Cholesteryl Esters from Plasma Is Decreased in a Model of 3/4 Renal Mass Reduction
by María Luna-Luna, Martha Franco, Elizabeth Carreón-Torres, Nonanzit Pérez-Hernández, José Manuel Fragoso, Rocío Bautista-Pérez and Óscar Pérez-Méndez
Int. J. Mol. Sci. 2023, 24(23), 17090; https://doi.org/10.3390/ijms242317090 - 4 Dec 2023
Viewed by 1344
Abstract
(1) Background: Previous studies have enriched high-density lipoproteins (HDL) using cholesteryl esters in rabbits with a three-quarter reduction in functional renal mass, suggesting that the kidneys participate in the cholesterol homeostasis of these lipoproteins. However, the possible role of the kidneys in lipoprotein [...] Read more.
(1) Background: Previous studies have enriched high-density lipoproteins (HDL) using cholesteryl esters in rabbits with a three-quarter reduction in functional renal mass, suggesting that the kidneys participate in the cholesterol homeostasis of these lipoproteins. However, the possible role of the kidneys in lipoprotein metabolism is still controversial. To understand the role of the kidneys in regulating the HDL lipid content, we determined the turnover of HDL-cholesteryl esters in rabbits with a three-quarter renal mass reduction. (2) Methods: HDL subclass characterization was conducted, and the kinetics of plasma HDL-cholesteryl esters, labeled with tritium, were studied in rabbits with a 75% reduction in functional renal mass (Ntx). (3) Results: The reduced renal mass triggered the enrichment of cholesterol, specifically cholesteryl esters, in HDL subclasses. The exchange of cholesteryl esters between HDL and apo B-containing lipoproteins (VLDL/LDL) was not significantly modified in Ntx rabbits. Moreover, the cholesteryl esters of HDL and VLDL/LDL fluxes from the plasmatic compartment tended to decrease, but they only reached statistical significance when both fluxes were added to the Nxt group. Accordingly, the fractional catabolic rate (FCR) of the HDL-cholesteryl esters was lower in Ntx rabbits, concomitantly with its accumulation in HDL subclasses, probably because of the reduced mass of renal cells requiring this lipid from lipoproteins. Full article
(This article belongs to the Special Issue Lipoprotein Metabolism in Health and Disease)
Show Figures

Figure 1

15 pages, 4530 KB  
Article
Activated Carbon-Enriched Electrospun-Produced Scaffolds for Drug Delivery/Release in Biological Systems
by Zhanna K. Nazarkina, Alena O. Stepanova, Boris P. Chelobanov, Ren I. Kvon, Pavel A. Simonov, Andrey A. Karpenko and Pavel P. Laktionov
Int. J. Mol. Sci. 2023, 24(7), 6713; https://doi.org/10.3390/ijms24076713 - 4 Apr 2023
Cited by 6 | Viewed by 2906
Abstract
To vectorize drug delivery from electrospun-produced scaffolds, we introduce a thin outer drug retention layer produced by electrospinning from activated carbon nanoparticles (ACNs)-enriched polycaprolacton (PCL) suspension. Homogeneous or coaxial fibers filled with ACNs were produced by electrospinning from different PCL-based suspensions. Stable ACN [...] Read more.
To vectorize drug delivery from electrospun-produced scaffolds, we introduce a thin outer drug retention layer produced by electrospinning from activated carbon nanoparticles (ACNs)-enriched polycaprolacton (PCL) suspension. Homogeneous or coaxial fibers filled with ACNs were produced by electrospinning from different PCL-based suspensions. Stable ACN suspensions were selected by sorting through solvents, stabilizers and auxiliary components. The ACN-enriched scaffolds produced were characterized for fiber diameter, porosity, pore size and mechanical properties. The scaffold structure was analyzed by scanning electron microscopy and X-ray photoelectron spectroscopy. It was found that ACNs were mainly coated with a polymer layer for both homogeneous and coaxial fibers. Drug binding and release from the scaffolds were tested using tritium-labeled sirolimus. We showed that the kinetics of sirolimus binding/release by ACN-enriched scaffolds was determined by the fiber composition and differed from that obtained with a free ACN. ACN-enriched scaffolds with coaxial and homogeneous fibers had a biocompatibility close to scaffold-free AC, as was shown by the cultivation of human gingival fibroblasts and umbilical vein cells on scaffolds. The data obtained demonstrated that ACN-enriched scaffolds had good physico-chemical properties and biocompatibility and, thus, could be used as a retaining layer for vectored drug delivery. Full article
(This article belongs to the Special Issue Nanomaterials in Biomedicine 2022)
Show Figures

Figure 1

19 pages, 4773 KB  
Article
Antibody-Based In Vivo Imaging of Central Nervous System Targets—Evaluation of a Pretargeting Approach Utilizing a TCO-Conjugated Brain Shuttle Antibody and Radiolabeled Tetrazines
by Christoph Bredack, Martin R. Edelmann, Edilio Borroni, Luca C. Gobbi and Michael Honer
Pharmaceuticals 2022, 15(12), 1445; https://doi.org/10.3390/ph15121445 - 22 Nov 2022
Cited by 12 | Viewed by 3723
Abstract
Bioorthogonal pretargeted imaging using the inverse-electron-demand Diels–Alder (IEDDA) reaction between a tetrazine (Tz) and a trans-cyclooctene (TCO) represents an attractive strategy for molecular imaging via antibodies. The advantages of using a pretargeted imaging approach are on the one hand the possibility to [...] Read more.
Bioorthogonal pretargeted imaging using the inverse-electron-demand Diels–Alder (IEDDA) reaction between a tetrazine (Tz) and a trans-cyclooctene (TCO) represents an attractive strategy for molecular imaging via antibodies. The advantages of using a pretargeted imaging approach are on the one hand the possibility to achieve a high signal-to-noise ratio and imaging contrast; on the other hand, the method allows the uncoupling of the biological half-life of antibodies from the physical half-life of short-lived radionuclides. A brain-penetrating antibody (mAb) specific for β-amyloid (Aβ) plaques was functionalized with TCO moieties for pretargeted labeling of Aβ plaques in vitro, ex vivo, and in vivo by a tritium-labeled Tz. The overall aim was to explore the applicability of mAbs for brain imaging, using a preclinical model system. In vitro clicked mAb–TCO–Tz was able to pass the blood–brain barrier of transgenic PS2APP mice and specifically visualize Aβ plaques ex vivo. Further experiments showed that click reactivity of the mAb–TCO construct in vivo persisted up to 3 days after injection by labeling Aβ plaques ex vivo after incubation of brain sections with the Tz in vitro. An attempted in vivo click reaction between injected mAb–TCO and Tz did not lead to significant labeling of Aβ plaques, most probably due to unfavorable in vivo properties of the used Tz and a long half-life of the mAb–TCO in the blood stream. This study clearly demonstrates that pretargeted imaging of CNS targets via antibody-based click chemistry is a viable approach. Further experiments are warranted to optimize the balance between stability and reactivity of all reactants, particularly the Tz. Full article
Show Figures

Graphical abstract

9 pages, 715 KB  
Article
Tritium Labeling and Phase Distribution of 18-Crown-6 and Its Derivatives for Further Reprocessing of Radium Waste
by Andrey G. Kazakov, Taisya Y. Ekatova, Julia S. Babenya, Sergey E. Vinokurov and Gennady A. Badun
Energies 2022, 15(19), 6867; https://doi.org/10.3390/en15196867 - 20 Sep 2022
Cited by 2 | Viewed by 2138
Abstract
To date, the world has accumulated a large amount of long-lived radioactive materials that need to be disposed of or reprocessed. Such materials include nuclear legacy objects containing 226Ra, which is an important material for obtaining a wide range of isotopes for [...] Read more.
To date, the world has accumulated a large amount of long-lived radioactive materials that need to be disposed of or reprocessed. Such materials include nuclear legacy objects containing 226Ra, which is an important material for obtaining a wide range of isotopes for nuclear medicine via irradiation in reactors, cyclotrons, and electron accelerators. For the selective recovery of 226Ra from waste materials, crown-ether (CE) 18-crown-6 (18C6) or its derivatives can be used, which, however, have not been widely studied for these purposes. In our work, the key property of 18C6 and its derivatives, the phase distribution, was studied using tritium labeling. The possibility of introducing a tritium label into CEs molecules using thermal activation of tritium has been demonstrated; a high specific activity of the obtained compounds was achieved (from 18 to 108 TBq/mol). Methods for chromatographic purification of the studied CEs were developed. The distribution of 18C6 and its derivatives between various organic solvents and water was studied in detail for the first time. Subsequently, the obtained data will allow us to choose conditions for the selective recovery of 226Ra from aged sources. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

13 pages, 1946 KB  
Article
Development and Validation of [3H]OF-NB1 for Preclinical Assessment of GluN1/2B Candidate Drugs
by Hazem Ahmed, Livio Gisler, Nehal H. Elghazawy, Claudia Keller, Wolfgang Sippl, Steven H. Liang, Achi Haider and Simon M. Ametamey
Pharmaceuticals 2022, 15(8), 960; https://doi.org/10.3390/ph15080960 - 2 Aug 2022
Cited by 4 | Viewed by 2633
Abstract
GluN2B-enriched N-methyl-D-aspartate receptors (NMDARs) are implicated in several neurodegenerative and psychiatric diseases, such as Alzheimer’s disease. No clinically valid GluN1/2B therapeutic exists due to a lack of selective GluN2B imaging tools, and the state-of-the-art [3H]ifenprodil shows poor selectivity [...] Read more.
GluN2B-enriched N-methyl-D-aspartate receptors (NMDARs) are implicated in several neurodegenerative and psychiatric diseases, such as Alzheimer’s disease. No clinically valid GluN1/2B therapeutic exists due to a lack of selective GluN2B imaging tools, and the state-of-the-art [3H]ifenprodil shows poor selectivity in drug screening. To this end, we developed a tritium-labeled form of OF-NB1, a recently reported selective GluN1/2B positron emission tomography imaging (PET) agent, with a molar activity of 1.79 GBq/µmol. The performance of [3H]OF-NB1 and [3H]ifenprodil was compared through head-to-head competitive binding experiments, using the GluN1/2B ligand CP-101,606 and the sigma-1 receptor (σ1R) ligand SA-4503. Contrary to [3H]ifenprodil, the usage of [3H]OF-NB1 differentiated between GluN1/2B and σ1R binding components. These results were corroborated by observations from PET imaging experiments in Wistar rats using the σ1R radioligand [18F]fluspidine. To unravel the binding modes of OF-NB1 and ifenprodil in GluN1/2B and σ1Rs, we performed a retrospective in silico study using a molecular operating environment. OF-NB1 maintained similar interactions to GluN1/2B as ifenprodil, but only ifenprodil successfully fitted in the σ1R pocket, thereby explaining the high GluN1/2B selectivity of OF-NB1 compared to ifenprodil. We successfully showed in a proof-of-concept study the superiority of [3H]OF-NB1 over the gold standard [3H]ifenprodil in the screening of potential GluN1/2B drug candidates. Full article
Show Figures

Figure 1

14 pages, 2494 KB  
Article
Levofloxacin and Amikacin Adsorption on Nanodiamonds: Mechanism and Application Prospects
by Tianyi Shen, Maria G. Chernysheva, Gennadii A. Badun, Andrey G. Popov, Alexander V. Egorov, Neli M. Anuchina, Ivan S. Chaschin and Natalia P. Bakuleva
Colloids Interfaces 2022, 6(2), 35; https://doi.org/10.3390/colloids6020035 - 29 May 2022
Cited by 12 | Viewed by 4289
Abstract
This research is focused on the adsorption modification of detonation nanodiamond surfaces with antibiotics for their further use as smart materials for cardiovascular surgery purposes, namely as bioprostheses modifiers. Tritium-labeled amikacin and levofloxacin were used as tracers for the adsorption process control. We [...] Read more.
This research is focused on the adsorption modification of detonation nanodiamond surfaces with antibiotics for their further use as smart materials for cardiovascular surgery purposes, namely as bioprostheses modifiers. Tritium-labeled amikacin and levofloxacin were used as tracers for the adsorption process control. We found that nanodiamonds form adsorption complexes with levofloxacin via physical adsorption, while in the case of amikacin, electrostatic attraction contributes to the formation of more stable complexes, even in the presence of electrolytes and desorbing agents (models of biological fluids). Antimicrobial characterization of nanodiamond–levofloxacin and nanodiamond–amikacin complexes indicates a reduction in the dose of antibiotics that is used as an antimicrobial agent. Therefore, the use of biomaterial based on DND complexes with antibiotics as the basis of bioprostheses will allow one either to avoid or significantly reduce the duration and intensity of antibiotics use in the postoperative period, which is critically important from the viewpoint of the development of antibiotic resistance in pathogens. Full article
(This article belongs to the Special Issue Biocolloids and Biointerfaces)
Show Figures

Figure 1

15 pages, 1871 KB  
Article
A Use of Tritium-Labeled Peat Fulvic Acids and Polyphenolic Derivatives for Designing Pharmacokinetic Experiments on Mice
by Gennady A. Badun, Maria G. Chernysheva, Yury V. Zhernov, Alina S. Poroshina, Valery V. Smirnov, Sergey E. Pigarev, Tatiana A. Mikhnevich, Dmitry S. Volkov, Irina V. Perminova and Elena I. Fedoros
Biomedicines 2021, 9(12), 1787; https://doi.org/10.3390/biomedicines9121787 - 29 Nov 2021
Cited by 7 | Viewed by 3093
Abstract
Natural products (e.g., polyphenols) have been used as biologically active compounds for centuries. Still, the mechanisms of biological activity of these multicomponent systems are poorly understood due to a lack of appropriate experimental techniques. The method of tritium thermal bombardment allows for non-selective [...] Read more.
Natural products (e.g., polyphenols) have been used as biologically active compounds for centuries. Still, the mechanisms of biological activity of these multicomponent systems are poorly understood due to a lack of appropriate experimental techniques. The method of tritium thermal bombardment allows for non-selective labeling and tracking of all components of complex natural systems. In this study, we applied it to label two well-characterized polyphenolic compounds, peat fulvic acid (FA-Vi18) and oxidized lignin derivative (BP-Cx-1), of predominantly hydrophilic and hydrophobic character, respectively. The identity of the labeled samples was confirmed using size exclusion chromatography. Using ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT ICR MS), key differences in the molecular composition of BP-Cx-1 and FA-Vi18 were revealed. The labeled samples ([3H]-FA-Vi18 (10 mg/kg) and [3H]-BP-Cx-1 (100 mg/kg)) were administered to female BALB/c mice intravenously (i.v.) and orally. The label distribution was assessed in blood, liver, kidneys, brain, spleen, thymus, ovaries, and heart using liquid scintillation counting. Tritium label was found in all organs studied at different concentrations. For the fulvic acid sample, the largest accumulation was observed in the kidney (Cmax 28.5 mg/kg and 5.6 mg/kg, respectively) for both routes. The organs of preferential accumulation of the lignin derivative were the liver (Cmax accounted for 396.7 and 16.13 mg/kg for i.v. and p.o. routes, respectively) and kidney (Cmax accounted for 343.3 and 17.73 mg/kg for i.v. and p.o. routes, respectively). Our results demonstrate that using the tritium labeling technique enabled successful pharmacokinetic studies on polyphenolic drugs with very different molecular compositions. It proved to be efficient for tissue distribution studies. It was also shown that the dosage of the polyphenolic drug might be lower than 10 mg/kg due to the sensitivity of the 3H detection technique. Full article
Show Figures

Figure 1

20 pages, 2926 KB  
Article
Pharmacokinetics and Molecular Modeling Indicate nAChRα4-Derived Peptide HAEE Goes through the Blood–Brain Barrier
by Yurii A. Zolotarev, Vladimir A. Mitkevich, Stanislav I. Shram, Alexei A. Adzhubei, Anna P. Tolstova, Oleg B. Talibov, Alexander K. Dadayan, Nikolai F. Myasoyedov, Alexander A. Makarov and Sergey A. Kozin
Biomolecules 2021, 11(6), 909; https://doi.org/10.3390/biom11060909 - 18 Jun 2021
Cited by 8 | Viewed by 3901
Abstract
One of the treatment strategies for Alzheimer’s disease (AD) is based on the use of pharmacological agents capable of binding to beta-amyloid (Aβ) and blocking its aggregation in the brain. Previously, we found that intravenous administration of the synthetic tetrapeptide Acetyl-His-Ala-Glu-Glu-Amide (HAEE), which [...] Read more.
One of the treatment strategies for Alzheimer’s disease (AD) is based on the use of pharmacological agents capable of binding to beta-amyloid (Aβ) and blocking its aggregation in the brain. Previously, we found that intravenous administration of the synthetic tetrapeptide Acetyl-His-Ala-Glu-Glu-Amide (HAEE), which is an analogue of the 35–38 region of the α4 subunit of α4β2 nicotinic acetylcholine receptor and specifically binds to the 11–14 site of Aβ, reduced the development of cerebral amyloidogenesis in a mouse model of AD. In the current study on three types of laboratory animals, we determined the biodistribution and tissue localization patterns of HAEE peptide after single intravenous bolus administration. The pharmacokinetic parameters of HAEE were established using uniformly tritium-labeled HAEE. Pharmacokinetic data provided evidence that HAEE goes through the blood–brain barrier. Based on molecular modeling, a role of LRP1 in receptor-mediated transcytosis of HAEE was proposed. Altogether, the results obtained indicate that the anti-amyloid effect of HAEE, previously found in a mouse model of AD, most likely occurs due to its interaction with Aβ species directly in the brain. Full article
Show Figures

Figure 1

13 pages, 2352 KB  
Article
Radiosynthesis and Evaluation of Talazoparib and Its Derivatives as PARP-1-Targeting Agents
by Dong Zhou, Huaping Chen, Cedric Mpoy, Sadia Afrin, Buck E. Rogers, Joel R. Garbow, John A. Katzenellenbogen and Jinbin Xu
Biomedicines 2021, 9(5), 565; https://doi.org/10.3390/biomedicines9050565 - 18 May 2021
Cited by 23 | Viewed by 4711
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) is a critical enzyme in the DNA repair process and the target of several FDA-approved inhibitors. Several of these inhibitors have been radiolabeled for non-invasive imaging of PARP-1 expression or targeted radiotherapy of PARP-1 expressing tumors. In particular, derivatives [...] Read more.
Poly (ADP-ribose) polymerase-1 (PARP-1) is a critical enzyme in the DNA repair process and the target of several FDA-approved inhibitors. Several of these inhibitors have been radiolabeled for non-invasive imaging of PARP-1 expression or targeted radiotherapy of PARP-1 expressing tumors. In particular, derivatives of olaparib and rucaparib, which have reduced trapping potency by PARP-1 compared to talazoparib, have been radiolabeled for these purposes. Here, we report the first radiosynthesis of [18F]talazoparib and its in vitro and in vivo evaluation. Talazoparib (3a″) and its bromo- or iodo-derivatives were synthesized as racemic mixtures (3a, 3b and 3c), and these compounds exhibit high affinity to PARP-1 (Ki for talazoparib (3a″): 0.65 ± 0.07 nM; 3a: 2.37 ± 0.56 nM; 3b: 1.92 ± 0.41 nM; 3c: 1.73 ± 0.43 nM; known PARP-1 inhibitor Olaparib: 1.87 ± 0.10 nM; non-PARP-1 compound Raclopride: >20,000 nM) in a competitive binding assay using a tritium-labeled PARP-1 radioligand [3H]WC-DZ for screening. [18F]Talazoparib (3a″) was radiosynthesized via a multiple-step procedure with good radiochemical and chiral purities (98%) and high molar activity (28 GBq/μmol). The preliminary biodistribution studies in the murine PC-3 tumor model showed that [18F]talazoparib had a good level of tumor uptake that persisted for over 8 h (3.78 ± 0.55 %ID/gram at 4 h and 4.52 ± 0.32 %ID/gram at 8 h). These studies show the potential for the bromo- and iodo- derivatives for PARP-1 targeted radiotherapy studies using therapeutic radionuclides. Full article
(This article belongs to the Section Drug Discovery and Development)
Show Figures

Figure 1

14 pages, 13696 KB  
Article
Influence of Elongation of Paclitaxel-Eluting Electrospun-Produced Stent Coating on Paclitaxel Release and Transport through the Arterial Wall after Stenting
by Zhanna K. Nazarkina, Boris P. Chelobanov, Konstantin A. Kuznetsov, Alexey V. Shutov, Irina V. Romanova, Andrey A. Karpenko and Pavel P. Laktionov
Polymers 2021, 13(7), 1165; https://doi.org/10.3390/polym13071165 - 5 Apr 2021
Cited by 5 | Viewed by 2925
Abstract
It was previously shown that polycaprolactone (PCL)-based electrospun-produced paclitaxel (PTX)-enriched matrices exhibit long-term drug release kinetics and can be used as coatings for drug-eluting stents (DES). The installation of vascular stents involves a twofold increase in stent diameter and, therefore, an elongation of [...] Read more.
It was previously shown that polycaprolactone (PCL)-based electrospun-produced paclitaxel (PTX)-enriched matrices exhibit long-term drug release kinetics and can be used as coatings for drug-eluting stents (DES). The installation of vascular stents involves a twofold increase in stent diameter and, therefore, an elongation of the matrices covering the stents, as well as the arterial wall in a stented area. We studied the influence of matrix elongation on its structure and PTX release using three different electrospun-produced matrices. The data obtained demonstrate that matrix elongation during stent installation does not lead to fiber breaks and does not interfere with the kinetics of PTX release. To study PTX diffusion through the expanded artery wall, stents coated with 5%PCL/10%HSA/3%DMSO/PTX and containing tritium-labeled PTX were installed into the freshly obtained iliac artery of a rabbit. The PTX passing through the artery wall was quantified using a scintillator β-counter. The artery retained the PTX and decreased its release from the coating. The retention of PTX by the arterial wall was more efficient when incubated in blood plasma in comparison with PBS. The retention/accumulation of PTX by the arterial wall provides a prolonged drug release and allows for the reduction in the dose of the drugs in electrospun-produced stent coatings. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials for Pharmaceutical Applications)
Show Figures

Figure 1

Back to TopTop