A Use of Tritium-Labeled Peat Fulvic Acids and Polyphenolic Derivatives for Designing Pharmacokinetic Experiments on Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sources and Structural Characterization of the Humic and Lignin-Derived Materials
2.2. Tritium Labeling of the Fulvic Acid and the Lignin Derivative Used in This Study
2.3. Animals Welfare
2.4. Animal Study Design
2.5. Liquid Scintillation Counting (LSC)
2.6. Calculation of Pharmacokinetic Parameters
3. Results
3.1. Structural Characteristics of the Parent and 3H-Labelled Samples of Fulvic Acid and Lignin Derivative Used in this Study
3.2. Distribution of the 3H-Labeled Fulvic Acid and BP Cx-1 in the Tissue of Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bent, S. Herbal Medicine in the United States: Review of Efficacy, Safety, and Regulation—Grand Rounds at University of California, San Francisco Medical Center. J. Gen. Intern. Med. 2008, 23, 854–859. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Wang, Y.; Wu, A.; Ding, Z.; Liu, X. Influence Factors of the Pharmacokinetics of Herbal Resourced Compounds in Clinical Practice. Evid.-Based Complement. Altern. Med. 2019, 2019, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, A. Dose-Dependent Functionality and Toxicity of Green Tea Polyphenols in Experimental Rodents. Arch. Biochem. Biophys. 2014, 557, 3–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Angelo, S.; Martino, E.; Ilisso, C.P.; Bagarolo, M.L.; Porcelli, M.; Cacciapuoti, G. Pro-Oxidant and pro-Apoptotic Activity of Polyphenol Extract from Annurca Apple and Its Underlying Mechanisms in Human Breast Cancer Cells. Int. J. Oncol. 2017, 51, 939–948. [Google Scholar] [CrossRef] [Green Version]
- EMEA. Products Guidelines for the Conduct of Pharmacokinetic Studies in Target Animal Species (EMEA/CVMP/133/99-FINAL); EMEA: London, UK, 2000. [Google Scholar]
- Espinoza-Acosta, J.L.; Torres-Chávez, P.I.; Ramírez-Wong, B.; López-Saiz, C.M.; Montaño-Leyva, B. Antioxidant, Antimicrobial, and Antimutagenic Properties of Technical Lignins and Their Applications. BioResources 2016, 11, 5452–5481. [Google Scholar] [CrossRef]
- Ugartondo, V.; Mitjans, M.; Vinardell, M.P. Comparative Antioxidant and Cytotoxic Effects of Lignins from Different Sources. Bioresour. Technol. 2008, 99, 6683–6687. [Google Scholar] [CrossRef] [PubMed]
- Fedoros, E.I.; Orlov, A.A.; Zherebker, A.; Gubareva, E.A.; Maydin, M.A.; Konstantinov, A.I.; Krasnov, K.A.; Karapetian, R.N.; Izotova, E.I.; Pigarev, S.E.; et al. Novel Water-Soluble Lignin Derivative BP-Cx-1: Identification of Components and Screening of Potential Targets in Silico and in Vitro. Oncotarget 2018, 9, 18578–18593. [Google Scholar] [CrossRef] [Green Version]
- Anisimov, V.N.; Popovich, I.G.; Zabezhinski, M.A.; Yurova, M.N.; Tyndyk, M.L.; Anikin, I.V.; Egormin, P.A.; Baldueva, I.A.; Fedoros, E.I.; Pigarev, S.E.; et al. Polyphenolic Drug Composition Based on Benzenepolycarboxylic Acids (BP-C3) Increases Life Span and Inhibits Spontaneous Tumorigenesis in Female SHR Mice. Aging 2016, 8, 1866–1875. [Google Scholar] [CrossRef] [Green Version]
- Panchenko, A.V.; Fedoros, E.I.; Pigarev, S.E.; Maydin, M.A.; Gubareva, E.A.; Yurova, M.N.; Kireeva, G.S.; Lanskikh, G.P.; Tyndyk, M.L.; Anisimov, V.N. Effect of the Polyphenol Composition BP-C3 on Haematological and Intestinal Indicators of 5-Fluorouracil Toxicity in Mice. Exp. Ther. Med. 2018, 15, 3124–3132. [Google Scholar] [CrossRef]
- Bykov, V.N.; Drachev, I.S.; Kraev, S.Y.; Maydin, M.A.; Gubareva, E.A.; Pigarev, S.E.; Anisimov, V.N.; Baldueva, I.A.; Fedoros, E.I.; Panchenko, A. V Radioprotective and Radiomitigative Effects of BP-C2, a Novel Lignin-Derived Polyphenolic Composition with Ammonium Molybdate, in Two Mouse Strains Exposed to Total Body Irradiation. Int. J. Radiat. Biol. 2018, 94, 114–123. [Google Scholar] [CrossRef]
- Aeschbacher, M.; Graf, C.; Schwarzenbach, R.P.; Sander, M. Antioxidant Properties of Humic Substances. Environ. Sci. Technol. 2012, 46, 4916–4925. [Google Scholar] [CrossRef]
- Perminova, I.V.; Kovalenko, A.N.; Schmitt-Kopplin, P.; Hatfield, K.; Hertkorn, N.; Belyaeva, E.Y.; Petrosyan, V.S. Design of Quinonoid-Enriched Humic Materials with Enhanced Redox Properties. Environ. Sci. Technol. 2005, 39, 8518–8524. [Google Scholar] [CrossRef]
- Klein, O.I.; Kulikova, N.A.; Filimonov, I.S.; Koroleva, O.V.; Konstantinov, A.I. Long-Term Kinetics Study and Quantitative Characterization of the Antioxidant Capacities of Humic and Humic-like Substances. J. Soils Sediment. 2018, 18, 1355–1364. [Google Scholar] [CrossRef]
- Tarasova, A.S.; Stom, D.I.; Kudryasheva, N.S. Antioxidant Activity of Humic Substances via Bioluminescent Monitoring in Vitro. Environ. Monit. Assess. 2015, 187, 89. [Google Scholar] [CrossRef]
- Zhernov, Y.V.; Kremb, S.; Helfer, M.; Schindler, M.; Harir, M.; Mueller, C.; Hertkorn, N.; Avvakumova, N.P.; Konstantinov, A.I.; Brack-Werner, R.; et al. Supramolecular Combinations of Humic Polyanions as Potent Microbicides with Polymodal Anti-HIV-Activities. New J. Chem. 2016, 41, 212–224. [Google Scholar] [CrossRef] [Green Version]
- Van Rensburg, C.E.J. The Antiinflammatory Properties of Humic Substances: A Mini Review. Phytother. Res. 2015, 29, 791–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirza, M.A.; Ahmad, N.; Agarwal, S.P.; Mahmood, D.; Anwer, M.K.; Iqbal, Z. Comparative Evaluation of Humic Substances in Oral Drug Delivery. Results Pharma Sci. 2011, 1, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Mirza, M.A. Future of Humic Substances as Pharmaceutical Excipient. Pharm. Sci. Anal. Res. J. 2018, 1, 180004. [Google Scholar]
- Zykova, M.V.; Schepetkin, I.A.; Belousov, M.V.; Krivoshchekov, S.V.; Logvinova, L.A.; Bratishko, K.A.; Yusubov, M.S.; Romanenko, S.V.; Quinn, M.T. Physicochemical Characterization and Antioxidant Activity of Humic Acids Isolated from Peat of Various Origins. Molecules 2018, 23, 753. [Google Scholar] [CrossRef] [Green Version]
- Winkler, J.; Ghosh, S. Therapeutic Potential of Fulvic Acid in Chronic Inflammatory Diseases and Diabetes. J. Diabetes Res. 2018, 5391014. [Google Scholar] [CrossRef] [Green Version]
- Kala, K.J.; Prashob, P.K.J.; Chandramohanakumar, N. Humic Substances as a Potent Biomaterials for Therapeutic and Drug Delivery System-a Review. Int. J. Appl. Pharm. 2019, 11, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Xu, Y.; Zhu, D.; Ji, Y. Pharmacokinetic Comparison of 20(R)- and 20(S)-Ginsenoside Rh1 and 20(R)- and 20(S)-Ginsenoside Rg3 in Rat Plasma Following Oral Administration of Radix Ginseng Rubra and Sheng-Mai-San Extracts. Evid.-Based Complement. Altern. Med. eCAM 2017, 2017, 6451963. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.C.; Bao, Y.R.; Wang, S.; Li, T.J.; Meng, X.S. Simultaneous Determination of Eight Bioactive Components of Cirsium Setosum Flavonoids in Rat Plasma Using Triple Quadrupole LC/MS and Its Application to a Pharmacokinetic Study. Biomed. Chromatogr. 2019, 33, e4632. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Lou, Y.; Kong, M.; Luo, Q.; Liu, Z.; Wu, J. A Systematic Review of Phytochemistry, Pharmacology and Pharmacokinetics on Astragali Radix: Implications for Astragali Radix as a Personalized Medicine. Int. J. Mol. Sci. 2019, 20, 1463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hertkorn, N.; Harir, M.; Koch, B.P.; Michalke, B.; Schmitt-Kopplin, P. High-field NMR Spectroscopy and FTICR Mass Spectrometry: Powerful Discovery Tools for The Molecular Level Characterization of Marine Dissolved Organic Matter. Biogeosciences 2013, 10, 1583–1624. [Google Scholar] [CrossRef] [Green Version]
- Roullier-Gall, C.; Signoret Julie, H.D.; Witting, M.A.; Kanawati, B.; Schäfer, B.; Gougeon, R.D.; Schmitt-Kopplin, P. Usage of FT-ICR-MS Metabolomics for Characterizing the Chemical Signatures of Barrel-Aged Whisky. Front. Chem. 2018, 6, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, C.H.; Kim, M.Y.; Lee, S.W.; Jang, K.-S. UPLC/FT-ICR MS-Based High-Resolution Platform for Determining the Geographical Origins of Raw Propolis Samples. J. Anal. Sci. Technol. 2019, 10, 8. [Google Scholar] [CrossRef]
- Bowman, A.P.; Blakney, G.T.; Hendrickson, C.L.; Ellis, S.R.; Heeren, R.M.A.; Smith, D.F. Ultra-High Mass Resolving Power, Mass Accuracy, and Dynamic Range MALDI Mass Spectrometry Imaging by 21-T FT-ICR MS. Anal. Chem. 2020, 92, 3133–3142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derrien, M.; Lee, Y.K.; Park, J.E.; Li, P.; Chen, M.; Lee, S.H.; Lee, S.H.; Lee, J.B.; Hur, J. Spectroscopic and Molecular Characterization of Humic Substances (HS) from Soils and Sediments in a Watershed: Comparative Study of HS Chemical Fractions and the Origins. Environ. Sci. Pollut. Res. 2017, 24, 16933–16945. [Google Scholar] [CrossRef]
- Ware, S.A.; Hartman, B.E.; Waggoner, D.C.; Vaughn, D.R.; Bianchi, T.S.; Hatcher, P.G. Molecular Evidence for the Export of Terrigenous Organic Matter to the North Gulf of Mexico by Solid-State 13C NMR and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Humic Acids. Geochim. Cosmochim. Acta 2021, 317, 39–52. [Google Scholar] [CrossRef]
- D’Auria, M.; Emanuele, L.; Racioppi, R. A FT-ICR MS Study of Lignin: Determination of An Unusual Structural Repetitive Unit in Steam Exploded Lignin From Wheat Straw. Lett. Org. Chem. 2011, 8, 436–446. [Google Scholar] [CrossRef]
- Qi, Y.; Fu, P.; Volmer, D. Analysis of Natural Organic Matter via Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: An Overview of Recent Non-Petroleum Applications. Mass Spectrom. Rev. 2020, 00, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Orlov, A.A.; Zherebker, A.; Eletskaya, A.A.; Chernikov, V.S.; Kozlovskaya, L.I.; Zhernov, Y.V.; Kostyukevich, Y.; Palyulin, V.A.; Nikolaev, E.N.; Osolodkin, D.S.; et al. Examination of molecular space and feasible structures of bioactive components of humic substances by FTICR MS data mining in ChEMBL database. Sci. Rep. 2019, 9, 12066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leyva, D.; Tose, L.V.; Porter, J.; Wolff, J.; Jaffé, R.; Fernandez-Lima, F. Understanding the Structural Complexity of Dissolved Organic Matter: Isomeric Diversity. Faraday Discuss. 2019, 218, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Badun, G.A.; Chernysheva, M.G.; Tyasto, Z.A.; Kulikova, N.A.; Kudryavtsev, A.V.; Perminova, I.V. A New Technique for Tritium Labeling of Humic Substances. Radiochim. Acta 2010, 98, 161–166. [Google Scholar] [CrossRef]
- Kulikova, N.A.; Perminova, I.V.; Badun, G.A.; Chernysheva, M.G.; Koroleva, O.V.; Tsvetkova, E.A. Estimation of Uptake of Humic Substances from Different Sources by Escherichia Coli Cells under Optimum and Salt Stress Conditions by Use of Tritium-Labeled Humic Materials. Appl. Environ. Microbiol. 2010, 76, 6223–6230. [Google Scholar] [CrossRef] [Green Version]
- Kulikova, N.A.; Abroskin, D.P.; Badun, G.A.; Chernysheva, M.G.; Korobkov, V.I.; Beer, A.S.; Tsvetkova, E.A.; Senik, S.V.; Klein, O.I.; Perminova, I.V. Label Distribution in Tissues of Wheat Seedlings Cultivated with Tritium-Labeled Leonardite Humic Acid. Sci. Rep. 2016, 6, 28869. [Google Scholar] [CrossRef] [Green Version]
- Hertkorn, N.; Permin, A.; Perminova, I.; Kovalevskii, D.; Yudov, M.; Petrosyan, V.; Kettrup, A. Comparative Analysis of Partial Structures of a Peat Humic and Fulvic Acid Using One- and Two-Dimensional Nuclear Magnetic Resonance Spectroscopy. J. Environ. Qual. 2002, 31, 375–387. [Google Scholar] [CrossRef] [Green Version]
- Perminova, I.V.; Frimmel, F.H.; Kudryavtsev, A.V.; Kulikova, N.A.; Abbt-Braun, G.; Hesse, S.; Petrosyan, V.S. Molecular Weight Characteristics of Humic Substances from Different Environments as Determined by Size Exclusion Chromatography and Their Statistical Evaluation. Environ. Sci. Technol. 2003, 37, 2477–2485. [Google Scholar] [CrossRef]
- Mueller, C.; Kremb, S.; Gonsior, M.; Brack-Werner, R.; Voolstra, C.R.; Schmitt-Kopplin, P. Advanced identification of global bioactivity hotspots via screening of the metabolic fingerprint of entire ecosystems. Sci. Rep. 2020, 10, 1319. [Google Scholar] [CrossRef]
- Koch, B.P.; Dittmar, T.; Witt, M.; Kattner, G. Fundamentals of Molecular Formula Assignment to Ultrahigh Resolution Mass Data of Natural Organic Matter. Anal. Chem. 2007, 79, 1758. [Google Scholar] [CrossRef]
- Perminova, I.V. From Green Chemistry and Nature-like Technologies towards Ecoadaptive Chemistry and Technology. Pure Appl. Chem. 2019, 91, 851–864. [Google Scholar] [CrossRef]
- Badun, G.A.; Chernysheva, M.G.; Ksenofontov, A.L. Increase in the Specific Radioactivity of Tritium-Labeled Compounds Obtained by Tritium Thermal Activation Method. Radiochim. Acta 2012, 100, 401–408. [Google Scholar] [CrossRef]
- Perminova, I.V.; Frimmel, F.H.; Kovalevskii, D.V.; Abbt-Braun, G.; Kudryavtsev, A.V.; Hesse, S. Development of a Predictive Model for Calculation of Molecular Weight of Humic Substances. Water Res. 1998, 32, 872–881. [Google Scholar] [CrossRef]
- Li, J.; Yan, K.; Hou, L.; Du, X.; Zhu, P.; Zheng, L.; Zhu, C. An Algorithm and R Program for Fitting and Simulation of Pharmacokinetic and Pharmacodynamic Data. Eur. J. Drug Metab. Pharmacokinet. 2017, 42, 499–518. [Google Scholar] [CrossRef]
- Rice, J.A.; MacCarthy, P. Statistical Evaluation of the Elemental Composition of Humic Substances. Org. Geochem. 1991, 17, 635–648. [Google Scholar] [CrossRef]
- Perminova, I.V.; Grechishcheva, N.Y.; Petrosyan, V.S. Relationships between Structure and Binding Affinity of Humic Substances for Polycyclic Aromatic Hydrocarbons: Relevance of Molecular Descriptors. Environ. Sci. Technol. 1999, 33, 3781–3787. [Google Scholar] [CrossRef]
- Sakakibara, A. A Structural Model of Softwood Lignin. Wood Sci. Technol. 1980, 14, 89–100. [Google Scholar] [CrossRef]
- Wang, W.; Sun, C.; Mao, L.; Ma, P.; Liu, F.; Yang, J.; Gao, Y. The Biological Activities, Chemical Stability, Metabolism and Delivery Systems of Quercetin: A Review. Trends Food Sci. Technol. 2016, 56, 21–38. [Google Scholar] [CrossRef]
Sample | C% | H% | N% | O% | O/C | H/C |
---|---|---|---|---|---|---|
Fulvic acid (FA-Vi18) | 49.14 | 5.19 | 1.29 | 44.38 | 0.68 | 1.27 |
Lignin derivative (BP-Cx-1) | 65.60 | 4.11 | 0.00 | 30.29 | 0.35 | 0.75 |
Sample | CHn | CH3O | CalkO | Car | CarO | COO | C = O | ΣCar | ΣCar/ΣCalk |
---|---|---|---|---|---|---|---|---|---|
FA-Vi18 | 28 | 5 | 12 | 22 | 8 | 20 | 5 | 30 | 0.67 |
BP-Cx-1 | 20 | 5 | 11 | 39 | 8 | 11 | 7 | 47 | 1.3 |
Index | Organ or Tissue | |||||||
---|---|---|---|---|---|---|---|---|
Blood | Liver | Kidneys | Brain | Spleen | Thymus | Ovaries | Heart | |
Cmax, mg/kg | 14.12 | 9.65 | 28.53 | 0.69 | 3.60 | 2.57 | 4.14 | 6.06 |
Tissue-to-blood ratio | 1.00 | 0.68 | 2.02 | 0.05 | 0.25 | 0.18 | 0.29 | 0.43 |
Tmax, min | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
AUC0-24 h × mg × kg−1 | 27.79 | 45.08 | 250.86 | 9.36 | 23.94 | 12.07 | 13.62 | 18.75 |
Lz, min−1 × kg−1 | 0.059 | 0.013 | 0.013 | 0.014 | 0.016 | 0.040 | 0.038 | 0.036 |
AUC0-inf, h × mg × kg−1 | 34.6 | 164.2 | 884.9 | 31.9 | 71.8 | 19.6 | 21.6 | 31.2 |
T1/2, h | 11.7 | 53.7 | 52.2 | 48.0 | 42.0 | 17.4 | 18.4 | 19.7 |
MRT, h | 12.6 | 76.4 | 74.1 | 69.0 | 59.7 | 24.0 | 23.6 | 25.7 |
Index | Organ or Tissue | |||||||
---|---|---|---|---|---|---|---|---|
Blood | Liver | Kidneys | Brain | Spleen | Thymus | Ovaries | Heart | |
Cmax, mg/kg | 1.99 | 2.02 | 5.6 | 0.51 | 0.64 | 1.37 | 0.34 | 0.86 |
Tissue-to-blood ratio | 1.00 | 1.01 | 2.8 | 0.25 | 0.32 | 0.69 | 0.17 | 0.43 |
Tmax, min | 30 | 30 | 30 | 120 | 30 | 60 | 30 | 30 |
AUC0-48 h × mg × kg−1 | 18.15 | 24.11 | 25.32 | 15.46 | 16.84 | 13.13 | 1.72 | 789 |
Lz, h−1 × kg−1 | 0.017 | 0.015 | 0.014 | 0.011 | 0.010 | 0.007 | - | 0.0001 |
AUC0-inf, h × mg ×kg−1 | 33.3 | 45.2 | 54.0 | 38.2 | 45.4 | 48.6 | - | 47.7 |
T1/2, h | 41.0 | 44.9 | 50.9 | 60.6 | 66.9 | 96.8 | - | 88.7 |
MRT, h | 59.3 | 63.7 | 73.4 | 89.1 | 98.8 | 142.9 | - | 133.5 |
Index | Organ or Tissue | |||||||
---|---|---|---|---|---|---|---|---|
Blood | Liver | Kidneys | Brain | Spleen | Thymus | Ovaries | Heart | |
Cmax, mg/kg | 155.2 | 396.7 | 343.3 | 6.3 | 233.3 | 28.2 | 115.7 | 5.4 |
Tissue-to-blood ratio | 1.00 | 2.56 | 2.21 | 0.04 | 1.50 | 0.18 | 0.75 | 0.03 |
Tmax, min | 360 | 5 | 120 | 360 | 5 | 60 | 720 | 5 |
AUC0-12 h × mg × kg−1 | 1297.6 | 2650.0 | 3134.2 | 64.9 | 756.6 | 300.4 | 808.2 | 53.0 |
Lz, h−1 × kg−1 | 0.102 | 0.047 | - | 0.045 | 0.063 | - | - | - |
AUC0-inf, h × mg × kg−1 | 2138.3 | 6242.5 | - | 173.9 | 1649.0 | - | - | - |
T1/2, h | 6.8 | 14.6 | - | 15.5 | 10.9 | - | - | - |
MRT, h | 15.5 | - | - | 64.7 | 11.5 | - | - | - |
Index | Organ or Tissue | |||||||
---|---|---|---|---|---|---|---|---|
Blood | Liver | Kidneys | Brain | Spleen | Thymus | Ovaries | Heart | |
Cmax, mg/kg | 2.70 | 16.13 | 17.73 | 2.10 | 4.33 | 7.33 | 1.17 | 0.16 |
Tissue-to-blood ratio | 1.00 | 5.98 | 6.57 | 0.78 | 1.60 | 2.72 | 0.43 | 0.06 |
Tmax, min | 120 | 120 | 120 | 30 | 120 | 120 | 360 | 120 |
AUC0-48 h × mg × kg−1 | 73.1 | 275.4 | 227.7 | 58.3 | 74.7 | 76.0 | 36.4 | 2.9 |
Lz, h−1 × kg−1 | 0.007 | - | 0.003 | 0.012 | 0.010 | 0.015 | - | 0.005 |
AUC0-inf, h × mg × kg−1 | 248.5 | - | 1536.6 | 136.4 | 193.5 | 135.4 | - | 15.9 |
T1/2, h | 91.2 | - | 226.8 | 55.9 | 68.6 | 44.1 | - | 150.5 |
MRT, h | 133.1 | - | 322.6 | 82.6 | 97.8 | 58.4 | - | 221.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badun, G.A.; Chernysheva, M.G.; Zhernov, Y.V.; Poroshina, A.S.; Smirnov, V.V.; Pigarev, S.E.; Mikhnevich, T.A.; Volkov, D.S.; Perminova, I.V.; Fedoros, E.I. A Use of Tritium-Labeled Peat Fulvic Acids and Polyphenolic Derivatives for Designing Pharmacokinetic Experiments on Mice. Biomedicines 2021, 9, 1787. https://doi.org/10.3390/biomedicines9121787
Badun GA, Chernysheva MG, Zhernov YV, Poroshina AS, Smirnov VV, Pigarev SE, Mikhnevich TA, Volkov DS, Perminova IV, Fedoros EI. A Use of Tritium-Labeled Peat Fulvic Acids and Polyphenolic Derivatives for Designing Pharmacokinetic Experiments on Mice. Biomedicines. 2021; 9(12):1787. https://doi.org/10.3390/biomedicines9121787
Chicago/Turabian StyleBadun, Gennady A., Maria G. Chernysheva, Yury V. Zhernov, Alina S. Poroshina, Valery V. Smirnov, Sergey E. Pigarev, Tatiana A. Mikhnevich, Dmitry S. Volkov, Irina V. Perminova, and Elena I. Fedoros. 2021. "A Use of Tritium-Labeled Peat Fulvic Acids and Polyphenolic Derivatives for Designing Pharmacokinetic Experiments on Mice" Biomedicines 9, no. 12: 1787. https://doi.org/10.3390/biomedicines9121787
APA StyleBadun, G. A., Chernysheva, M. G., Zhernov, Y. V., Poroshina, A. S., Smirnov, V. V., Pigarev, S. E., Mikhnevich, T. A., Volkov, D. S., Perminova, I. V., & Fedoros, E. I. (2021). A Use of Tritium-Labeled Peat Fulvic Acids and Polyphenolic Derivatives for Designing Pharmacokinetic Experiments on Mice. Biomedicines, 9(12), 1787. https://doi.org/10.3390/biomedicines9121787