Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = tristability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6121 KB  
Article
Extending the Frequency Bandwidth of a Tristable Electromagnetic Energy Harvester Through the Use of Stoppers
by Marcin Kulik and Rafał Gabor
Energies 2025, 18(22), 6007; https://doi.org/10.3390/en18226007 - 16 Nov 2025
Viewed by 2153
Abstract
This study investigated a nonlinear tristable electromagnetic vibration energy harvester enhanced with adjustable mechanical stoppers. The stoppers were designed to limit yoke displacement and prevent sticking in the outer stable positions. The research aimed to extend the operational frequency bandwidth and improve the [...] Read more.
This study investigated a nonlinear tristable electromagnetic vibration energy harvester enhanced with adjustable mechanical stoppers. The stoppers were designed to limit yoke displacement and prevent sticking in the outer stable positions. The research aimed to extend the operational frequency bandwidth and improve the stability of energy conversion under variable excitation conditions. A comprehensive experimental setup based on a PXI measurement platform was developed to analyze the system’s electrical and mechanical responses. The study examined the influence of stopper spacing, vibration acceleration, and electrical load on the frequency–voltage characteristics and beam strain. The results showed that introducing adjustable stoppers eliminated the sticking phenomenon and broadened the effective operational bandwidth to a total range of 14 Hz under excitation frequencies between 10 and 50 Hz, while maintaining structural safety. The findings confirmed that the proper selection of stopper distance enabled adaptive tuning of the harvester’s dynamic behavior and power output, increasing the average voltage by approximately 50% compared with the configuration without stoppers. The proposed approach improved the autonomy and reliability of self-powered sensor nodes and other low-power electronic systems for Internet of Things (IoT) and condition monitoring applications. Full article
(This article belongs to the Special Issue Advances in Energy Harvesting Systems)
Show Figures

Figure 1

17 pages, 3650 KB  
Article
Response Control and Bifurcation Phenomenon of a Tristable Rayleigh–Duffing System with Fractional Inertial Force Under Recycling Noises
by Yajie Li, Guoguo Tian, Zhiqiang Wu, Yongtao Sun, Ying Hao, Xiangyun Zhang and Shengli Chen
Symmetry 2025, 17(11), 1874; https://doi.org/10.3390/sym17111874 - 5 Nov 2025
Viewed by 281
Abstract
This study investigates stochastic bifurcation in a generalized tristable Rayleigh–Duffing oscillator with fractional inertial force under both additive and multiplicative recycling noises. The system’s dynamic behavior is influenced by its inherent spatial symmetry, represented by the potential function, as well as by temporal [...] Read more.
This study investigates stochastic bifurcation in a generalized tristable Rayleigh–Duffing oscillator with fractional inertial force under both additive and multiplicative recycling noises. The system’s dynamic behavior is influenced by its inherent spatial symmetry, represented by the potential function, as well as by temporal symmetry breaking caused by fractional memory effects and recycling noise. First, an approximate integer-order equivalent system is derived from the original fractional-order model using a harmonic balance method, with minimal mean square error (MSE). The steady-state probability density function (sPDF) of the amplitude is then obtained via stochastic averaging. Using singularity theory, the conditions for stochastic P bifurcation (SPB) are identified. For different fractional derivative’s orders, transition set curves are constructed, and the sPDF is qualitatively analyzed within the regions bounded by these curves—especially under tristable conditions. Theoretical results are validated through Monte Carlo simulations and the Radial Basis Function Neural Network (RBFNN) approach. The findings offer insights for designing fractional-order controllers to improve system response control. Full article
Show Figures

Figure 1

19 pages, 3931 KB  
Article
Stochastic Disruption of Synchronization Patterns in Coupled Non-Identical Neurons
by Irina A. Bashkirtseva, Lev B. Ryashko, Ivan N. Tsvetkov and Alexander N. Pisarchik
Algorithms 2025, 18(6), 330; https://doi.org/10.3390/a18060330 - 30 May 2025
Viewed by 1483
Abstract
We investigate the stochastic disruption of synchronization patterns in a system of two non-identical Rulkov neurons coupled via an electrical synapse. By analyzing the system deterministic dynamics, we identify regions of mono-, bi-, and tristability, corresponding to distinct synchronization regimes as a function [...] Read more.
We investigate the stochastic disruption of synchronization patterns in a system of two non-identical Rulkov neurons coupled via an electrical synapse. By analyzing the system deterministic dynamics, we identify regions of mono-, bi-, and tristability, corresponding to distinct synchronization regimes as a function of coupling strength. Introducing stochastic perturbations to the coupling parameter, we explore how noise influences synchronization patterns, leading to transitions between different regimes. Notably, we find that increasing noise intensity disrupts lag synchronization, resulting in intermittent switching between a synchronous three-cycle regime and asynchronous chaotic states. This intermittency is closely linked to the structure of chaotic transient basins, and we determine a noise intensity range in which such behavior persists, depending on the coupling strength. Using both numerical simulations and an analytical confidence ellipse method, we provide a comprehensive characterization of these noise-induced effects. Our findings contribute to the understanding of stochastic synchronization phenomena in coupled neuronal systems and offer potential implications for neural dynamics in biological and artificial networks. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

17 pages, 2136 KB  
Article
Analysis of Variability of Complex Stochastic Oscillations in a Tristable Calcium Model
by Irina Bashkirtseva and Lev Ryashko
Mathematics 2025, 13(7), 1060; https://doi.org/10.3390/math13071060 - 25 Mar 2025
Cited by 1 | Viewed by 708
Abstract
Motivated by important biophysical applications, we study the stochastic version of a mathematical model of calcium oscillations. For the deterministic model proposed by Li and Rinzel, a parametric zone of tristability, where two stable equilibria and a limit cycle coexist, is found for [...] Read more.
Motivated by important biophysical applications, we study the stochastic version of a mathematical model of calcium oscillations. For the deterministic model proposed by Li and Rinzel, a parametric zone of tristability, where two stable equilibria and a limit cycle coexist, is found for the first time. In this zone, and also in adjacent bi- and monostability zones, different scenarios of noise-induced generation and suppression of complex calcium oscillations are studied in detail. In these studies, along with the traditional direct numerical simulation and statistical processing, a new analytical apparatus of the stochastic sensitivity technique and confidence domains is effectively used. Full article
(This article belongs to the Special Issue Nonlinear Dynamics and Stochastic Modeling of Complex Systems)
Show Figures

Figure 1

28 pages, 11701 KB  
Article
Bifurcation of a Leslie–Gower Predator–Prey Model with Nonlinear Harvesting and a Generalist Predator
by Mengxin He and Zhong Li
Axioms 2024, 13(10), 704; https://doi.org/10.3390/axioms13100704 - 12 Oct 2024
Cited by 4 | Viewed by 1755
Abstract
A Leslie–Gower predator–prey model with nonlinear harvesting and a generalist predator is considered in this paper. It is shown that the degenerate positive equilibrium of the system is a cusp of codimension up to 4, and the system admits the cusp-type degenerate Bogdanov–Takens [...] Read more.
A Leslie–Gower predator–prey model with nonlinear harvesting and a generalist predator is considered in this paper. It is shown that the degenerate positive equilibrium of the system is a cusp of codimension up to 4, and the system admits the cusp-type degenerate Bogdanov–Takens bifurcation of codimension 4. Moreover, the system has a weak focus of at least order 3 and can undergo degenerate Hopf bifurcation of codimension 3. We verify, through numerical simulations, that the system admits three different stable states, such as a stable fixed point and three limit cycles (the middle one is unstable), or two stable fixed points and two limit cycles. Our results reveal that nonlinear harvesting and a generalist predator can lead to richer dynamics and bifurcations (such as three limit cycles or tristability); specifically, harvesting can cause the extinction of prey, but a generalist predator provides some protection for the predator in the absence of prey. Full article
Show Figures

Figure 1

16 pages, 8270 KB  
Article
Numerical Analysis of Dynamic Characteristics of an Asymmetric Tri-Stable Piezoelectric Energy Harvester under Random Vibrations in Building Structures
by Dawei Man, Qingnan Hu, Qinghu Xu, Liping Tang, Dong Chen, Ziqing Yuan and Tingting Han
Buildings 2024, 14(7), 2210; https://doi.org/10.3390/buildings14072210 - 18 Jul 2024
Cited by 1 | Viewed by 1418
Abstract
This study presents a novel design for a tri-stable piezoelectric vibration energy harvester with an asymmetric structure, which is enhanced with an elastic base (TPVEH + EB), meticulously designed to enhance energy extraction from irregular vibrations in architectural structures. The cornerstone of this [...] Read more.
This study presents a novel design for a tri-stable piezoelectric vibration energy harvester with an asymmetric structure, which is enhanced with an elastic base (TPVEH + EB), meticulously designed to enhance energy extraction from irregular vibrations in architectural structures. The cornerstone of this design is the asymmetric tri-stable piezoelectric cantilever beam, distinctively arranged within a U-shaped block and fortified with an elastic foundation. A carefully positioned spring (kf)-mass (Mf) system between the U-shaped block and the beam’s fixed end significantly boosts the vertical displacement of the beam during oscillations. Utilizing Lagrange’s equations, we formulated a dynamic model for the asymmetric TPVEH + EB, examining the effects of potential well asymmetry, the stiffness of the elastic base and spring-mass system, the mass of the spring-mass system, and the tip magnet mass on the system’s nonlinear dynamic responses. Our results demonstrate that the asymmetric TPVEH + EB significantly enhances energy harvesting from low-amplitude random vibrations (1.5 g), with the output voltage of the asymmetric TPVEH + EB increasing by 30% and the output power by 25%. Extensive numerical and theoretical analyses verify that the asymmetric TPVEH + EB provides a highly efficient solution for scenarios typically hindered by low energy conversion rates. Its reliable performance under varied and unpredictable excitation conditions highlights its excellence in advanced energy harvesting applications. The improvements detailed in this research underscore the potential of the asymmetric TPVEH + EB to boost energy harvesting efficiency, particularly in powering wireless sensor nodes for structural health monitoring in buildings. By overcoming the limitations of traditional harvesters, the asymmetric TPVEH + EB ensures enhanced efficiency and reliability, making it an ideal solution for a wide range of practical applications in diverse environmental conditions within buildings. Full article
(This article belongs to the Special Issue Advanced Research on Intelligent Building Construction and Management)
Show Figures

Figure 1

25 pages, 19174 KB  
Article
Modeling and Evaluation of a Multi-Stable Hybrid Energy Harvester
by Haining Li, Kefu Liu and Jian Deng
Vibration 2024, 7(3), 662-686; https://doi.org/10.3390/vibration7030035 - 1 Jul 2024
Cited by 3 | Viewed by 1874
Abstract
This article develops a multi-stable hybrid energy harvester (MSHEH) which consists of a piezoelectric energy harvester (PEH) and an electromagnetic energy harvester (EMEH). By tuning two parameters, the MSHEH can achieve a mono-stable, bi-stable, and tri-stable state, respectively. A numerical procedure is developed [...] Read more.
This article develops a multi-stable hybrid energy harvester (MSHEH) which consists of a piezoelectric energy harvester (PEH) and an electromagnetic energy harvester (EMEH). By tuning two parameters, the MSHEH can achieve a mono-stable, bi-stable, and tri-stable state, respectively. A numerical procedure is developed to compute the EMEH’s transduction factor. The obtained result is validated experimentally. Using the equivalent magnetic 2-point dipole theory, the restoring force model of the magnetic spring is established. The obtained model is verified experimentally. The energy harvesting performances of the MSHEH under the four different configurations (linear, mono-stable, bi-stable and tri-stable) subjected to frequency sweep excitations are evaluated by simulation and validated by experiment. The comparative analysis focuses on power output, accumulated harvested energy, and effective energy-harvesting bandwidth. The optimum load resistances are investigated by Pareto front optimizations. The following key findings are obtained. When subjected to high-level frequency sweep excitation, the tri-stable configuration exhibits the widest frequency bandwidth and the highest total accumulated harvested energy. When subjected to low-level frequency sweep excitation, the bi-stable configuration is more efficient in energy harvesting. The best performance trade-off between the PEH and EMEH can be achieved by selecting the optimum load resistances properly. Full article
Show Figures

Figure 1

15 pages, 11386 KB  
Article
A Hybrid Tri-Stable Piezoelectric Energy Harvester with Asymmetric Potential Wells for Rotational Motion Energy Harvesting Enhancement
by Dawei Man, Bangdong Jiang, Yu Zhang, Liping Tang, Qinghu Xu, Dong Chen and Tingting Han
Energies 2024, 17(9), 2134; https://doi.org/10.3390/en17092134 - 30 Apr 2024
Cited by 3 | Viewed by 1591
Abstract
This paper proposes an asymmetric hybrid tri-stable piezoelectric energy harvester for rotational motion (RHTPEH). The device features an asymmetric tri-stable piezoelectric cantilever beam positioned at the edge of a rotating disk. This beam is uniquely configured with an asymmetric arrangement of magnets. Additionally, [...] Read more.
This paper proposes an asymmetric hybrid tri-stable piezoelectric energy harvester for rotational motion (RHTPEH). The device features an asymmetric tri-stable piezoelectric cantilever beam positioned at the edge of a rotating disk. This beam is uniquely configured with an asymmetric arrangement of magnets. Additionally, an elastic amplifier composed of a vertical and a rotating spring connects the beam’s fixed end and the disk. This setup enhances both the rotational amplitude and vertical displacement of the beam during motion. A comprehensive dynamical model of the RHTPEH was developed using Lagrange’s equations. This model facilitated an in-depth analysis of the system’s behavior under various conditions, focusing on the influence of key parameters such as the asymmetry in the potential well, the stiffness ratio of the amplifier springs, the radius of the disk, and the disk’s rotational speed on the nonlinear dynamic response of the system. The results show that the asymmetric hybrid tri-stable piezoelectric energy harvester makes it easier to harvest the vibration energy in rotational motion and has excellent power output performance compared with the symmetric tri-stable piezoelectric energy harvester. The output power magnitude of the system at higher rotational speeds increases as the radius of rotation expands, but when the rotational speed is low, the steady-state output power magnitude of the system is not sensitive to changes in the radius of rotation. Theoretical analysis and numerical simulations validate the effectiveness of the proposed asymmetric RHTPEH for energy harvesting in low-frequency rotating environments. Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology)
Show Figures

Figure 1

20 pages, 7003 KB  
Review
Research Progress of Electrically Driven Multi-Stable Cholesteric Liquid Crystals
by Kainan Wang, Wentuo Hu, Wanli He, Zhou Yang, Hui Cao, Dong Wang and Yuzhan Li
Materials 2024, 17(1), 136; https://doi.org/10.3390/ma17010136 - 27 Dec 2023
Cited by 9 | Viewed by 2967
Abstract
Electrically driven multi-stable cholesteric liquid crystals can be used to adjust the transmittance of incident light. Compared with the traditional liquid crystal optical devices, the multi-stable devices only apply an electric field during switching and do not require a continuous electric field to [...] Read more.
Electrically driven multi-stable cholesteric liquid crystals can be used to adjust the transmittance of incident light. Compared with the traditional liquid crystal optical devices, the multi-stable devices only apply an electric field during switching and do not require a continuous electric field to maintain the various optical states of the device. Therefore, the multi-stable devices have low energy consumption and have become a research focus for researchers. However, the multi-stable devices still have shortcomings before practical application, such as contrast, switching time, and mechanical strength. In this article, the latest research progress on electrically driven multi-stable cholesteric liquid crystals is reviewed, including electrically driven multi-stable modes, performance optimization, and applications. Finally, the challenges and opportunities of electrically driven multi-stable cholesteric liquid crystals are discussed in anticipation of contributing to the development of multi-stable liquid crystal devices. Full article
(This article belongs to the Special Issue The 15th Anniversary of Materials—Recent Advances in Soft Matter)
Show Figures

Figure 1

52 pages, 4656 KB  
Review
A Travel through Landscapes of Seed Dormancy
by Alberto Gianinetti
Plants 2023, 12(23), 3963; https://doi.org/10.3390/plants12233963 - 24 Nov 2023
Cited by 10 | Viewed by 6560
Abstract
Basic features of seed dormancy are illustrated. The seed overall regulatory network governs seed metabolism and development, and it is coordinated by plant hormones. A functional model focused on abscisic acid (ABA), the foremost plant hormone in dormancy, is used as a framework [...] Read more.
Basic features of seed dormancy are illustrated. The seed overall regulatory network governs seed metabolism and development, and it is coordinated by plant hormones. A functional model focused on abscisic acid (ABA), the foremost plant hormone in dormancy, is used as a framework to critically discuss the literature. Gibberellins (GAs) have a main role in germination, and the ABA–GAs balance is a typical feature of the seed state: ABA dominates during dormancy and GAs prevail through germination. Thus, the literature converges toward envisaging the development switch between dormancy and germination as represented by the ABA/GAs ratio. The ABA–GAs antagonism is based on mutual inhibition, a feature of the regulatory network architecture that characterizes development trajectories based on a regulatory circuit with a bistable switch. Properties of such kind of regulatory architecture are introduced step by step, and it is shown that seed development—toward either dormancy or germination—is more properly represented by a tristable regulatory circuit, whose intermediate metastable states ultimately take one or the other development trajectory. Although the ABA/GAs ratio can conveniently represent the state of the seed overall regulatory network along the seed development trajectory, specific (unknown) dormancy factors are required to determine the development trajectory. The development landscape is shown to provide a well-suited representation of seed states travelling along developmental trajectories, particularly when the states are envisioned as regulatory circuits. Looking at seed dormancy in terms of regulatory circuits and development landscapes offers a valuable perspective to improve our understanding of this biological phenomenon. Full article
(This article belongs to the Collection Feature Papers in Plant Physiology and Metabolism)
Show Figures

Figure 1

16 pages, 6793 KB  
Article
Magnetic Anomaly Detection Based on a Compound Tri-Stable Stochastic Resonance System
by Jinbo Huang, Zhen Zheng, Yu Zhou, Yuran Tan, Chengjun Wang, Guangbo Xu and Bingting Zha
Sensors 2023, 23(22), 9293; https://doi.org/10.3390/s23229293 - 20 Nov 2023
Cited by 11 | Viewed by 3239
Abstract
In the case of strong background noise, a tri-stable stochastic resonance model has higher noise utilization than a bi-stable stochastic resonance (BSR) model for weak signal detection. However, the problem of severe system parameter coupling in a conventional tri-stable stochastic resonance model leads [...] Read more.
In the case of strong background noise, a tri-stable stochastic resonance model has higher noise utilization than a bi-stable stochastic resonance (BSR) model for weak signal detection. However, the problem of severe system parameter coupling in a conventional tri-stable stochastic resonance model leads to difficulty in potential function regulation. In this paper, a new compound tri-stable stochastic resonance (CTSR) model is proposed to address this problem by combining a Gaussian Potential model and the mixed bi-stable model. The weak magnetic anomaly signal detection system consists of the CTSR system and judgment system based on statistical analysis. The system parameters are adjusted by using a quantum genetic algorithm (QGA) to optimize the output signal-to-noise ratio (SNR). The experimental results show that the CTSR system performs better than the traditional tri-stable stochastic resonance (TTSR) system and BSR system. When the input SNR is -8 dB, the detection probability of the CTSR system approaches 80%. Moreover, this detection system not only detects the magnetic anomaly signal but also retains information on the relative motion (heading) of the ferromagnetic target and the magnetic detection device. Full article
(This article belongs to the Special Issue Sensors and Geophysical Electromagnetics)
Show Figures

Figure 1

21 pages, 10935 KB  
Article
Analysis of Dynamic Characteristics of Tristable Exponential Section of Piezoelectric Energy Harvester
by Zhaoxin Cai, Kuntao Zhou, Tao Yang and Shuying Hao
Energies 2023, 16(18), 6609; https://doi.org/10.3390/en16186609 - 14 Sep 2023
Cited by 2 | Viewed by 1678
Abstract
Variable-cross-section beams have better mass and strength distribution compared with constant cross-section beams, which can optimize the harvesting power of piezoelectric vibration energy harvesters, which are widely used in self-supplied and low-power electronic devices, providing more convenience and innovation for the development of [...] Read more.
Variable-cross-section beams have better mass and strength distribution compared with constant cross-section beams, which can optimize the harvesting power of piezoelectric vibration energy harvesters, which are widely used in self-supplied and low-power electronic devices, providing more convenience and innovation for the development of micromechanical intelligence and portable mobile devices. This paper proposes a piezoelectric energy harvester with a tristable-exponential-decay cross section, which optimizes the strain distribution of the cantilever beam through exponential decay changes to improve the harvesting efficiency of the harvester in low-frequency environments. First, the nonlinear magnetic force is obtained based on the magnetic dipole, and the dynamic model is established by using the Euler–Bernoulli beam theory and Lagrangian equation. The influence of the structural parameters of the harvester on the system dynamics and output characteristics is analyzed in the two dimensions of time and frequency, and the influence of the exponential decay coefficient on the system dynamic response and output power is deeply studied. The research shows that the exponential decay section can reduce the first natural frequency of the cantilever beam; by changing the amplitude, frequency, d and dg of the excitation acceleration, the switching of the monostable, tristable and bistable states of the system can be realized. With a decrease in the exponential decay coefficient, under a low-frequency excitation of 0–7 Hz, the output power of the cantilever beam per unit volume is significantly improved, and under a 4 Hz low-frequency excitation, the acquisition output power per unit volume of the cantilever beam is increased by 7 times, thus realizing low-frequency, high-efficiency energy harvesting. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

31 pages, 18830 KB  
Article
A Novel Fractional-Order Memristive Chaotic Circuit with Coexisting Double-Layout Four-Scroll Attractors and Its Application in Visually Meaningful Image Encryption
by Yuebo Wu, Duansong Wang, Tan Zhang, Jinzhong Zhang and Jian Zhou
Symmetry 2023, 15(7), 1398; https://doi.org/10.3390/sym15071398 - 11 Jul 2023
Cited by 3 | Viewed by 2008
Abstract
This paper proposes a fractional-order chaotic system using a tri-stable locally active memristor. The characteristics of the memristor, dynamic mechanism of oscillation, and behaviors of the proposed system were analyzed, and then a visually meaningful image encryption scheme was designed based on the [...] Read more.
This paper proposes a fractional-order chaotic system using a tri-stable locally active memristor. The characteristics of the memristor, dynamic mechanism of oscillation, and behaviors of the proposed system were analyzed, and then a visually meaningful image encryption scheme was designed based on the chaotic system, DNA encoding, and integer wavelet transform (IWT). Firstly, the mathematical model of the memristor was designed, which was nonvolatile, locally active, and tri-stable. Secondly, the stability, dynamic mechanism of oscillation, bifurcation behaviors, and complexity of the fractional-order memristive chaotic system were investigated and the conditions of stability were obtained. Thirdly, the largest Lyapunov exponent, bifurcation diagram, and complexity of the novel system were calculated and the coexisting bifurcation, coexisting attractors, spectral entropy, and so on are shown. Finally, a visually meaningful image encryption scheme based on the proposed system was designed, and its security was assessed by statistical analysis and different attacks. Numerical simulation demonstrated the effectiveness of the theoretical analysis and high security of the proposed image encryption scheme. Full article
(This article belongs to the Special Issue Discrete and Continuous Memristive Nonlinear Systems and Symmetry II)
Show Figures

Figure 1

17 pages, 827 KB  
Article
Controlled Symmetry with Woods-Saxon Stochastic Resonance Enabled Weak Fault Detection
by Jian Liu, Jiaqi Guo, Bing Hu, Qiqing Zhai, Can Tang and Wanjia Zhang
Sensors 2023, 23(11), 5062; https://doi.org/10.3390/s23115062 - 25 May 2023
Cited by 7 | Viewed by 2180
Abstract
Weak fault detection with stochastic resonance (SR) is distinct from conventional approaches in that it is a nonlinear optimal signal processing to transfer noise into the signal, resulting in a higher output SNR. Owing to this special characteristic of SR, this study develops [...] Read more.
Weak fault detection with stochastic resonance (SR) is distinct from conventional approaches in that it is a nonlinear optimal signal processing to transfer noise into the signal, resulting in a higher output SNR. Owing to this special characteristic of SR, this study develops a controlled symmetry with Woods-Saxon stochastic resonance (CSwWSSR) model based on the Woods-Saxon stochastic resonance (WSSR), where each parameter of the model may be modified to vary the potential structure. Then, the potential structure of the model is investigated in this paper, along with the mathematical analysis and experimental comparison to clarify the effect of each parameter on it. The CSwWSSR is a tri-stable stochastic resonance, but differs from others in that each of its three potential wells is controlled by different parameters. Moreover, the particle swarm optimization (PSO), which can quickly find the ideal parameter matching, is introduced to attain the optimal parameters of the CSwWSSR model. Fault diagnosis of simulation signals and bearings was carried out to confirm the viability of the proposed CSwWSSR model, and the results revealed that the CSwWSSR model is superior to its constituent models. Full article
Show Figures

Figure 1

19 pages, 5246 KB  
Article
High-Performance Adaptive Weak Fault Diagnosis Based on the Global Parameter Optimization Model of a Cascaded Stochastic Resonance System
by Zhihui Lai, Zhangjun Huang, Min Xu, Chen Wang, Junchen Xu, Cailiang Zhang, Ronghua Zhu and Zijian Qiao
Sensors 2023, 23(9), 4429; https://doi.org/10.3390/s23094429 - 30 Apr 2023
Cited by 8 | Viewed by 2639
Abstract
Stochastic resonance (SR), as a type of noise-assisted signal processing method, has been widely applied in weak signal detection and mechanical weak fault diagnosis. In order to further improve the weak signal detection performance of SR-based approaches and realize high-performance weak fault diagnosis, [...] Read more.
Stochastic resonance (SR), as a type of noise-assisted signal processing method, has been widely applied in weak signal detection and mechanical weak fault diagnosis. In order to further improve the weak signal detection performance of SR-based approaches and realize high-performance weak fault diagnosis, a global parameter optimization (GPO) model of a cascaded SR system is proposed in this work. The cascaded SR systems, which involve multiple multi-parameter-adjusting SR systems with both bistable and tri-stable potential functions, are first introduced. The fixed-parameter optimization (FPO) model and the GPO models of the cascaded systems to achieve optimal SR outputs are proposed based on the particle swarm optimization (PSO) algorithm. Simulated results show that the GPO model is capable of achieving a better SR output compared to the FPO model with rather good robustness and stability in detecting low signal-to-noise ratio (SNR) weak signals, and the tri-stable cascaded SR system has a better weak signal detection performance compared to the bistable cascaded SR system. Furthermore, the weak fault diagnosis approach based on the GPO model of the tri-stable cascaded system is proposed, and two rolling bearing weak fault diagnosis experiments are performed, thus verifying the effectiveness of the proposed approach in high-performance adaptive weak fault diagnosis. Full article
Show Figures

Figure 1

Back to TopTop