Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = trimesoyl chloride

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3890 KiB  
Article
Visualization of Film Formation Process of Copolyesteramide Containing Phthalazine Moieties During Interfacial Polymerization
by Zeyuan Liu, Hailong Li, Qian Liu, Zhaoqi Wang, Danhui Wang, Peiqi Xu, Xigao Jian and Shouhai Zhang
Membranes 2025, 15(8), 233; https://doi.org/10.3390/membranes15080233 - 1 Aug 2025
Viewed by 180
Abstract
Interfacial polymerization (IP) has been widely utilized to synthesize composite membranes. However, precise control of this reaction remains a challenge due to the complexity of the IP process. Herein, an optical three-dimensional microscope was used to directly observe the IP process. To construct [...] Read more.
Interfacial polymerization (IP) has been widely utilized to synthesize composite membranes. However, precise control of this reaction remains a challenge due to the complexity of the IP process. Herein, an optical three-dimensional microscope was used to directly observe the IP process. To construct copolyesteramide containing phthalazine moiety films, rigid monomer 4-(4′-hydroxyphenyl)-2,3-phthalazin-1-one (DHPZ) and flexible monomer piperazine (PIP) were used as aqueous phase monomers, and trimesoyl chloride (TMC) served as the organic phase monomer. Multilayer cellular structures were observed for the copolyesteramide films during the IP process. The effects of multiple factors including the ratio between flexible and rigid monomers, co-solvents, and the addition of phase transfer catalysts on the film growth and the morphologies were investigated. This research aims to deepen our understanding of the IP process, especially for the principles which govern polymer film growth and morphology, to promote new methodologies for regulating interfacial polymerization in composite membrane preparation. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

17 pages, 1594 KiB  
Article
Molecular-Level Insights into Meta-Phenylenediamine and Sulfonated Zinc Phthalocyanine Interactions for Enhanced Polyamide Membranes: A DFT and TD-DFT Study
by Ameni Gargouri and Bassem Jamoussi
Polymers 2025, 17(15), 2019; https://doi.org/10.3390/polym17152019 - 24 Jul 2025
Viewed by 287
Abstract
Access to clean water is a pressing global concern and membrane technologies play a vital role in addressing this challenge. Thin-film composite membranes prepared via interfacial polymerization (IPol) using meta-phenylenediamine (MPD) and trimesoyl chloride (TMC) exhibit excellent separation performance, but face limitations such [...] Read more.
Access to clean water is a pressing global concern and membrane technologies play a vital role in addressing this challenge. Thin-film composite membranes prepared via interfacial polymerization (IPol) using meta-phenylenediamine (MPD) and trimesoyl chloride (TMC) exhibit excellent separation performance, but face limitations such as fouling and low hydrophilicity. This study investigated the interaction between MPD and sulfonated zinc phthalocyanine, Zn(SO2)4Pc, as a potential strategy for enhancing membrane properties. Using Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT), we analyzed the optimized geometries, electronic structures, UV–Vis absorption spectra, FT-IR vibrational spectra, and molecular electrostatic potentials of MPD, Zn(SO2)4Pc, and their complexes. The results show that MPD/Zn(SO2)4Pc exhibits reduced HOMO-LUMO energy gaps and enhanced charge delocalization, particularly in aqueous environments, indicating improved stability and reactivity. Spectroscopic features confirmed strong interactions via hydrogen bonding and π–π stacking, suggesting that Zn(SO2)4Pc can act as a co-monomer or additive during IPol to improve polyamide membrane functionality. A conformational analysis of MPD/Zn(SO2)4Pc was conducted using density functional theory (DFT) to evaluate the impact of dihedral rotation on molecular stability. The 120° conformation was identified as the most stable, due to favorable π–π interactions and intramolecular hydrogen bonding. These findings offer computational evidence for the design of high-performance membranes with enhanced antifouling, selectivity, and structural integrity for sustainable water treatment applications. Full article
(This article belongs to the Special Issue Nanocomposite Polymer Membranes for Advanced Water Treatment)
Show Figures

Figure 1

14 pages, 3055 KiB  
Article
High-Performance Thin Film Composite Nanofiltration (NF) Membrane Constructed on Modified Polyvinylidene Fluoride (PVDF) Substrate
by Junliang Dong, Qianzhi Sun, Xiaolin Feng and Ruijun Zhang
Membranes 2025, 15(7), 216; https://doi.org/10.3390/membranes15070216 - 20 Jul 2025
Viewed by 385
Abstract
The inherent hydrophobic nature of PVDF material renders it challenging to establish a stable aqueous hydration layer, thereby limiting its suitability as a substrate for the preparation of nanofiltration (NF) membranes. In this study, we developed a novel modification approach that effectively enhances [...] Read more.
The inherent hydrophobic nature of PVDF material renders it challenging to establish a stable aqueous hydration layer, thereby limiting its suitability as a substrate for the preparation of nanofiltration (NF) membranes. In this study, we developed a novel modification approach that effectively enhances the hydrophilicity of PVDF substrates through the incorporation of sulfonic acid-doped polyaniline (SPANI) and hyperbranched polyester (HPE) into the PVDF casting solution, followed by cross-linking with trimesoyl chloride (TMC). The introduction of SPANI and HPE, which contain reactive polar amino and hydroxyl groups, improved the hydrophilicity of the substrate, while the subsequent cross-linking with TMC effectively anchored these components within the substrate through the covalent linking between TMC and the reactive sites. Additionally, the hydrolysis of TMC yielded non-reactive carboxyl groups, which further enhanced the hydrophilicity of the substrate. As a result, the modified PVDF substrate exhibited improved hydrophilicity, facilitating the construction of an intact polyamide layer. In addition, the fabricated TFC NF membrane demonstrated excellent performance in the advanced treatment of tap water, achieving a total dissolved solid removal rate of 57.9% and a total organic carbon removal rate of 85.3%. This work provides a facile and effective route to modify PVDF substrates for NF membrane fabrication. Full article
Show Figures

Figure 1

22 pages, 12429 KiB  
Article
Preparation and Photocatalytic Performance Study of TiO2-TMP Composites Under Effect of Crystal Structure Modulation
by Jiayi Zhang, Chen Wang, Xiaoguo Shi, Qing Feng and Tingting Shen
Materials 2025, 18(11), 2623; https://doi.org/10.3390/ma18112623 - 3 Jun 2025
Viewed by 459
Abstract
Nano-titanium dioxide (TiO2) is currently the most widely studied photocatalyst. However, its rapid recombination of photogenerated carriers and narrow range of light absorption have limited its development. Crystal form regulation and polymer modification are important means for improving the photocatalytic activity [...] Read more.
Nano-titanium dioxide (TiO2) is currently the most widely studied photocatalyst. However, its rapid recombination of photogenerated carriers and narrow range of light absorption have limited its development. Crystal form regulation and polymer modification are important means for improving the photocatalytic activity of single-phase materials. In this paper, TiO2 materials of different crystal forms were prepared by changing the synthesis conditions, and they were compounded with trimesoyl chloride–melamine polymers (TMPs) by the hydrothermal synthesis method. Then, their photocatalytic performance was evaluated by degrading methylene blue (MB) under visible light. The mechanisms of influence of TiO2 crystal form on the photocatalytic activity of TiO2-TMP were explored by combining characterization and theoretical calculation. The results showed that the TiO2 crystal form, through interface interaction, the built-in electric field intensity of the heterojunction, and active sites, affected the interface charge separation and transfer, thereby influencing the photocatalytic activity of TiO2-TMP. In the 4T-TMP photocatalytic system, the degradation rate of MB was the highest. These studies provide theoretical support for understanding the structure–property relationship of the interfacial electronic coupling between TiO2 crystal forms and TMP, as well as for developing more efficient catalysts for pollutant degradation. Full article
Show Figures

Figure 1

10 pages, 2844 KiB  
Article
Solvent Engineering and Molecular Doping Synergistically Boost CsPbIBr2 Solar Cell Efficiency
by Yani Lu, Jinping Ren and Jinke Kang
Coatings 2025, 15(4), 448; https://doi.org/10.3390/coatings15040448 - 10 Apr 2025
Viewed by 531
Abstract
Perovskite solar cells have garnered significant attention due to their outstanding optoelectronic properties, ease of fabrication, and cost-effectiveness, making them a promising candidate for next-generation photovoltaic technologies. However, CsPbIBr2-based perovskites currently face critical challenges regarding their limited efficiency and relatively poor [...] Read more.
Perovskite solar cells have garnered significant attention due to their outstanding optoelectronic properties, ease of fabrication, and cost-effectiveness, making them a promising candidate for next-generation photovoltaic technologies. However, CsPbIBr2-based perovskites currently face critical challenges regarding their limited efficiency and relatively poor long-term stability, hindering their broader commercial applications. In this study, we systematically investigated the morphological effects induced by different solvents, including dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), and dimethyl sulfoxide (DMSO), on the formation and characteristics of lead bromide (PbBr2) complexes. Further optimization was achieved through the innovative incorporation of trimesoyl chloride (TMC) doping into the perovskite precursor solution. The optimized precursor solution was subsequently processed using a spin-coating and annealing method, resulting in high-quality CsPbIBr2 perovskite thin films with improved morphological and optoelectronic properties. The experimental results demonstrated a remarkable enhancement in power conversion efficiency (PCE), with an increase from an initial value of 6.2% up to 10.2%. Furthermore, the optimized CsPbIBr2 solar cells exhibited excellent stability, maintaining over 80% of their initial efficiency after continuous aging for 250 h in ambient air conditions. This study presents an effective strategy for the controlled morphological and compositional engineering of wide-bandgap perovskite materials, providing a significant step forward in the advancement of perovskite photovoltaic technology. Full article
Show Figures

Figure 1

16 pages, 6337 KiB  
Article
Preparation of Crown Ether-Containing Polyamide Membranes via Interfacial Polymerization and Their Desalination Performance
by Liqing Xing, Liping Lin, Jiaxin Guo, Xinping He and Chunhai Yi
Membranes 2025, 15(3), 77; https://doi.org/10.3390/membranes15030077 - 3 Mar 2025
Viewed by 1140
Abstract
The large-scale application of aromatic polyamide (PA) thin-film composite (TFC) membranes for reverse osmosis has provided an effective way to address worldwide water scarcity. However, the water permeability and salt rejection capabilities of the PA membrane remain limited. In this work, cyclic micropores [...] Read more.
The large-scale application of aromatic polyamide (PA) thin-film composite (TFC) membranes for reverse osmosis has provided an effective way to address worldwide water scarcity. However, the water permeability and salt rejection capabilities of the PA membrane remain limited. In this work, cyclic micropores based on crown ether were introduced into the PA layer using a layer-by-layer interfacial polymerization (LbL-IP) method. After interfacial polymerization between m-phenylenediamine (MPD) and trimesoyl chloride (TMC), the di(aminobenzo)-18-crown-6 (DAB18C6) solution in methanol was poured on the membrane to react with the residual TMC. The cyclic micropores of DAB18C6 provided the membrane with rapid water transport channels and improved ion rejection due to its hydrophilicity and size sieving effect. The membranes were characterized by FTIR, XPS, SEM, and AFM. Compared to unmodified membranes, the water contact angle decreased from 54.1° to 31.6° indicating better hydrophilicity. Moreover, the crown ether-modified membrane exhibited both higher permeability and enhanced rejection performance. The permeability of the crown ether-modified membrane was more than ten times higher than unmodified membranes with a rejection above 95% for Na2SO4, MgSO4, MgCl2, and NaCl solution. These results highlight the potential of this straightforward surface grafting strategy and the modified membranes for advanced water treatment technologies, particularly in addressing seawater desalination challenges. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

12 pages, 4220 KiB  
Article
Loose Polyester Nanofiltration Membrane Designed with Hydroxyl-Ammonium for Efficient Dye/Salt Separation
by Nan Ma, Guiliang Li, Yang Liu, Shenghua Zhou and Fu Liu
Membranes 2025, 15(2), 59; https://doi.org/10.3390/membranes15020059 - 10 Feb 2025
Cited by 1 | Viewed by 1179
Abstract
Efficient dye/salt separation poses a great challenge to nanofiltration (NF) membrane technology in the desalting sector of the dye synthesis industry. In this study, we fabricated a novel loose polyester NF membrane via an interfacial polymerization method using “hydroxyl-ammonium” biquaternary diethanolamine (MDET) and [...] Read more.
Efficient dye/salt separation poses a great challenge to nanofiltration (NF) membrane technology in the desalting sector of the dye synthesis industry. In this study, we fabricated a novel loose polyester NF membrane via an interfacial polymerization method using “hydroxyl-ammonium” biquaternary diethanolamine (MDET) and trimesoyl chloride. The molecular design of MDET provides a loose crosslinking network, showing high rejection of dyes and the passage of monovalent salt/divalent salt ions in the dye solution, exhibiting exceptional filtration efficiency with high selectivity. Furthermore, the membrane exhibits excellent operational stability for over 100 h, demonstrating superior antifouling properties and high resistance to chlorine. This study provides new insights into the role of dyes and mono- and divalent ions in desalination processes related to the dye synthesis industry. Full article
(This article belongs to the Special Issue Nanofiltration Membranes for Precise Separation)
Show Figures

Figure 1

11 pages, 4664 KiB  
Article
Fabrication of Loose Nanofiltration Membrane by Crosslinking TEMPO-Oxidized Cellulose Nanofibers for Effective Dye/Salt Separation
by Shasha Liu, Mei Sun, Can Wu, Kaixuan Zhu, Ying Hu, Meng Shan, Meng Wang, Kai Wu, Jingyi Wu, Zongli Xie and Hai Tang
Molecules 2024, 29(10), 2246; https://doi.org/10.3390/molecules29102246 - 10 May 2024
Cited by 2 | Viewed by 1835
Abstract
Dye/salt separation has gained increasing attention in recent years, prompting the quest to find cost-effective and environmentally friendly raw materials for synthesizing high performance nanofiltration (NF) membrane for effective dye/salt separation. Herein, a high-performance loose-structured NF membrane was fabricated via a simple vacuum [...] Read more.
Dye/salt separation has gained increasing attention in recent years, prompting the quest to find cost-effective and environmentally friendly raw materials for synthesizing high performance nanofiltration (NF) membrane for effective dye/salt separation. Herein, a high-performance loose-structured NF membrane was fabricated via a simple vacuum filtration method using a green nanomaterial, 2,2,6,6-tetramethylpiperidine-1-oxide radical (TEMPO)-oxidized cellulose nanofiber (TOCNF), by sequentially filtrating larger-sized and finer-sized TOCNFs on a microporous substrate, followed by crosslinking with trimesoyl chloride. The resulting TCM membrane possessed a separating layer composed entirely of pure TOCNF, eliminating the need for other polymer or nanomaterial additives. TCM membranes exhibit high performance and effective dye/salt selectivity. Scanning Electron Microscope (SEM) analysis shows that the TCM membrane with the Fine-TOCNF layer has a tight layered structure. Further characterizations via Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) confirmed the presence of functional groups and chemical bonds of the crosslinked membrane. Notably, the optimized TCM-5 membrane exhibits a rejection rate of over 99% for various dyes (Congo red and orange yellow) and 14.2% for NaCl, showcasing a potential candidate for efficient dye wastewater treatment. Full article
(This article belongs to the Special Issue Chemistry of Materials for Energy and Environmental Sustainability)
Show Figures

Graphical abstract

19 pages, 4083 KiB  
Article
Incorporation of an Intermediate Polyelectrolyte Layer for Improved Interfacial Polymerization on PAI Hollow Fiber Membranes
by Maria A. Restrepo, Mehrdad Mohammadifakhr, Johannes Kamp, Krzysztof Trzaskus, Antoine J. B. Kemperman, Joris de Grooth, Hendrik D. W. Roesink, Hannah Roth and Matthias Wessling
Membranes 2023, 13(8), 741; https://doi.org/10.3390/membranes13080741 - 18 Aug 2023
Viewed by 2417
Abstract
In a single-step spinning process, we create a thin-walled, robust hollow fiber support made of Torlon® polyamide-imide featuring an intermediate polyethyleneimine (PEI) lumen layer to facilitate the integration and covalent attachment of a dense selective layer. Subsequently, interfacial polymerization of m-phenylenediamine and [...] Read more.
In a single-step spinning process, we create a thin-walled, robust hollow fiber support made of Torlon® polyamide-imide featuring an intermediate polyethyleneimine (PEI) lumen layer to facilitate the integration and covalent attachment of a dense selective layer. Subsequently, interfacial polymerization of m-phenylenediamine and trimesoyl chloride forms a dense selective polyamide (PA) layer on the inside of the hollow fiber. The resulting thin-film composite hollow fiber membranes show high NaCl rejections of around 96% with a pure water permeability of 1.2 LMH/bar. The high success rate of fabricating the thin-film composite hollow fiber membrane proves our hypothesis of a supporting effect of the intermediate PEI layer on separation layer formation. This work marks a step towards the development of a robust method for the large-scale manufacturing of thin-film composite hollow fiber membranes for reverse osmosis and nanofiltration. Full article
(This article belongs to the Section Membrane Applications)
Show Figures

Figure 1

14 pages, 4952 KiB  
Article
Preparation of a Solvent-Resistant Nanofiltration Membrane of Liquefied Walnut Shell Modified by Ethylenediamine
by Ayang Zhou, Mingxue Cao, Demeng Qian, Jingyao Zhang and Yaping Sun
Membranes 2023, 13(8), 719; https://doi.org/10.3390/membranes13080719 - 4 Aug 2023
Cited by 2 | Viewed by 1871
Abstract
N,N-dimethylformamide (DMF) has excellent chemical stability and is widely used as an aprotic polar solvent. In order to reduce production costs and reduce pollution to the surrounding environment, it is necessary to recycle and reuse DMF. Previous research has found that the thin [...] Read more.
N,N-dimethylformamide (DMF) has excellent chemical stability and is widely used as an aprotic polar solvent. In order to reduce production costs and reduce pollution to the surrounding environment, it is necessary to recycle and reuse DMF. Previous research has found that the thin film composite nanofiltration membrane prepared from liquefied walnut shells exhibited a high rejection rate in DMF, but relatively low permeance and mechanical strength. In order to increase permeance without compromising the separation performance, ethylenediamine (EDA) is used as a modifier to graft onto the structure of liquefied walnut shell through the Mannich reaction. Then, modified liquefied walnut shell as an aqueous monomer reacts with trimesoyl chloride (TMC) via the interfacial polymerization method on the EDA-crosslinked polyetherimide (PEI) membrane. The results show that the permeance of the prepared membrane is significantly improved by an order of magnitude, demonstrating a rejection rate of 98% for crystal violet (CV), and a permeance of 3.53 L m−2 h−1 bar−1 in DMF. In conclusion, this study reveals the potential of utilizing liquefied walnut shells as raw materials for preparing high-performance separation membranes and demonstrates that surface modification is a feasible approach to enhance permeance of membranes without sacrificing the rejection rate. Full article
Show Figures

Figure 1

14 pages, 3200 KiB  
Article
Decoration of β-Cyclodextrin and Tuning Active Layer Chemistry Leading to Nanofiltration Membranes for Desalination and Wastewater Decontamination
by Umair Baig, Shehzada Muhammad Sajid Jillani and Abdul Waheed
Membranes 2023, 13(5), 528; https://doi.org/10.3390/membranes13050528 - 19 May 2023
Cited by 5 | Viewed by 2715
Abstract
Given the huge potential of thin film composite (TFC) nanofiltration (NF) membranes for desalination and micro-pollutant removal, two different sets of six NF membranes were synthesized. The molecular structure of the polyamide active layer was tuned by using two different cross-linkers, terephthaloyl chloride [...] Read more.
Given the huge potential of thin film composite (TFC) nanofiltration (NF) membranes for desalination and micro-pollutant removal, two different sets of six NF membranes were synthesized. The molecular structure of the polyamide active layer was tuned by using two different cross-linkers, terephthaloyl chloride (TPC) and trimesoyl chloride (TMC), reacted with tetra-amine solution containing β-Cyclodextrin (BCD). To further tune the structure of the active layers, the time duration of interfacial polymerization (IP) was varied from 1 to 3 min. The membranes were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), water contact angle (WCA), attenuated total reflectance Fourier transform infra-red (ATR-FTIR) spectroscopy, elemental mapping and energy dispersive (EDX) analysis. The six fabricated membranes were tested for their ability to reject divalent and monovalent ions followed by rejection of micro-pollutants (pharmaceuticals). Consequently, terephthaloyl chloride turned out to be the most effective crosslinker for the fabrication of membrane active layer with tetra-amine in the presence of β-Cyclodextrin using interfacial polymerization reaction for 1 min. The membrane fabricated using TPC crosslinker (BCD-TA-TPC@PSf) showed higher % rejection for divalent ions (Na2SO4 = 93%; MgSO4 = 92%; MgCl2 = 91%; CaCl2 = 84%) and micro-pollutants (Caffeine = 88%; Sulfamethoxazole = 90%; Amitriptyline HCl = 92%; Loperamide HCl = 94%) compared to the membrane fabricated using TMC crosslinker (BCD-TA-TMC@PSf). For the BCD-TA-TPC@PSf membrane, the flux was increased from 8 LMH (L/m2.h) to 36 LMH as the transmembrane pressure was increased from 5 bar to 25 bar. Full article
(This article belongs to the Section Polymeric Membranes)
Show Figures

Figure 1

20 pages, 9679 KiB  
Article
Chlorine-Resistant Loose Nanofiltration Membranes Fabricated via Interfacial Polymerization Using Sulfone Group-Containing Amine Monomer for Dye/Salt Separation
by Longwei Huang, Ke Zheng, Yuting Jin and Shaoqi Zhou
Water 2023, 15(8), 1456; https://doi.org/10.3390/w15081456 - 8 Apr 2023
Cited by 7 | Viewed by 3017
Abstract
Fabrication of high-dye/salt-separation-performances and chlorine-resistant nanofiltration (NF) membranes are crucial for dye desalination. In this study, a thin-film composite NF membrane (PES–DPS) was prepared through the interfacial polymerization of 3,3′-diaminodiphenyl sulfone (DPS) and trimesoyl chloride. Because of the low reactivity and the presence [...] Read more.
Fabrication of high-dye/salt-separation-performances and chlorine-resistant nanofiltration (NF) membranes are crucial for dye desalination. In this study, a thin-film composite NF membrane (PES–DPS) was prepared through the interfacial polymerization of 3,3′-diaminodiphenyl sulfone (DPS) and trimesoyl chloride. Because of the low reactivity and the presence of the sulfone group (O=S=O) of DPS, the prepared PES–DPS membrane provided a relatively loose polyamide layer and exhibited excellent chlorine resistance, enhancing the membrane water flux and dye/salt separation performances. Furthermore, the influence of DPS concentration was systematically investigated. The optimal membrane PES–DPS–1 exhibited high direct Blue 71 rejection (99.1%) and low NaCl rejection (8.7%). Meanwhile, the PES–DPS–1 membrane displayed highly pure water flux (49.4 L·m−2·h−1·bar−1) even at a low-operating pressure (2 bar). Moreover, no significant difference in dye rejection was observed when the membrane was immersed in NaClO solution (pH = 4.0, 2000 ppm) for 12 h, thereby demonstrating its outstanding chlorine stability. In summary, this work provided a new monomer for the preparation of novel polyamide membranes to achieve excellent separation performances and chlorine resistances. Full article
(This article belongs to the Special Issue Advanced Technology of Wastewater Treatment)
Show Figures

Figure 1

21 pages, 6662 KiB  
Article
Removal of Lead from Wastewater Using Synthesized Polyethyleneimine-Grafted Graphene Oxide
by Mohammed Al-Yaari and Tawfik A. Saleh
Nanomaterials 2023, 13(6), 1078; https://doi.org/10.3390/nano13061078 - 16 Mar 2023
Cited by 22 | Viewed by 2778
Abstract
In this work, polyethyleneimine-grafted graphene oxide (PEI/GO) is synthesized using graphene, polyethyleneimine, and trimesoyl chloride. Both graphene oxide and PEI/GO are characterized by a Fourier-transform infrared (FTIR) spectrometer, a scanning electron microscope (SEM), and energy-dispersive X-ray (EDX) spectroscopy. Characterization results confirm that polyethyleneimine [...] Read more.
In this work, polyethyleneimine-grafted graphene oxide (PEI/GO) is synthesized using graphene, polyethyleneimine, and trimesoyl chloride. Both graphene oxide and PEI/GO are characterized by a Fourier-transform infrared (FTIR) spectrometer, a scanning electron microscope (SEM), and energy-dispersive X-ray (EDX) spectroscopy. Characterization results confirm that polyethyleneimine is uniformly grafted on the graphene oxide nanosheets and, thus, also confirm the successful synthesis of PEI/GO. PEI/GO adsorbent is then evaluated for the removal of lead (Pb2+) from aqueous solutions, and the optimum adsorption is attained at pH 6, contact time of 120 min, and PEI/GO dose of 0.1 g. While chemosorption is dominating at low Pb2+ concentrations, physisorption is dominating at high concentrations and the adsorption rate is controlled by the boundary-layer diffusion step. In addition, the isotherm study confirms the strong interaction between Pb2+ ions and PEI/GO and reveals that the adsorption process obeys well the Freundlich isotherm model (R2 = 0.9932) and the maximum adsorption capacity (qm) is 64.94 mg/g, which is quite high compared to some of the reported adsorbents. Furthermore, the thermodynamic study confirms the spontaneity (negative ΔG° and positive ΔS°) and the endothermic nature (ΔH° = 19.73 kJ/mol) of the adsorption process. The prepared adsorbent (PEI/GO) offers a potential promise for wastewater treatment because of its fast and high uptake removal capacity and could be used as an effective adsorbent for the removal of Pb2+-ions and other heavy metals from industrial wastewater. Full article
(This article belongs to the Special Issue The Application of Nanomaterials in Heavy Metal Detection and Removal)
Show Figures

Figure 1

14 pages, 6237 KiB  
Article
Fabrication of Organic Solvent Nanofiltration Membrane through Interfacial Polymerization Using N-Phenylthioure as Monomer for Dimethyl Sulfoxide Recovery
by Ayang Zhou, Guangle Hu, Keying Guo, Mengnan Zhang and Xiangnan Liu
Separations 2023, 10(3), 179; https://doi.org/10.3390/separations10030179 - 7 Mar 2023
Cited by 3 | Viewed by 2725
Abstract
To recover dimethyl sulfoxide, an organic solvent nanofiltration membrane is prepared via the interfacial polymerization method. N-Phenylthiourea (NP)is applied as a water-soluble monomer, reacted with trimesoyl chloride (TMC) on the polyetherimide substrate crosslinked by ethylenediamine. The results of attenuated total reflectance-fourier transform infrared [...] Read more.
To recover dimethyl sulfoxide, an organic solvent nanofiltration membrane is prepared via the interfacial polymerization method. N-Phenylthiourea (NP)is applied as a water-soluble monomer, reacted with trimesoyl chloride (TMC) on the polyetherimide substrate crosslinked by ethylenediamine. The results of attenuated total reflectance-fourier transform infrared spectroscopy and X-ray electron spectroscopy confirm that N-Phenylthiourea reacts with TMC. The membrane morphology is investigated through atomic force microscopy and scanning electronic microscopy, respectively. The resultant optimized TFC membranes NF-1NP exhibited stable permeance of about 4.3 L m−2 h−1 bar-1 and rejection of 97% for crystal violet (407.98 g mol−1) during a 36 h continuous separation operation. It was also found that the NF-1NP membrane has the highest rejection rate in dimethyl sulfoxide (DMSO), and the rejection rates in methanol, acetone, tetrahydrofuran, ethyl acetate and dimethylacetamide(DMAc) are 51%, 84%, 94%, 96% and 92% respectively. The maximum flux in the methanol system is 11 L m−2 h−1 bar−1, while that in acetone, tetrahydrofuran, ethyl acetate and DMAc is 4.3 L m−2 h−1 bar−1, 6.3 L m−2 h−1 bar−1, 3.2 L m−2 h−1 bar−1, 4.9 L m−2 h−1 bar−1 and 2.1 L m−2 h−1 bar−1, respectively. It was also found that the membrane prepared by N-Phenylthiourea containing aromatic groups has lower mobility and stronger solvent resistance than that of by thiosemicarbazide. Full article
(This article belongs to the Special Issue Advances in Separation Engineering)
Show Figures

Figure 1

11 pages, 3316 KiB  
Article
High-Performance Polyamide Reverse Osmosis Membrane Containing Flexible Aliphatic Ring for Water Purification
by Chi Jiang, Zhaohui Fei and Yingfei Hou
Polymers 2023, 15(4), 944; https://doi.org/10.3390/polym15040944 - 14 Feb 2023
Cited by 11 | Viewed by 4713
Abstract
A reverse osmosis (RO) membrane with a high water permeance and salt rejection is needed to reduce the energy requirement for desalination and water treatment. However, improving water permeance while maintaining a high rejection of the polyamide RO membrane remains a great challenge. [...] Read more.
A reverse osmosis (RO) membrane with a high water permeance and salt rejection is needed to reduce the energy requirement for desalination and water treatment. However, improving water permeance while maintaining a high rejection of the polyamide RO membrane remains a great challenge. Herein, we report a rigid–flexible coupling strategy to prepare a high-performance RO membrane through introducing monoamine with a flexible aliphatic ring (i.e., piperidine (PPR)) into the interfacial polymerization (IP) system of trimesoyl chloride (TMC) and m-phenylenediamine (MPD). The resulted polyamide film consists of a robust aromatic skeleton and soft aliphatic-ring side chain, where the aliphatic ring optimizes the microstructure of polyamide network at a molecular level. The obtained membranes thereby showed an enhanced water permeance of up to 2.96 L·m−2 h−1 bar−1, nearly a 3-fold enhancement compared to the control group, meanwhile exhibiting an ultrahigh rejection toward NaCl (99.4%), thus successfully overcoming the permeability–selectivity trade-off limit. Furthermore, the mechanism of the enhanced performance was investigated by molecular simulation. Our work provides a simple way to fabricate advanced RO membranes with outstanding performance. Full article
(This article belongs to the Special Issue Polymers for Membrane Separation: Fabrication and Applications)
Show Figures

Figure 1

Back to TopTop