Preparation and Photocatalytic Performance Study of TiO2-TMP Composites Under Effect of Crystal Structure Modulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation of Catalysts
2.3. Characterization
2.4. Activity Test of Photocatalytic Degradation of Methylene Blue (MB)
2.5. Theoretical Calculation Methods
3. Results
3.1. Analysis of Interface Interaction Between TiO2 and TMP
3.1.1. XRD Analysis
3.1.2. BET Analysis
3.1.3. SEM and TEM Images Analysis
3.1.4. FT-IR Analysis
3.1.5. XPS Analysis
3.2. Construction of Heterojunctions and Analysis of Energy Band Structures
3.3. Research on Charge Transfer and Separation Mechanism
3.3.1. Density Functional Theory (DFT) Calculation
3.3.2. Photoelectric Performance Analysis
3.4. Analysis of Photocatalytic Performance
3.4.1. The TiO2-TMP Composites Degrade MB
3.4.2. Analysis of Active Free Radicals
3.4.3. Analysis of Photocatalytic Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qi, K.; Cheng, B.; Yu, J.; Ho, W. A review on TiO2-based Z-scheme photocatalysts. Chin. J. Catal. 2017, 38, 1936–1955. [Google Scholar] [CrossRef]
- Nemiwal, M.; Zhang, T.C.; Kumar, D. Recent progress in g-C3N4, TiO2 and ZnO based photocatalysts for dye degradation: Strategies to improve photocatalytic activity. Sci. Total. Environ. 2021, 767, 144896. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, T.; Chang, X.; Gong, J. Effective Charge Carrier Utilization in Photocatalytic Conversions. Acc. Chem. Res. 2016, 49, 911–921. [Google Scholar] [CrossRef]
- Li, H.; Tu, W.; Zhou, Y.; Zou, Z. Z-Scheme Photocatalytic Systems for Promoting Photocatalytic Performance: Recent Progress and Future Challenges. Adv. Sci. 2016, 3, 1500389. [Google Scholar] [CrossRef]
- Ijaz, M.; Zafar, M. Titanium dioxide nanostructures as efficient photocatalyst: Progress, challenges and perspective. Int. J. Energy Res. 2020, 45, 3569–3589. [Google Scholar] [CrossRef]
- Yue, X.; Cheng, L.; Fan, J.; Xiang, Q. 2D/2D BiVO4/CsPbBr3 S-scheme heterojunction for photocatalytic CO2 reduction: Insights into structure regulation and Fermi level modulation. Appl. Catal. B Environ. 2022, 304, 120979. [Google Scholar] [CrossRef]
- Wang, Q.; Domen, K. Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Chem. Rev. 2020, 120, 919–985. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chem. Rev. 2019, 119, 3962–4179. [Google Scholar] [CrossRef]
- Gao, K.; Guo, H.; Hu, Y.; He, H.; Li, M.; Gao, X.; Fu, F. Accurate design of spatially separated double active site in Bi4NbO8Cl single crystal to promote Z-Scheme photocatalytic overall water splitting. J. Energy Chem. 2023, 87, 568–582. [Google Scholar] [CrossRef]
- Mittal, A.; Mittal, J.; Malviya, A.; Kaur, D.; Gupta, V.K. Adsorption of hazardous dye crystal violet from wastewater by waste materials. J. Colloid Interface Sci. 2010, 343, 463–473. [Google Scholar] [CrossRef]
- Misra, N.; Rawat, S.; Goel, N.K.; Shelkar, S.A.; Kumar, V. Radiation grafted cellulose fabric as reusable anionic adsorbent: A novel strategy for potential large-scale dye wastewater remediation. Carbohydr. Polym. 2020, 249, 116902. [Google Scholar] [CrossRef] [PubMed]
- Parmar, K.R.; Patel, I.; Basha, S.; Murthy, Z.V.P. Synthesis of acetone reduced graphene oxide/Fe3O4 composite through simple and efficient chemical reduction of exfoliated graphene oxide for removal of dye from aqueous solution. J. Mater. Sci. 2014, 49, 6772–6783. [Google Scholar] [CrossRef]
- Xie, G.; Du, Y.; Wang, L.; Zhu, Q.; Xie, B.; Fu, L.; Song, K.; Wang, L. Regulating the Morphology Modification To Prepare the High Charge Separation Efficiency and Visible Light Responsive Dual-Type-II B-CN/H-TiO2/BS-CN Heterojunction for Wastewater Treatment. Langmuir 2024, 40, 13636–13647. [Google Scholar] [CrossRef]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’Shea, K.; et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 2012, 125, 331–349. [Google Scholar] [CrossRef]
- Wasan Awin, E.; Lale, A.; Kumar, K.; Bilge Demirci, U.; Bernard, S.; Kumar, R. Novel Precursor-Derived Meso-/Macroporous TiO2/SiOC Nanocomposites with Highly Stable Anatase Nanophase Providing Visible Light Photocatalytic Activity and Superior Adsorption of Organic Dyes. Materials 2018, 11, 362. [Google Scholar] [CrossRef]
- Sabri, M.; Habibi-Yangjeh, A.; Khataee, A. Nanoarchitecturing TiO2/NiCr2O4 p-n heterojunction photocatalysts for visible-light-induced activation of persulfate to remove tetracycline hydrochloride. Chemosphere 2022, 300, 134594. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhao, M.; Zhang, R. New Insight into Visible-Light-Driven Photocatalytic Activity of Ag-Loaded and Oxygen Vacancy-Containing BiOBr((OV))/BiOI(0.08) Microspheres. Materials 2024, 17, 6297. [Google Scholar] [CrossRef]
- Wang, S.; Xu, M.; Peng, T.; Zhang, C.; Li, T.; Hussain, I.; Wang, J.; Tan, B. Porous hypercrosslinked polymer-TiO2-graphene composite photocatalysts for visible-light-driven CO2 conversion. Nat. Commun. 2019, 10, 676. [Google Scholar] [CrossRef]
- Tripathi, A.; Narayanan, S. Skeletal tailoring of two-dimensional π-conjugated polymer (g-C3N4) through sodium salt for solar-light driven photocatalysis. J. Photochem. Photobiol. A-Chem. 2019, 373, 1–11. [Google Scholar] [CrossRef]
- Li, G.; Wang, F.; Liu, P.; Chen, Z.; Lei, P.; Xu, Z.; Li, Z.; Ding, Y.; Zhang, S.; Yang, M. Polymer dots grafted TiO2 nanohybrids as high performance visible light photocatalysts. Chemosphere 2018, 197, 526–534. [Google Scholar] [CrossRef]
- Sun, L.; Guan, J.; Xu, Q.; Yang, X.; Wang, J.; Hu, X. Synthesis and Applications of Molecularly Imprinted Polymers Modified TiO2 Nanomaterials: A Review. Polymers 2018, 10, 1248. [Google Scholar] [CrossRef] [PubMed]
- Butburee, T.; Kotchasarn, P.; Hirunsit, P.; Sun, Z.; Tang, Q.; Khemthong, P.; Sangkhun, W.; Thongsuwan, W.; Kumnorkaew, P.; Wang, H.; et al. New understanding of crystal control and facet selectivity of titanium dioxide ruling photocatalytic performance. J. Mater. Chem. A 2019, 7, 8156–8166. [Google Scholar] [CrossRef]
- Landmann, M.; Rauls, E.; Schmidt, W.G. The electronic structure and optical response of rutile, anatase and brookite TiO2. J. Phys. Condens. Matter 2012, 24, 195503. [Google Scholar] [CrossRef]
- Bourikas, K.; Kordulis, C.; Lycourghiotis, A. Titanium Dioxide (Anatase and Rutile): Surface Chemistry, Liquid–Solid Interface Chemistry, and Scientific Synthesis of Supported Catalysts. Chem. Rev. 2014, 114, 9754–9823. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, W.; Yu, C.; Zhang, H. Influence of TiO2 morphology on adsorption-photocatalytic efficiency of TiO2-graphene composites for methylene blue degradation. J. Environ. Chem. Eng. 2018, 6, 4899–4907. [Google Scholar] [CrossRef]
- Liu, L.; Chen, X. Titanium Dioxide Nanomaterials: Self-Structural Modifications. Chem. Rev. 2014, 114, 9890–9918. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, C.; Sun, J.; An, Z. Trimesoyl Chloride-Melamine Copolymer-TiO2 Nanocomposites as High-Performance Visible-Light Photocatalysts for Volatile Organic Compound Degradation. Catalysts 2020, 10, 575. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Shi, X.; Feng, Q.; Shen, T.; Wang, S. Modulation of the Structure of the Conjugated Polymer TMP and the Effect of Its Structure on the Catalytic Performance of TMP–TiO2 under Visible Light: Catalyst Preparation, Performance and Mechanism. Materials 2023, 16, 1563. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, J.; Tian, B.; Anpo, M. Tartaric acid-assisted preparation and photocatalytic performance of titania nanoparticles with controllable phases of anatase and brookite. J. Mater. Sci. 2012, 47, 5743–5751. [Google Scholar] [CrossRef]
- Shen, X.; Tian, B.; Zhang, J. Tailored preparation of titania with controllable phases of anatase and brookite by an alkalescent hydrothermal route. Catal. Today 2013, 201, 151–158. [Google Scholar] [CrossRef]
- Zhang, H.; Banfield, J.F. Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates: Insights from TiO2. J. Phys. Chem. B 2000, 104, 3481–3487. [Google Scholar] [CrossRef]
- Lee, H.U.; Lee, S.C.; Choi, S.H.; Son, B.; Lee, S.J.; Kim, H.J.; Lee, J. Highly visible-light active nanoporous TiO2 photocatalysts for efficient solar photocatalytic applications. Appl. Catal. B Environ. 2013, 129, 106–113. [Google Scholar] [CrossRef]
- Liu, D.; Hao, Z.; Chen, D.; Jiang, L.; Li, T.; Luo, Y.; Yan, C.; Tian, B.; Jia, B.; Chen, G. Hierarchical porous biochar fabricated by Aspergillus tubingensis pretreatment coupling with chemical activation for Pb (II) removal. Microporous Mesoporous Mater. 2022, 335, 111861. [Google Scholar] [CrossRef]
- Li, Q.; Wei, G.; Yang, Y.; Gao, L.; Zhang, L.; Li, Z.; Huang, X.; Gan, J. Novel step-scheme red mud based Ag3PO4 heterojunction photocatalyst with enhanced photocatalytic performance and stability in photo-Fenton reaction. Chem. Eng. J. 2021, 424, 130537. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, Y.; Wan, J.; Ma, Y.; Yan, Z.; Yang, S. Enhanced electro-Fenton catalytic performance with in-situ grown Ce/Fe@NPC-GF as self-standing cathode: Fabrication, influence factors and mechanism. Chemosphere 2021, 273, 130269. [Google Scholar] [CrossRef]
- Kumar, S.; Surendar, T.; Baruah, A.; Shanker, V. Synthesis of a novel and stable g-C3N4–Ag3PO4 hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation. J. Mater. Chem. A 2013, 1, 5333. [Google Scholar] [CrossRef]
- Xiong, Z.; Liu, Q.; Gao, Z.; Yang, J.; Zhang, X.; Yang, Q.; Hao, C. Heterogeneous Interface Design to Enhance the Photocatalytic Performance. Inorg. Chem. 2021, 60, 5063–5070. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, Y.; Li, D.; Sajjad, D.; Chen, Y.; Sun, Y.; Liu, S.; Shi, J.; Jiang, Z. Interface engineering of organic-inorganic heterojunctions with enhanced charge transfer. Appl. Catal. B Environ. 2022, 309, 121261. [Google Scholar] [CrossRef]
- Zheng, Z.; Teo, J.; Chen, X.; Liu, H.; Yuan, Y.; Waclawik, E.R.; Zhong, Z.; Zhu, H. Correlation of the Catalytic Activity for Oxidation Taking Place on Various TiO2 Surfaces with Surface OH Groups and Surface Oxygen Vacancies. Chem.—A Eur. J. 2010, 16, 1202–1211. [Google Scholar] [CrossRef]
- Liu, L.-M.; Crawford, P.; Hu, P. The interaction between adsorbed OH and O2 on TiO2 surfaces. Prog. Surf. Sci. 2009, 84, 155–176. [Google Scholar] [CrossRef]
- Shen, Y.; Wu, J.; Zhu, C.; Zhao, J.; Fang, Q.; Zheng, Y.; Ferguson, C.T.J.; Song, S. Bifunctional covalent triazine frameworks based on Ti-ON bonds for micropollutants removal: Effects of 3D extended structure and electron transport bridges. Chem. Eng. J. 2023, 465, 143026. [Google Scholar] [CrossRef]
- Ghosh, N.G.; Sarkar, A.; Zade, S.S. The type-II n-n inorganic/organic nano-heterojunction of Ti3+ self-doped TiO2 nanorods and conjugated co-polymers for photoelectrochemical water splitting and photocatalytic dye degradation. Chem. Eng. J. 2021, 407, 127227. [Google Scholar] [CrossRef]
- Tan, Y.; Shu, Z.; Zhou, J.; Li, T.; Wang, W.; Zhao, Z. One-step synthesis of nanostructured g-C3N4/TiO2 composite for highly enhanced visible-light photocatalytic H2 evolution. Appl. Catal. B Environ. 2018, 230, 260–268. [Google Scholar] [CrossRef]
- Subramanian, Y.; Mariadhas, J.; Le Minh, T.; Muhammed Ali, S.A.; Raj, V.; Yassin, H.; Dao, X.B.; Nguyen, T.H.; Azad, A.K. Efficient degradation of methylene blue and ciprofloxacin compounds using heteroanionic titanium oxycarbide photocatalyst and its correlation with their dielectric properties. J. Alloys Compd. 2024, 1004, 175906. [Google Scholar] [CrossRef]
- Xu, J.; Lu, L.; Zhu, C.; Fang, Q.; Liu, R.; Wang, D.; He, Z.; Song, S.; Shen, Y. Insights into conduction band flexibility induced by spin polarization in titanium-based metal–organic frameworks for photocatalytic water splitting and pollutants degradation. J. Colloid Interface Sci. 2023, 630, 430–442. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, B.; Zhang, L.; Yu, J. In situ Irradiated XPS Investigation on S-Scheme TiO2@ZnIn2S4 Photocatalyst for Efficient Photocatalytic CO2 Reduction. Small 2021, 17, 2103447. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Rao, L.; Wang, P.; Shi, Z.; Zhang, L. Photocatalytic activity of N-TiO2/O-doped N vacancy g-C3N4 and the intermediates toxicity evaluation under tetracycline hydrochloride and Cr(VI) coexistence environment. Appl. Catal. B Environ. 2020, 262, 118308. [Google Scholar] [CrossRef]
- Wang, J.; Wang, G.; Cheng, B.; Yu, J.; Fan, J. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chin. J. Catal. 2021, 42, 56–68. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, Y.; Li, J.; Wang, Y.; Jiang, G.; Zhao, Z.; Wang, D.; Duan, A.; Liu, J.; Wei, Y. Facile in situ synthesis of graphitic carbon nitride (g-C3N4)-N-TiO2 heterojunction as an efficient photocatalyst for the selective photoreduction of CO2 to CO. Appl. Catal. B Environ. 2014, 158–159, 20–29. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, J.; Wang, P.; Liu, W.; Che, H.; Gao, X.; Liu, B.; Ao, Y. Interfacial engineering boosting the piezocatalytic performance of Z-scheme heterojunction for carbamazepine degradation: Mechanism, degradation pathway and DFT calculation. Appl. Catal. B Environ. 2022, 317, 121793. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, J. CdS Nanoparticles Supported on Ti3C2Tx MXene for the Efficient Photocatalytic Production of H2O2: Implications for the Photocatalytic Degradation of Emerging Contaminants. ACS Appl. Nano Mater. 2022, 6, 558–572. [Google Scholar] [CrossRef]
- Qi, L.; Yang, Y.; Zhang, P.; Le, Y.; Wang, C.; Wu, T. Hierarchical flower-like BiOIxBr(1−x) solid solution spheres with enhanced visible-light photocatalytic activity. Appl. Surf. Sci. 2019, 467–468, 792–801. [Google Scholar] [CrossRef]
- Gao, K.; Hou, L.-A.; An, X.; Huang, D.; Yang, Y. BiOBr/MXene/g-C3N4 Z-scheme heterostructure photocatalysts mediated by oxygen vacancies and MXene quantum dots for tetracycline degradation: Process, mechanism and toxicity analysis. Appl. Catal. B Environ. 2023, 323, 122150. [Google Scholar] [CrossRef]
- Lian, X.; Chen, S.; He, F.; Dong, S.; Liu, E.; Li, H.; Xu, K. Photocatalytic degradation of ammonium dinitramide over novel S-scheme g-C3N4/BiOBr heterostructure nanosheets. Sep. Purif. Technol. 2022, 286, 120449. [Google Scholar] [CrossRef]
- Zhang, B.; Hu, X.; Liu, E.; Fan, J. Novel S-scheme 2D/2D BiOBr/g-C3N4 heterojunctions with enhanced photocatalytic activity. Chin. J. Catal. 2021, 42, 1519–1529. [Google Scholar] [CrossRef]
- Hu, Y.; Hao, X.; Cui, Z.; Zhou, J.; Chu, S.; Wang, Y.; Zou, Z. Enhanced photocarrier separation in conjugated polymer engineered CdS for direct Z-scheme photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2020, 260, 118131. [Google Scholar] [CrossRef]
- Liu, D.; Jiang, L.; Chen, D.; Hao, Z.; Deng, B.; Sun, Y.; Liu, X.; Jia, B.; Chen, L.; Liu, H. Photocatalytic self-Fenton degradation of ciprofloxacin over S-scheme CuFe2O4/ZnIn2S4 heterojunction: Mechanism insight, degradation pathways and DFT calculations. Chem. Eng. J. 2024, 482, 149165. [Google Scholar] [CrossRef]
- Chen, K.; Shi, Y.; Shu, P.; Luo, Z.; Shi, W.; Guo, F. Construction of core–shell FeS2@ZnIn2S4 hollow hierarchical structure S-scheme heterojunction for boosted photothermal-assisted photocatalytic H2 production. Chem. Eng. J. 2023, 454, 140053. [Google Scholar] [CrossRef]
- Wei, X.; Song, S.; Cai, W.; Luo, X.; Jiao, L.; Fang, Q.; Wang, X.; Wu, N.; Luo, Z.; Wang, H.; et al. Tuning the spin state of Fe single atoms by Pd nanoclusters enables robust oxygen reduction with dissociative pathway. Chem 2023, 9, 181–197. [Google Scholar] [CrossRef]
- Lin, H.; Xin, X.; Xu, L.; Li, P.; Chen, D.; Turkevych, V.; Li, Y.; Wang, H.; Xu, J.; Wang, L. Defect-mediated Fermi level modulation boosting photo-activity of spatially-ordered S-scheme heterojunction. J. Colloid Interface Sci. 2024, 676, 310–322. [Google Scholar] [CrossRef]
- Qiao, X.Q.; Li, C.; Chen, W.; Guo, H.; Hou, D.; Sun, B.; Han, Q.; Sun, C.; Li, D.S. Optimization of Schottky barrier height and LSPR effect by dual defect induced work function changes for efficient solar-driven hydrogen production. Chem. Eng. J. 2024, 490, 151822. [Google Scholar] [CrossRef]
- Chen, L.; Song, X.L.; Ren, J.T.; Yuan, Z.Y. Precisely modifying Co2P/black TiO2 S-scheme heterojunction by in situ formed P and C dopants for enhanced photocatalytic H2 production. Appl. Catal. B Environ. 2022, 315, 121546. [Google Scholar] [CrossRef]
- Yang, F.; Yu, X.; Wang, K.; Liu, Z.; Gao, Z.; Zhang, T.; Niu, J.; Zhao, J.; Yao, B. Photocatalytic degradation of methylene blue over BiVO4/BiPO4/rGO heterojunctions and their artificial neural network model. J. Alloys Compd. 2023, 960, 170716. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, Z.; Meng, Y.; Xie, B.; Ni, Z.; Xia, S. Construction of Br-Cu2O@NiFe-LDHs Z-scheme heterojunction and photocatalytic degradation of catechol. J. Environ. Chem. Eng. 2024, 12, 113686. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, L.; Yu, X.; Sun, L.; Li, J.; Yang, J.; Liu, Q. Precise regulation of built-in electric field over NH2-MIL-125-Ti/WO3-x S-scheme heterojunction for achieving simultaneous formation of CO and H2O2 from CO2 and H2O. Chem. Eng. J. 2023, 466, 143129. [Google Scholar] [CrossRef]
- Pourshirband, N.; Nezamzadeh-Ejhieh, A.; Mirsattari, S.N. The CdS/g-C3N4 nano-photocatalyst: Brief characterization and kinetic study of photodegradation and mineralization of methyl orange. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 248, 119110. [Google Scholar] [CrossRef]
- Lefebvre, P.; Allègre, J.; Gil, B.; Mathieu, H.; Grandjean, N.; Leroux, M.; Massies, J.; Bigenwald, P. Time-resolved photoluminescence as a probe of internal electric fields in GaN-(GaAl)N quantum wells. Phys. Rev. B 1999, 59, 15363–15367. [Google Scholar] [CrossRef]
- Yanina, S.V.; Rosso, K.M. Linked Reactivity at Mineral-Water Interfaces Through Bulk Crystal Conduction. Science 2008, 320, 218–222. [Google Scholar] [CrossRef]
- Prado, A.G.S.; Bolzon, L.B.; Pedroso, C.P.; Moura, A.O.; Costa, L.L. Nb2O5 as efficient and recyclable photocatalyst for indigo carmine degradation. Appl. Catal. B Environ. 2008, 82, 219–224. [Google Scholar] [CrossRef]
- Kallay, N.; Madić, T.; Kučej, K.; Preočanin, T. Enthalpy of interfacial reactions at TiO2 aqueous interface. Colloids Surf. A Physicochem. Eng. Asp. 2003, 230, 3–11. [Google Scholar] [CrossRef]
- Yu, F.; Zhu, Z.; Li, C.; Li, W.; Liang, R.; Yu, S.; Xu, Z.; Song, F.; Ren, Q.; Zhang, Z. A redox-active perylene-anthraquinone donor-acceptor conjugated microporous polymer with an unusual electron delocalization channel for photocatalytic reduction of uranium (VI) in strongly acidic solution. Appl. Catal. B Environ. 2022, 314, 121467. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Gong, X.-Q.; Selloni, A. First-principles study of the structures and energetics of stoichiometric brookite TiO2 surfaces. Phys. Rev. B 2007, 76, 235307. [Google Scholar] [CrossRef]
- Gao, Z.-Y.; Sun, W.; Hu, Y.-H.; Liu, X.-W. Surface energies and appearances of commonly exposed surfaces of scheelite crystal. Trans. Nonferrous Met. Soc. China 2013, 23, 2147–2152. [Google Scholar] [CrossRef]
- Shah, U.V.; Olusanmi, D.; Narang, A.S.; Hussain, M.A.; Gamble, J.F.; Tobyn, M.J.; Heng, J.Y.Y. Effect of crystal habits on the surface energy and cohesion of crystalline powders. Int. J. Pharm. 2014, 472, 140–147. [Google Scholar] [CrossRef]
- Hall, S.A.; Howlin, B.J.; Hamerton, I.; Baidak, A.; Billaud, C.; Ward, S. Solving the Problem of Building Models of Crosslinked Polymers: An Example Focussing on Validation of the Properties of Crosslinked Epoxy Resins. PLoS ONE 2012, 7, e42928. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wang, C.; Shi, X.; Feng, Q.; Shen, T. Preparation and Photocatalytic Performance Study of TiO2-TMP Composites Under Effect of Crystal Structure Modulation. Materials 2025, 18, 2623. https://doi.org/10.3390/ma18112623
Zhang J, Wang C, Shi X, Feng Q, Shen T. Preparation and Photocatalytic Performance Study of TiO2-TMP Composites Under Effect of Crystal Structure Modulation. Materials. 2025; 18(11):2623. https://doi.org/10.3390/ma18112623
Chicago/Turabian StyleZhang, Jiayi, Chen Wang, Xiaoguo Shi, Qing Feng, and Tingting Shen. 2025. "Preparation and Photocatalytic Performance Study of TiO2-TMP Composites Under Effect of Crystal Structure Modulation" Materials 18, no. 11: 2623. https://doi.org/10.3390/ma18112623
APA StyleZhang, J., Wang, C., Shi, X., Feng, Q., & Shen, T. (2025). Preparation and Photocatalytic Performance Study of TiO2-TMP Composites Under Effect of Crystal Structure Modulation. Materials, 18(11), 2623. https://doi.org/10.3390/ma18112623