Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = tree-ring δ18O

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1855 KiB  
Article
Response of Tree-Ring Oxygen Isotopes to Climate Variations in the Banarud Area in the West Part of the Alborz Mountains
by Yajun Wang, Shengqian Chen, Haichao Xie, Yanan Su, Shuai Ma and Tingting Xie
Forests 2025, 16(8), 1238; https://doi.org/10.3390/f16081238 - 28 Jul 2025
Viewed by 224
Abstract
Stable oxygen isotopes in tree rings (δ18O) serve as important proxies for climate change and offer unique advantages for climate reconstruction in arid and semi-arid regions. We established an annual δ18O chronology spanning 1964–2023 using Juniperus excelsa tree-ring samples [...] Read more.
Stable oxygen isotopes in tree rings (δ18O) serve as important proxies for climate change and offer unique advantages for climate reconstruction in arid and semi-arid regions. We established an annual δ18O chronology spanning 1964–2023 using Juniperus excelsa tree-ring samples collected from the Alborz Mountains in Iran. We analyzed relationships between δ18O and key climate variables: precipitation, temperature, Palmer Drought Severity Index (PDSI), vapor pressure (VP), and potential evapotranspiration (PET). Correlation analysis reveals that tree-ring δ18O is highly sensitive to hydroclimatic variations. Tree-ring cellulose δ18O shows significant negative correlations with annual total precipitation and spring PDSI, and significant positive correlations with spring temperature (particularly maximum temperature), April VP, and spring PET. The strongest correlation occurs with spring PET. These results indicate that δ18O responds strongly to the balance between springtime moisture supply (precipitation and soil moisture) and atmospheric evaporative demand (temperature, VP, and PET), reflecting an integrated signal of both regional moisture availability and energy input. The pronounced response of δ18O to spring evaporative conditions highlights its potential for capturing high-resolution changes in spring climatic conditions. Our δ18O series remained stable from the 1960s to the 1990s, but showed greater interannual variability after 2000, likely linked to regional warming and climate instability. A comparison with the δ18O variations from the eastern Alborz Mountains indicates that, despite some differences in magnitude, δ18O records from the western and eastern Alborz Mountains show broadly similar variability patterns. On a larger climatic scale, δ18O correlates significantly and positively with the Niño 3.4 index but shows no significant correlation with the Arctic Oscillation (AO) or the North Atlantic Oscillation (NAO). This suggests that ENSO-driven interannual variability in the tropical Pacific plays a key role in regulating regional hydroclimatic processes. This study confirms the strong potential of tree-ring oxygen isotopes from the Alborz Mountains for reconstructing hydroclimatic conditions and high-frequency climate variability. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

26 pages, 3355 KiB  
Article
Dendrochronology and Isotope Chronology of Juglans neotropica and Its Response to El Niño-Related Rainfall Events in Tropical Highlands of Piura, Northern Peru
by Tone Marie Ektvedt, Michael N. Evans, Donald A. Falk and Paul R. Sheppard
Plants 2025, 14(11), 1704; https://doi.org/10.3390/plants14111704 - 3 Jun 2025
Cited by 1 | Viewed by 890
Abstract
Tropical trees represent an important potential archive of climate and ecological information, but their dendrochronology based on conventional techniques has been challenging. We conducted a pilot study of the wood anatomy and dendroclimatological potential of Juglans neotropica Diels (Juglandaceae), an IUCN Red List [...] Read more.
Tropical trees represent an important potential archive of climate and ecological information, but their dendrochronology based on conventional techniques has been challenging. We conducted a pilot study of the wood anatomy and dendroclimatological potential of Juglans neotropica Diels (Juglandaceae), an IUCN Red List species, using 225 radii sampled from 57 trees in Piura (4°55′ S, 79° 56′ W), northern Peru. A total of 112 radii from 40 trees passed quality control and are included in the tree-ring width chronology for this species. J. neotropica has demonstrably annual rings, and results are consistent with reports that the species has a dormant period during the dry season, which locally is approximately June–November. Local precipitation is correlated (p = 0.10, 1-tailed test) with tree-ring growth, lagged by one year, consistent with other studies of tropical tree species. The age distribution of the sample collection of J. neotropica is young and invariant, probably because of selective cutting by local villagers. To supplement ring-width analysis, we conducted the first oxygen isotopic (δ18O) and radiocarbon (∆14C) analysis for this species on radii from two individuals; results are preliminary given sample size limitations, but consistent with dendrochronological dating, within uncertainties, in all three chronometric analyses. A two-sample composite annually-averaged δ18O anomaly data series is correlated significantly with gridded regional growing season (December–May) precipitation (1973/74–2005/06). Qualitatively consistent with simulation of ring width and δ18O, responses to El Niño events are manifested in positive ring-growth anomalies and negative isotopic anomalies following known event years. The combination of tree-ring, radiocarbon, stable isotopic analyses, and the application of sensor and chronological modeling provides a degree of confidence in the results that would not have been possible by relying on any single approach and indicates the potential for further investigation of this and other tropical tree species with uncertain ring boundaries. Full article
(This article belongs to the Special Issue New Perspectives on New World Tropical Forests)
Show Figures

Figure 1

21 pages, 2623 KiB  
Review
Leaves and Tree Rings as Biomonitoring Archives of Atmospheric Mercury Deposition: An Ecophysiological Perspective
by Fabrizio Monaci and Davide Baroni
Plants 2025, 14(9), 1275; https://doi.org/10.3390/plants14091275 - 22 Apr 2025
Viewed by 605
Abstract
Trees mediate critical biogeochemical cycles involving nutrients, pollutants, water, and energy at the interface between terrestrial biosphere and atmosphere. Forest ecosystems significantly influence the global cycling of mercury (Hg), serving as important sinks and potential sources of re-emission through various biotic and abiotic [...] Read more.
Trees mediate critical biogeochemical cycles involving nutrients, pollutants, water, and energy at the interface between terrestrial biosphere and atmosphere. Forest ecosystems significantly influence the global cycling of mercury (Hg), serving as important sinks and potential sources of re-emission through various biotic and abiotic processes. Anthropogenic Hg emissions, predominantly from industrial activities, mining, and fossil fuel combustion, have substantially altered the natural Hg cycle, intensifying ecotoxicological concerns and establishing forests as primary routes for atmospheric Hg deposition into terrestrial reservoirs. This perturbation profoundly affects global atmospheric Hg concentrations, residence times, and spatial distribution patterns. While early investigations focused on forest stands near heavily polluted areas, contemporary research has expanded to diverse ecosystems, revealing that trees provide tissues that function as temporal archives for atmospheric-terrestrial Hg exchange. Leaves capture high-resolution records of contemporary Hg dynamics at sub-annual timescales, whereas annual growth rings preserve multi-decadal chronologies of historical atmospheric exposure. Incorporating this dual temporal perspective is crucial for analysing Hg deposition trends and assessing the efficacy of environmental policies designed to control and mitigate Hg pollution. This review critically evaluates recent developments concerning the ecophysiological determinants of Hg accumulation in trees, highlighting how combined foliar and dendrochemical analytical methods strengthen our mechanistic understanding of vegetation-atmosphere Hg exchange. To enhance biomonitoring approaches, we emphasised the need for methodological standardisation, deeper integration of ecophysiological variables, and consideration of climate change implications as priority research areas. Furthermore, integrating Hg measurements with functional markers (δ13C and δ18O) and Hg isotope analyses strengthens the capacity to differentiate between physiological and environmental influences on Hg accumulation, thereby refining the mechanistic framework underlying effective tree-based Hg biomonitoring. Full article
(This article belongs to the Special Issue Biological Responses of Plants to Environmental Pollution)
Show Figures

Figure 1

15 pages, 7254 KiB  
Article
Seasonal and Depth Dynamics of Soil Moisture Affect Trees on the Tibetan Plateau
by Qian Li, Liang Jiao, Ruhong Xue, Xichen Che, Peng Zhang, Xuge Wang and Xin Yuan
Forests 2024, 15(5), 752; https://doi.org/10.3390/f15050752 - 25 Apr 2024
Cited by 2 | Viewed by 1359
Abstract
The soil moisture (SM) influences tree growth with climate change. However, the spatial and temporal dynamics of tree water use strategies in climate-sensitive areas remain uncertain. Therefore, we collected the tree-ring oxygen isotope (δ18OTR) chronologies and divided the wet–dry [...] Read more.
The soil moisture (SM) influences tree growth with climate change. However, the spatial and temporal dynamics of tree water use strategies in climate-sensitive areas remain uncertain. Therefore, we collected the tree-ring oxygen isotope (δ18OTR) chronologies and divided the wet–dry gradients according to the precipitation on the Tibetan Plateau (TP). Further, the relationship between the δ18OTR and environmental factors was analyzed across different gradients. We found the following: (1) The SM during the growing season was the most important factor for δ18OTR. (2) The response of the δ18OTR to the SM had a lag in arid areas than in humid areas. (3) Trees absorbed the SM on the surface in humid areas (r = −0.49 to −0.41, p < 0.01), while trees absorbed the SM from deep in the soil in arid areas (r = −0.48 to −0.29, p < 0.01). The results demonstrated that trees were better able to cope with drought stress in arid regions because they used more stable deep soil water than in humid regions. Therefore, the findings will provide a scientific basis for water use of trees using the δ18OTR in complex environmental contexts. Trees with single water use strategies should be given more attention to keep ecosystems healthy. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

18 pages, 6672 KiB  
Article
Comparative Analysis of Water Isotopic Compositions: Evaluating Isotope Analyzer for Soil and Extraction Method for Stem Water
by Jihyeon Jeon, Hojin Lee, Minsu Lee, Jeonghyun Hong, Seohyun Kim, Chanoh Park and Hyun Seok Kim
Forests 2024, 15(3), 420; https://doi.org/10.3390/f15030420 - 22 Feb 2024
Viewed by 1601
Abstract
Stable isotopes of water (δ2H and δ18O) are reliable tracers for the investigation of plant–soil–water interactions in forest ecosystems. However, variations in isotopic compositions may arise due to differences in analytical instruments and water extraction methods. In this study, [...] Read more.
Stable isotopes of water (δ2H and δ18O) are reliable tracers for the investigation of plant–soil–water interactions in forest ecosystems. However, variations in isotopic compositions may arise due to differences in analytical instruments and water extraction methods. In this study, we conducted three different experiments to identify isotopic differences caused by analytical and methodological variations. First, we analyzed soil water by using the two most commonly applied methods: isotope ratio mass spectrometry (IRMS) and cavity ring-down spectroscopy (CRDS). Second, we compared the isotopes in xylem water extracted from the stems of nine tree species using cryogenic vacuum distillation (CVD) with different heating times. Third, we compared the compositions in xylem water extracted with three different methods: mechanical squeezing using a pressure chamber (PC), an induction module (IM), and CVD. The differences in isotopic composition between IRMS and CRDS were significant but minimal. Soil properties were not significant factors contributing to differences between the two instruments. For the xylem water extraction with CVD, each of the nine tree species required heating for more than three hours. Significant differences were observed in δ2H among the three extraction methods for xylem water. Xylem water extracted by CVD showed more depleted values compared to those obtained by PC and IM. Our results highlight the importance of considering analytical and methodological variations in stable isotope analysis. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

15 pages, 10381 KiB  
Article
Tree-Ring Stable Oxygen Isotope Ratio (δ18O) Records Precipitation Changes over the past Century in the Central Part of Eastern China
by Changfeng Sun, Xuan Wu, Qiang Li, Yu Liu, Meng Ren, Qiufang Cai, Huiming Song and Yongyong Ma
Forests 2024, 15(1), 128; https://doi.org/10.3390/f15010128 - 8 Jan 2024
Cited by 1 | Viewed by 2553
Abstract
Fully understanding the past characteristics of climate and patterns of climate change can contribute to future climate prediction. Tree-ring stable oxygen isotope ratio (δ18O) is crucial for high-resolution research of past climate changes and their driving mechanisms. A tree-ring δ18 [...] Read more.
Fully understanding the past characteristics of climate and patterns of climate change can contribute to future climate prediction. Tree-ring stable oxygen isotope ratio (δ18O) is crucial for high-resolution research of past climate changes and their driving mechanisms. A tree-ring δ18O chronology from 1896 to 2019 was established using Pinus tabulaeformis Carr. from the Yimeng Mountains (YMMs) in the central part of eastern China. We found that precipitation from the 41st pentad (five days) of the previous year to the 40th pentad of the current year (P41–40) was the main factor influencing the YMMs tree-ring δ18O change. We then created a transfer function between P41–40 and tree-ring δ18O. The reconstructed P41–40 explained 39% of the variance in the observed precipitation during the common period of 1960–2016. Over the past 124 years, the YMMs experienced 19 dry years and 20 wet years. The spatial correlation results indicate that the reconstructed precipitation could, to some extent, represent the precipitation changes in Shandong Province, and even the central part of eastern China, from the early 20th century to the present. In addition, it was found that the trends in YMMs tree-ring δ18O were similar at both high frequency and low frequency to those in tree-ring δ18O series from Mt. Tianmu in eastern China and from Jirisan National Park in southern South Korea. However, the YMMs tree-ring δ18O was only correlated at low frequency with the tree-ring δ18O of the Ordos Plateau in northwestern China and that of Nagano and Shiga in central Japan, which are far from the YMMs. The changes in precipitation and tree-ring δ18O in the YMMs were, to some extent, influenced by the Pacific decadal oscillation. Full article
Show Figures

Figure 1

17 pages, 4218 KiB  
Article
Responses of Tree Growth and Intrinsic Water Use Efficiency to Climate Factors and Human Activities in Upper Reaches of Tarim River in Alaer, Xinjiang, China
by Yuanda Ye, Yu Liu, Meng Ren, Qiufang Cai, Changfeng Sun, Qiang Li, Huiming Song, Mao Ye and Tongwen Zhang
Forests 2023, 14(9), 1873; https://doi.org/10.3390/f14091873 - 14 Sep 2023
Cited by 3 | Viewed by 2123
Abstract
With global warming and increasing human activities, exploring the impact of the rising atmospheric carbon dioxide concentration and climate change on forest ecosystems is crucial. In this study, we focus on Euphrates poplar (Populus euphratica Oliv.) in the upper reaches of the [...] Read more.
With global warming and increasing human activities, exploring the impact of the rising atmospheric carbon dioxide concentration and climate change on forest ecosystems is crucial. In this study, we focus on Euphrates poplar (Populus euphratica Oliv.) in the upper reaches of the Tarim River in the Alaer region of Xinjiang. We use dendrochronological methods, tree-ring width, and stable carbon isotope series to explain basal area increment (BAI) and intrinsic water use efficiency (iWUE) changes. We further explore the influence of past climate change and human activities on the radial growth and iWUE of P. euphratica through stable oxygen isotope analysis combined with historical literature records. The results showed that relative humidity had an essential effect on Δ13C and δ18O fractionation in P. euphratica tree rings, whereas the vapor pressure deficit (VPD) was considered the main factor influencing the inter-annual variability of the iWUE and BAI. Since 1850, long-term variations in iWUE have exhibited an upward trajectory correlated with rising atmospheric CO2 levels. Approximately 13% of this iWUE increase can be attributed to changes in carbon-concentration-induced water use efficiency (cciWUE). Although Δ13C and δ18O were generally uncorrelated between 1850 and 2018, around 1918, their relationship changed from being weakly correlated to being significantly negatively correlated, which may record changes related to the upstream Tarim River diversion. During the period from 1850 to 2018, both the BAI and iWUE showed an increasing trend for P. euphratica growth; however, the relationship between them was not stable: during 1850–1958, both variables were mainly influenced by climatic factors, while during 1959–2018, the most important influence was due to human activities, specifically agricultural development and irrigation diversions. An abrupt surge in the BAI was observed from 1959 to 1982, reaching its peak around 1982. Surprisingly, post-1983, the escalating iWUE did not correspond with a continuation of this upward trajectory in the BAI, highlighting a divergence from the previous trend where the enhanced iWUE no longer facilitated the growth of P. euphratica. Despite P. euphratica having adapted to the continuously rising Ca, improving its iWUE and growth capacity, this adaptive ability is unstable and may easily be affected by human activities. Overall, the increase in Ca has increased the iWUE of P. euphratica and promoted its growth at a low frequency, while human activities have promoted its development at a high frequency. Full article
Show Figures

Figure 1

14 pages, 3082 KiB  
Article
Exploring the Relationship between Hydroclimate and Lake Area in Source Area of the Yellow River: Implications for the Paleoclimate Studies
by Shuying Bai, Jixi Gao, Yang Pu, Da Zhi and Jiaojiao Yao
Atmosphere 2023, 14(5), 897; https://doi.org/10.3390/atmos14050897 - 21 May 2023
Cited by 2 | Viewed by 1981
Abstract
The large tectonic lake is one of the most important water bodies in the source area of the Yellow River (SAYR), northeastern Qinghai-Tibet Plateau (QTP). It plays a key role in decelerating climatic change and regulating regional climate patterns. In this study, we [...] Read more.
The large tectonic lake is one of the most important water bodies in the source area of the Yellow River (SAYR), northeastern Qinghai-Tibet Plateau (QTP). It plays a key role in decelerating climatic change and regulating regional climate patterns. In this study, we used Landsat images (MSS, TM, ETM+ and OLI) of Lake Gyaring and Lake Ngoring (the Two Sisters Lakes), which are the two largest tectonic lakes in the SAYR, to determine annual lake area fluctuations from 1986 to 2020. The results show that lake area increases were generally consistent with a warming trend in the SAYR. The temperature signals were separated from the lake area changes by using a detrending analysis and found that the processed data are closely correlated with variations of precipitation and streamflow in the SAYR, and the previously reported paleoclimate records, which include the δ18O record from stalagmite, A/C (Artemisia/Chenopodiaceae) ratio from lake sediment and scPDSI (self-calibrating Palmer Drought Severity Index) from the tree ring on the northeastern margin of the QTP. The phase of relatively large lake areas typically coincides with a negative excursion in δ18O, a high A/C ratio, and elevated scPDSI values, while the opposite is true for smaller lake areas. It is suggested that the total area of the Two Sisters Lakes is closely associated with hydroclimatic conditions in the SAYR. Furthermore, an association of high TSI anomalies with the water area expansion of the Two Sisters Lakes is also observed, implying that solar activity is the key driving factor for the hydrologic variability in the SAYR on decadal timescales. The findings of our study highlight the validity of previous paleoclimate archives in the northeastern QTP and demonstrate the potential of using remote sensing techniques to investigate paleoclimate. Full article
(This article belongs to the Special Issue Paleoclimate Reconstruction)
Show Figures

Figure 1

15 pages, 2762 KiB  
Article
Douglas Fir Multiproxy Tree-Ring Data Glimpse MIS 5 Environment in the U.S. Pacific Northwest
by Irina P. Panyushkina, Steven W. Leavitt, David M. Meko, Bryan A. Black, A. J. Timothy Jull, Peter Van de Water, Joe Squire and Nicholas R. Testa
Forests 2022, 13(12), 2161; https://doi.org/10.3390/f13122161 - 16 Dec 2022
Cited by 1 | Viewed by 2270
Abstract
Proxy records from the late Quaternary help in understanding climate variability on extended time scales. An ancient landslide deposit in Oregon U.S.A. preserved large logs from Douglas fir trees (Pseudotsuga menziesii (Mirb.) Franco) and afforded an opportunity to explore the response of [...] Read more.
Proxy records from the late Quaternary help in understanding climate variability on extended time scales. An ancient landslide deposit in Oregon U.S.A. preserved large logs from Douglas fir trees (Pseudotsuga menziesii (Mirb.) Franco) and afforded an opportunity to explore the response of tree growth to climate on annual and decadal scales. High-precision radiocarbon dating indicates an age exceeding 63 ka, i.e., the trees grew within the generally cool Marine Isotope Stage 5 (MIS 5), likely during a warmer interval optimal for Douglas fir establishment. This would include the prolonged warm MIS 5e (ca. 110–130 ka), corresponding approximately to the Eemian interglacial, which was warm like the current Holocene interglacial. A 297-year tree-ring width chronology from 12 Douglas fir logs and 227-year tree-ring δ13C and δ18O records are analyzed with spectral and wavelet analysis. Variance of the ancient rings is consistent with modern Douglas fir growth sensitive to moisture and ecological disturbances. Spectra of ancient and modern chronologies are dominated by low frequencies with significant spectral peaks appearing at high frequencies (2.1–4 years) and cyclic behavior transient over centuries. It is conceivable that the O-isotopes track moisture and that C-isotopes track temperature or sunlight. The findings illustrate the challenges in assessing the response of ancient tree-ring properties to late Quaternary climate variability. Full article
(This article belongs to the Special Issue Stable Isotopes in Dendroecology)
Show Figures

Figure 1

20 pages, 7077 KiB  
Article
A 230-Year Summer Precipitation Variations Recorded by Tree-Ring δ18O in Heng Mountains, North China
by Yu Liu, Wenxin Shi, Qiang Li, Wentai Liu and Qiufang Cai
Forests 2022, 13(10), 1654; https://doi.org/10.3390/f13101654 - 9 Oct 2022
Cited by 7 | Viewed by 2042
Abstract
To explore the history of the changes in monsoon precipitation and their driving mechanisms in the context of global warming, climatology studies using tree-ring stable oxygen isotopes (δ18O) were carried out in Shanxi Province, China. Based on a tree-ring δ18 [...] Read more.
To explore the history of the changes in monsoon precipitation and their driving mechanisms in the context of global warming, climatology studies using tree-ring stable oxygen isotopes (δ18O) were carried out in Shanxi Province, China. Based on a tree-ring δ18O series from Pinus tabulaeformis Carr. on Heng Mountain, a 230-year June–July precipitation sequence from 1784 to 2013 AD was reconstructed that explained 45% of the total variance (44% after adjusting the degrees of freedom). The reconstructed sequence captured the characteristics of the variations in precipitation. Periods of drought occurred mainly in 1820–1840 AD, 1855–1865 AD, 1895–1910 AD, 1925–1930 AD, and 1970–1995 AD, and wet periods occurred mainly in 1880–1895 AD, 1910–1925 AD, and 1935–1960 AD. The dry and wet years in the precipitation reconstruction corresponded well to the years in which disaster events were documented in historical records. A spatial correlation analysis with Climatic Research Unit (CRU)-gridded precipitation data indicated that the reconstructed precipitation provided good regional representation and reflected large-scale June–July precipitation changes in northern China. In addition, the reconstructed precipitation sequence was also significantly correlated with the dry and wet index (DWI) and other tree-ring dry/wet reconstructions from the surrounding areas. The correlation between the reconstructed precipitation and the Asian monsoon index showed that the precipitation can indicate the intensity of the Asian summer monsoon. Moreover, a significant negative correlation was found between the El Niño–Southern Oscillation (ENSO) and the reconstructed precipitation. At the decadal scale, the negative phase of the Pacific Decadal Oscillation (PDO) and the positive phase of the Atlantic Multidecadal Oscillation (AMO) may co-promote summer precipitation in the study area. Full article
(This article belongs to the Special Issue Forest Climate Change Revealed by Tree Rings and Remote Sensing)
Show Figures

Figure 1

22 pages, 5995 KiB  
Article
Variable Response in Alpine Tree-Ring Stable Isotopes Following Volcanic Eruptions in the Tropics and Iceland
by Tito Arosio, Stéphane Affolter, Kurt Nicolussi, Michael Sigl, Malin Michelle Ziehmer-Wenz, Christian Schlüchter, Emmanuel Schaad, Rafael Stähli and Markus Christian Leuenberger
Geosciences 2022, 12(10), 371; https://doi.org/10.3390/geosciences12100371 - 8 Oct 2022
Cited by 2 | Viewed by 2798
Abstract
The importance of the stable isotopes in tree rings for the study of the climate variations caused by volcanic eruptions is still unclear. We studied δ18O, δD, δ13C stable isotopes of larch and cembran pine cellulose around four major [...] Read more.
The importance of the stable isotopes in tree rings for the study of the climate variations caused by volcanic eruptions is still unclear. We studied δ18O, δD, δ13C stable isotopes of larch and cembran pine cellulose around four major eruptions with annual resolution, along with a superposed epoch analysis of 34 eruptions with 5-year resolution. Initial analysis of the tropical Tambora (1815 CE) and Samalas (1257 CE) eruptions showed a post-eruption decrease in δ18O values attributed to post-volcanic cooling and increased summer precipitation in Southern Europe, as documented by observations and climate simulations. The post-volcanic cooling was captured by the δD of speleothem fluid inclusion. The δ18O decrease was also observed in the analysis of 34 major tropical eruptions over the last 2000 years. In contrast, the eruptions of c. 750, 756, and 764 CE attributed to Icelandic volcanoes left no significant responses in the cellulose isotopes. Further analysis of all major Icelandic eruptions in the last 2000 years showed no consistent isotopic fingerprints, with the exception of lower post-volcanic δ13C values in larch. In summary, the δ18O values of cellulose can provide relevant information on climatic and hydroclimatic variations following major tropical volcanic eruptions, even when using the 5-year resolution wood samples of the Alpine Tree-Ring Isotope Record database. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

15 pages, 6714 KiB  
Article
Strongly Active Responses of Pinus tabuliformis Carr. and Sophora viciifolia Hance to CO2 Enrichment and Drought Revealed by Tree-Ring Isotopes on the Central China Loess Plateau
by Wensen Ge, Xiaohong Liu, Xiaoqin Li, Xiaomin Zeng, Lingnan Zhang, Wenzhi Wang and Guobao Xu
Forests 2022, 13(7), 986; https://doi.org/10.3390/f13070986 - 23 Jun 2022
Cited by 3 | Viewed by 2400
Abstract
Understanding the water-use strategy of human-planted species used in response to climate change is essential to optimize afforestation programs in dry regions. Since 2000, trees on the central Loess Plateau have experienced a shift from strengthening drought to weakening drought. In this study, [...] Read more.
Understanding the water-use strategy of human-planted species used in response to climate change is essential to optimize afforestation programs in dry regions. Since 2000, trees on the central Loess Plateau have experienced a shift from strengthening drought to weakening drought. In this study, we combined tree-ring δ13C and δ18O records from Pinus tabuliformis (syn. tabulaeformis) Carr. (a tree) and Sophora viciifolia Hance (a shrub) on the central Loess Plateau to investigate species-specific responses to rising atmospheric CO2 (Ca) and drought. We found summer relative humidity controlled the fractionation of tree-ring δ18O, but the magnitude of the climate influence on δ13C differed between the species. The intrinsic water-use efficiency (iWUE) trends of both species suggested a strongly active response to maintain constant intercellular CO2 concentrations as Ca rose. The tree-ring δ13C and δ18O of both species using first-difference data were significantly and positively correlated, with stronger relationships for the shrub. This indicated the dominant regulation of iWUE by stomatal conductance in both species, but with greater stomatal control for the shrub. Moreover, the higher mean iWUE value of S. viciifolia indicated a more conservative water-use strategy than P. tabuliformis. Based on our commonality analysis, the main driver of the increased iWUE was the joint effect of Ca and vapor-pressure deficit (25.51%) for the tree, while it was the joint effect of Ca and the self-calibrated Palmer drought severity index (39.13%) for the shrub. These results suggest S. viciifolia will be more drought-tolerant than P. tabuliformis and as Ca continually rises, we should focus more on the effects of soil drought than atmospheric drought on the water-use strategy of S. viciifolia. Full article
Show Figures

Figure 1

15 pages, 3217 KiB  
Article
Towards the Third Millennium Changes in Siberian Triple Tree-Ring Stable Isotopes
by Olga V. Churakova (Sidorova), Marina V. Fonti, Valentin V. Barinov, Mikhail S. Zharkov, Anna V. Taynik, Tatyana V. Trushkina, Alexander V. Kirdyanov, Alberto Arzac and Matthias Saurer
Forests 2022, 13(6), 934; https://doi.org/10.3390/f13060934 - 15 Jun 2022
Cited by 4 | Viewed by 2882
Abstract
Significant air temperature and precipitation changes have occurred since the 2000s in vulnerable Siberian subarctic regions and urged updates of available chronologies towards the third millennium. It is important to better understand recent climatic changes compared to the past decades, centuries and even [...] Read more.
Significant air temperature and precipitation changes have occurred since the 2000s in vulnerable Siberian subarctic regions and urged updates of available chronologies towards the third millennium. It is important to better understand recent climatic changes compared to the past decades, centuries and even millennia. In this study, we present the first annually resolved triple tree-ring isotope dataset (δ13C, δ18O and δ2H) for the eastern part of the Taimyr Peninsula (TAY) and northeastern Yakutia (YAK) from 1900 to 2021. We found that the novel and largely unexplored δ2H of larch tree-ring cellulose was linked significantly with δ18O for the YAK site, which was affected by averaged April–June air temperatures and evaporation. Simulated by the Land Surface Processes and Exchanges (LPX-Bern 1.0) model, the water fraction per year for soil depths at 0–20 and 20–30 cm was significantly linked with the new eco-hydrological tree-ring δ2H data. Our results suggest increasing evapotranspiration and response of trees’ water relation to rising thaw water uptake from lower (20–30 cm) soil depth. A positive effect of July air temperature on tree-ring δ18O and a negative impact of July precipitation were found, indicating dry conditions. The δ13C in larch tree-ring cellulose for both sites showed negative correlations with July precipitation and relative humidity, confirming dry environmental conditions towards the third millennium. Full article
(This article belongs to the Special Issue Stable Isotopes in Dendroecology)
Show Figures

Graphical abstract

14 pages, 3400 KiB  
Article
Tree-Ring Stable Carbon Isotope as a Proxy for Hydroclimate Variations in Semi-Arid Regions of North-Central China
by Shuyuan Kang, Neil J. Loader, Jianglin Wang, Chun Qin, Jingjing Liu and Miao Song
Forests 2022, 13(4), 492; https://doi.org/10.3390/f13040492 - 22 Mar 2022
Cited by 6 | Viewed by 2934
Abstract
Carbon and oxygen isotope ratios (δ13C and δ18O) were measured in annual tree-ring cellulose samples dated from 1756 to 2015 CE. These samples were extracted from Chinese pine (Pinus tabulaeformis Carr.) trees located in a semi-arid region [...] Read more.
Carbon and oxygen isotope ratios (δ13C and δ18O) were measured in annual tree-ring cellulose samples dated from 1756 to 2015 CE. These samples were extracted from Chinese pine (Pinus tabulaeformis Carr.) trees located in a semi-arid region of north-central China. We found that tree-ring δ13C and δ18O values both recorded similar climatic signals (e.g., temperature and moisture changes), but found that tree-ring δ13C exhibited a stronger relationship with mean temperature, precipitation, average relative humidity, self-calibrating Palmer drought severity index (scPDSI), and standard precipitation evaporation index (SPEI) than δ18O during the period 1951–2015 CE. The strongest correlation observed was between tree-ring δ13C and scPDSI (previous June to current May), which explains ~43% of the variance. The resulting 130-year reconstruction reveals severe drought events in the 1920s and a sustained drying trend since the 1980s. This hydroclimate record based on tree-ring δ13C data also reveals similar dry and wet events to other proxy data (i.e., tree-ring width and historical documentation) that have allowed reconstructions to be made across the northern fringe of the Asian summer monsoon region. Our results suggest that both large-scale modes of climate variability (e.g., El Niño-Southern Oscillation, Pacific Decadal Oscillation, and North Atlantic Oscillation) and external forcing (e.g., solar variability) may have modulated moisture variability in this region. Our results imply that the relationship between tree-ring δ18O and local climate is less well-characterized when compared to δ13C and may be affected more strongly by the influences of these different atmospheric circulation patterns. In this semi-arid region, tree-ring δ13C appears to represent a better tool with which to investigate historical moisture changes (scPDSI). Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

19 pages, 4372 KiB  
Article
Tree-Ring Oxygen Isotope Variations in Subalpine Firs from the Western Himalaya Capture Spring Season Temperature Signals
by Bency David Chinthala, Jussi Grießinger, Parminder Singh Ranhotra, Nidhi Tomar, C. P. Singh and Achim Bräuning
Forests 2022, 13(3), 437; https://doi.org/10.3390/f13030437 - 10 Mar 2022
Cited by 8 | Viewed by 3546
Abstract
We analyzed the tree-rings δ18O of Abies spectabilis (fir) growing at the subalpine treeline ecotone in the Magguchatti valley. The valley is located in the Indian summer monsoon (ISM) dominated region of western Himalaya and also receives snow precipitation derived by [...] Read more.
We analyzed the tree-rings δ18O of Abies spectabilis (fir) growing at the subalpine treeline ecotone in the Magguchatti valley. The valley is located in the Indian summer monsoon (ISM) dominated region of western Himalaya and also receives snow precipitation derived by westerly disturbances (WDs) during the winter months. The 60 year developed (1960–2019 CE) tree-ring δ18O chronology revealed a strong positive correlation with the temperature of late winter and spring months (February to April). Strong negative correlations are also apparent for snowcover, soilmoisture, and relative humidity for the same spring season. Our findings partly contrast the significant correlation results of tree-ring δ18O with summer precipitation and drought indices recorded from other summer monsoon-dominated regions in the Himalayas. The spatial correlation analyses with sea surface temperatures (SSTs) and climate parameters showed subdued signals of tropical Pacific at the site, but with a shift to more moisture influx from the Arabian Sea during the last two decades. Moreover, a significant negative correlation with North Atlantic Oscillation further justifies the strongly captured spring temperature and snowcover signals and the weak effect of summer precipitation in fir trees. A temperature rising trend during the latter half of the 20th century and the elevation effect are taken as important factors controlling the moisture source at the treeline ecotone zones. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

Back to TopTop