Tree-Ring Oxygen Isotope Variations in Subalpine Firs from the Western Himalaya Capture Spring Season Temperature Signals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Vegetation
2.2. Tree-Ring Sampling and δ18O Chronology Development
2.3. Regional Climate Station Data and Correlation Development with Tree-Ring δ18O
2.4. Establishing Correlations with Climate Variables and Oceanic Circulations
3. Results
3.1. Statistics of the δ18OTRC Chronology
3.2. Correlations with Climate Variables and Climatic Indices
4. Discussion
4.1. Response of δ18OTRC to Climate Variables
4.2. Temperature Controlled Isotope Fractionation in Fir at Subalpine Elevations
4.3. Regional Coherence of δ18OTRC-Climate Response and Possible Mechanisms
4.4. Impact of SSTs on the Variations of δ18OTRC at Our Study Site
4.5. Influence of the North Atlantic Oscillation (NAO)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polanski, S.; Fallah, B.; Befort, D.J.; Prasad, S.; Cubasch, U. Regional moisture change over India during the past Millennium: A comparison of multi-proxy reconstructions and climate model simulations. Glob. Planet. Chang. 2014, 122, 176–185. [Google Scholar] [CrossRef] [Green Version]
- Dimri, A.P. Interannual variability of Indian winter monsoon over the Western Himalayas. Glob. Planet. Chang. 2013, 106, 39–50. [Google Scholar] [CrossRef]
- Archer, D.R.; Fowler, H.J. Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. Hydrol. Earth Sys. Sci. 2004, 8, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Kapnick, S.B.S.; Delworth, T.L.T.; Ashfaq, M.; Malyshev, S.; Milly, P.C.D. Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nat. Geosci. 2014, 7, 834–840. [Google Scholar] [CrossRef]
- Fowler, H.J.; Archer, D.R. Conflicting signals of climatic change in the upper Indus basin. J. Clim. 2006, 19, 4276–4293. [Google Scholar] [CrossRef] [Green Version]
- Forsythe, N.; Fowler, H.J.; Li, X.F.; Blenkinsop, S.; Pritchard, D. Karakoram temperature and glacial melt driven by regional atmospheric circulation variability. Nat. Clim. Chang. 2017, 7, 664–670. [Google Scholar] [CrossRef]
- Battipaglia, G.; Jäggi, M.; Saurer, M.; Siegwolf, R.T.; Cotrufo, M.F. Climatic sensitivity of δ18O in the wood and cellulose of tree rings: Results from a mixed stand of Acer pseudoplatanus L. and Fagus sylvatica L. Palaeoclimatology 2008, 261, 193–202. [Google Scholar] [CrossRef]
- Proutsos, N.; Tigkas, D. Growth response of endemic black pine trees to meteorological variations and drought episodes in a Mediterranean region. Atmosphere 2020, 11, 554. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. 2019. Available online: https://www.ipcc.ch/srccl/download/ (accessed on 16 June 2021).
- Tiwari, A.; Fan, Z.X.; Jump, A.S.; Li, S.F.; Zhou, Z.K. Gradual expansion of moisture sensitive Abies spectabilis forest in the Trans-Himalayan zone of central Nepal associated with climate change. Dendrochronologia 2017, 41, 34–43. [Google Scholar] [CrossRef]
- Dash, S.K.; Jenamani, R.K.; Kalsi, S.R.; Panda, S.K. Some evidence of climate change in twentieth-century India. Clim. Chang. 2007, 85, 299–321. [Google Scholar] [CrossRef]
- Schickhoff, U.; Bobrowski, M.; Böhner, J.; Bürzle, B.; Chaudhary, R.P.; Gerlitz, L.; Wedegärtner, R. Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth Syst. Dynam. 2015, 6, 245–265. [Google Scholar] [CrossRef]
- Singh, C.P.; Panigrahy, S.; Thapliyal, A.; Kimothi, M.M.; Soni, P.; Parihar, J.S. Monitoring the alpine treeline shift in parts of the Indian Himalayas using remote sensing. Cur. Sci. 2012, 102, 559–562. [Google Scholar]
- Singh, U.; Phulara, M.; David, B.; Ranhotra, P.S.; Shekhar, M.; Bhattacharyya, A.; Dhyani, R.; Joshi, R.; Pal, A.K. Static tree line of Himalayan silver fir since last several decades at Tungnath, Western Himalaya. Trop. Ecol. 2018, 59, 351–363. [Google Scholar]
- Mou, Y.M.; Fang, O.Y.; Cheng, X.H.; Qiu, H.Y. Recent tree growth decline unprecedented over the last four centuries in a Tibetan juniper forest. J. For. Res. 2019, 30, 1429–1436. [Google Scholar] [CrossRef]
- Sigdel, S.R.; Wang, Y.; Camarero, J.J.; Zhu, H.; Liang, E.; Peñuelas, J. Moisture-mediated responsiveness of treeline shifts to global warming in the Himalayas. Glob. Chang. Biol. 2018, 24, 5549–5559. [Google Scholar] [CrossRef] [Green Version]
- Borgaonkar, H.P.; Sikder, A.B.; Ram, S. High altitude forest sensitivity to the recent warming: A tree-ring analysis of conifers from western Himalaya, India. Quat. Int. 2011, 236, 158–166. [Google Scholar] [CrossRef]
- Cook, E.R.; Anchukaitis, K.J.; Buckley, B.M.; D’Arrigo, R.D.; Jacoby, G.C.; Wright, W.E. Asian monsoon failure and megadrought during the last millennium. Science 2010, 328, 486–489. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.; Misra, K.G.; Singh, A.D.; Yadav, R.R.; Yadava, A.K. Little Ice Age revealed in tree-ring based precipitation record from the northwest Himalaya, India. Geophys. Res. Lett. 2021, 48, e2020GL091298. [Google Scholar] [CrossRef]
- Yadav, R.R.; Braeuning, A.; Singh, J. Tree ring inferred summer temperature variations over the last millennium in western Himalaya, India. Clim. Dyn. 2011, 36, 1545–1554. [Google Scholar] [CrossRef]
- Yadav, R.R.; Misra, K.G.; Yadava, A.K.; Kotlia, B.S.; Misra, S. Tree-ring footprints of drought variability in last 300 years over Kumaun Himalaya, India and its relationship with crop productivity. Quat. Sci. Rev. 2015, 117, 113–123. [Google Scholar] [CrossRef]
- Shah, S.K.; Pandey, U.; Mehrotra, N.; Wiles, G.C.; Chandra, R. A winter temperature reconstruction for the Lidder Valley, Kashmir, Northwest Himalaya based on tree-rings of Pinus wallichiana. Clim. Dyn. 2019, 53, 4059–4075. [Google Scholar] [CrossRef]
- Pai, D.S.; Bandgar, A.; Devi, S.; Musale, M.; Badwaik, M.R.; Kundale, A.P.; Gadgil, S.; Mohapatra, M.; Rajeevan, M. New Normal Dates of Onset/Progress and Withdrawal of Southwest Monsoon over India; CRS Research Report, RR No. 3/2020; Indian Meteorological Department: Pune, India, 2020.
- Dimri, A.P.; Yasunari, T.; Wiltshire, A.; Kumar, P.; Mathison, C.; Ridley, J. Application of regional climate models to the Indian winter monsoon over the western Himalayas. Sci. Total Environ. 2013, 468, S36–S47. [Google Scholar] [CrossRef]
- Dimri, A.P.; Yasunari, T.; Kotlia, B.S.; Mohanty, U.C.; Sikka, D.R. Indian winter monsoon: Present and past. Earth-Sci. Rev. 2016, 163, 297–322. [Google Scholar] [CrossRef]
- Yadav, R.R.; Singh, J. Tree-ring-based spring temperature patterns over the past four centuries in western Himalaya. Quat. Res. 2002, 57, 299–305. [Google Scholar] [CrossRef]
- Thapa, U.K.; Shah, S.K.; Gaire, N.P.; Bhuju, D.R. Spring temperatures in the far-western Nepal Himalaya since AD 1640 reconstructed from Picea smithiana tree-ring widths. Clim. Dyn. 2015, 45, 2069–2081. [Google Scholar] [CrossRef]
- Singh, J.; Yadav, R.R. Spring precipitation variations over the western Himalaya, India, since AD 1731 as deduced from tree rings. J.Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Panthi, S.; Bräuning, A.; Zhou, Z.K.; Fan, Z.X. Tree rings reveal recent intensified spring drought in the central Himalaya, Nepal. Glob. Planet.Chang. 2017, 157, 26–34. [Google Scholar] [CrossRef]
- Yadava, A.K.; Misra, K.G.; Singh, V.; Misra, S.; Sharma, Y.K.; Kotlia, B.S. 244-year long tree-ring based drought records from Uttarakhand, western Himalaya, India. Quat. Int. 2021, 599–600, 128–137. [Google Scholar] [CrossRef]
- Sinha, A.; Kathayat, G.; Cheng, H.; Breitenbach, S.F.; Berkelhammer, M.; Mudelsee, M.; Biswas, J.; Edwards, R.L. Trends and oscillations in the Indian summer monsoon rainfall over the last two millennia. Nat. Commun. 2015, 6, 6309. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Sano, M.; Nakatsuka, T. A 400-year record of hydroclimate variability and local ENSO history in northern Southeast Asia inferred from tree-ring δ18O. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 386, 588–598. [Google Scholar] [CrossRef]
- Xu, C.; Sano, M.; Dimri, A.P.; Ramesh, R.; Nakatsuka, T.; Shi, F.; Guo, Z. Decreasing Indian summer monsoon on the northern Indian sub-continent during the last 180 years: Evidence from five tree ring cellulose oxygen isotope chronology. Clim. Past. 2018, 14, 653–664. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Nakatsuka, T.; Kawamura, K.; Liu, Y.; Song, H. Regional hydroclimate and precipitation δ18O revealed in tree-ring cellulose δ18O from different tree species in semi-arid Northern China. Chem. Geol. 2011, 282, 19–28. [Google Scholar] [CrossRef]
- Gessler, A.; Ferrio, J.P.; Hommel, R.; Treydte, K.; Werner, R.A.; Russell, K.M. Stable isotopes in tree rings: Towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. Tree Physiol. 2014, 34, 796–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grießinger, J.; Bräuning, A.; Helle, G.; Thomas, A.; Schleser, G. Late Holocene Asian summer monsoon variability reflected by δ18 O in tree-rings from Tibetan junipers. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Grießinger, J.; Bräuning, A.; Helle, G.; Hochreuther, P.; Schleser, G. Late Holocene relative humidity history on the southeastern Tibetan plateau inferred from a tree-ring δ18O record: Recent decrease and conditions during the last 1500 years. Quat. Int. 2017, 430, 52–59. [Google Scholar] [CrossRef]
- Wernicke, J.; Hochreuther, P.; Grießinger, J.; Zhu, H.; Wang, L.; Bräuning, A. Multi-century humidity reconstructions from the southeastern Tibetan Plateau inferred from tree-ring δ18O. Glob. Planet. Chang. 2017, 149, 26–35. [Google Scholar] [CrossRef]
- Liu, X.; Xu, G.; Grießinger, J.; An, W.; Wang, W.; Zeng, X.; Wu, G.; Qin, D. A shift in cloud cover over the southeastern Tibetan Plateau since 1600: Evidence from regional tree-ring δ18O and its linkages to tropical oceans. Quat. Sci. Rev. 2014, 88, 55–68. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Cernusak, L.A.; Belinda, B. Heavy Water Fractionation during Transpiration. Plant Physiol. 2007, 143, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Zhu, H.; Liang, E.; Grießinger, J.; Wernicke, J.; Yu, W.; Bräuning, A. Temperature signals in tree-ring oxygen isotope series from the northern slope of the Himalaya. Earth Planet. Sci. Lett. 2019, 506, 455–465. [Google Scholar] [CrossRef]
- Barbour, M.M.; Walcroft, A.S.; Farquhar, G.D. Seasonal variation in δ13C and δ18O of cellulose from growth rings of Pinus radiata. Plant Cell Environ. 2002, 25, 1483–1499. [Google Scholar] [CrossRef]
- Kahmen, A.; Sachse, D.; Arndt, S.K.; Tu, K.P.; Farrington, H.; Vitousek, P.M.; Dawson, T.E. Cellulose δ18O is an index of leaf-to-air vapor pressure difference(VPD) in tropical plants. Proc. Natl. Acad. Sci. USA 2011, 108, 1981–1986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sano, M.; Tshering, P.; Komori, J.; Fujita, K.; Xu, C.; Nakatsuka, T. May–September precipitation in the Bhutan δ18O, Himalaya since 1743 as reconstructed from tree ring cellulose. J. Geophys. Res. Atmos. 2013, 118, 8399–8410. [Google Scholar] [CrossRef]
- Sano, M.; Ramesh, R.; Sheshshayee, M.S.; Sukumar, R. Increasing aridity over the past 223 years in the Nepal Himalaya inferred from a tree-ring δ18O chronology. Holocene 2012, 22, 809–817. [Google Scholar] [CrossRef]
- Singh, J.; Singh, N.; Chauhan, P.; Yadav, R.R.; Bräuning, A.; Mayr, C.; Rastogi, T. Tree-ring δ18O records of abating June–July monsoon rainfall over the Himalayan region in the last 273 years. Quat. Int. 2019, 532, 48–56. [Google Scholar] [CrossRef]
- Huang, R.; Zhu, H.; Liang, E.; Bräuning, A.; Zhong, L.; Xu, C.; Feng, X.; Asad, F.; Sigdel, S.R.; Li, L.; et al. Contribution of winter precipitation to tree growth persists until the late growing season in the Karakoram of northern Pakistan. J. Hydrol. 2022, 607, 127513. [Google Scholar] [CrossRef]
- Yao, T.; Masson-Delmotte, V.; Gao, J.; Yu, W.S.; Yang, X.X.; Risi, C.; Sturm, C.; Werner, M.; Zhao, H.; He, Y.; et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev. Geophys. 2013, 51, 525–548. [Google Scholar] [CrossRef]
- Managave, S.; Shimla, P.; Yadav, R.R.; Ramesh, R.; Balakrishnan, S. Contrasting centennial-scale climate variability in High Mountain Asia revealed by a tree-ring oxygen isotope record from Lahaul-Spiti. Geophys. Res. Lett. 2020, 47, e2019GL086170. [Google Scholar] [CrossRef]
- Treydte, K.S.; Schleser, G.H.; Helle, G.; Frank, D.C.; Winiger, M.; Haug, G.H.; Esper, J. The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 2006, 440, 1179–1182. [Google Scholar] [CrossRef]
- Chhetri, P.K.; Cairns, D.M. Dendroclimatic response of Abies spectabilis from the treeline ecotone of Barun valley, eastern Nepal Himalaya. J. For. Res. 2016, 27, 1163–1170. [Google Scholar] [CrossRef]
- Roy, I.; Ranhotra, P.S.; Shekhar, M.; Bhattacharyya, A.; Ghosh, R.; Sharma, Y.K. Modern Pollen-vegetation Relationships along the Vegetation Gradient in the Bhagirathi Valley, Western Himalaya, India. J. Geol. Soc. India 2021, 97, 571–578. [Google Scholar] [CrossRef]
- Malik, R.; Sukumar, R. June–July Temperature Reconstruction of Kashmir Valley from Tree Rings of Himalayan Pindrow Fir. Atmosphere 2021, 12, 410. [Google Scholar] [CrossRef]
- Shekhar, M.; Bhardwaj, A.; Singh, S.; Ranhotra, P.S.; Bhattacharyya, A.; Pal, A.K.; Zorzano, M.P. Himalayan glaciers experienced significant mass loss during later phases of little ice age. Sci. Rep. 2017, 7, 10305. [Google Scholar] [CrossRef] [PubMed]
- Sano, M.; Sheshshayee, M.S.; Managave, S.R.; Sukumar, R.; Sweda, T. Climatic potential of δ18O of Abies spectabilis from the Nepal Himalaya. Dendrochronologia 2010, 28, 93–98. [Google Scholar] [CrossRef]
- Rinn, F. TSAP-Win: Time Series Analysis and Presentation for Dendrochronology and Related Applications; Frank Rinn: Heidelberg, Germany, 2003. [Google Scholar]
- Bunn, A.G. A dendrochronology program library in R (dplR). Dendrochronologia 2008, 26, 115–124. [Google Scholar] [CrossRef]
- Wieloch, T.; Helle, G.; Heinrich, I.; Voigt, M.; Schyma, P.A. novel device for batch-wise isolation of α-cellulose from small-amount wholewood samples. Dendrochronologia 2011, 29, 115–117. [Google Scholar] [CrossRef] [Green Version]
- Wigley, T.M.L.; Briffa, K.R.; Jones, P.D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Briffa, K.R.; Jones, P.D. Basic chronology statistics and assessment. In Methods of Dendrochronology: Applications in the Environmental Sciences; Cook, E.R., Kairiukstis, L.A., Eds.; International Institute for Applied Systems Analysis (IIASA): Laxenburg Austria; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990; pp. 137–152. [Google Scholar]
- Adhikari, B.S.; Rawat, G.S.; Rai, I.D.; Bharti, R.R.; Bhattacharyya, S. Ecological Assessment of Timberline Ecotone in Western Himalaya with Special Reference to Climate Change and Anthropogenic Pressures; IV Annual Report; Wildlife Institute of India: Dehradun, India, 2011.
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [Green Version]
- Gelaro, R.; Mccarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Zhao, B. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Tiwari, S.; Kar, S.C.; Bhatla, R. Snowfall and Snowmelt Variability over Himalayan Region in Inter-annual Timescale. Aquat. Procedia. 2015, 4, 942–949. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Muñoz, S.J. ERA5-Land Monthly Averaged Data from 1981 to Present. Copernic. Clim. Chang. Serv. (C3S) Clim. Data Store (CDS) 2019, 146, 1999–2049. [Google Scholar] [CrossRef]
- Biondi, F.; Waikul, K. DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput. Geosci. 2004, 30, 303–311. [Google Scholar] [CrossRef]
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Zhang, H.M. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- Jones, P.D.; Jonsson, T.; Wheeler, D. Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int. J. Climatol. 1997, 17, 1433–1450. [Google Scholar] [CrossRef]
- Rayner, N.A.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 2003, 108, 4407. [Google Scholar] [CrossRef]
- Sano, M.; Dimri, A.P.; Ramesh, R.; Xu, C.; Li, Z.; Nakatsuka, T. Moisture source signals preserved in a 242-year tree-ring δ18O chronology in the western Himalaya. Glob. Planet. Chang. 2017, 157, 73–82. [Google Scholar] [CrossRef]
- Tang, K.; Feng, X. The effect of soil hydrology on the oxygen and hydrogen isotopic compositions of plants’ source water. Earth Planet. Sci. Lett. 2001, 185, 355–367. [Google Scholar] [CrossRef]
- Rahman, M.H.; Kudo, K.; Yamagishi, Y.; Nakamura, Y.; Nakaba, S.; Begum, S.; Nugroho, W.D.; Arakawa, I.; Kitin, P.; Funada, R. Winter-spring temperature pattern is closely related to the onset of cambial reactivation in stems of the evergreen conifer Chamaecyparis pisifera. Sci. Rep. 2020, 10, 14341. [Google Scholar] [CrossRef]
- Hart, R.; Salick, J.; Ranjitkar, S.; Xu, J. Herbarium specimens show contrasting phonological responses to Himalayan climate. Proc. Natl. Acad. Sci. USA 2014, 111, 10615–10619. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Tiwari, S.K.; Verma, A.; Gupta, A.K. Tracing isotopic signatures (δD and δ18O) in precipitation and glacier melt over Chorabari Glacier–Hydroclimatic inferences for the Upper Ganga Basin (UGB), Garhwal Himalaya. J. Hydrol. 2018, 15, 68–89. [Google Scholar] [CrossRef]
- Wernicke, J.; Grießinger, J.; Hochreuther, P.; Bräuning, A. Variability of summer humidity during the past 800 yearson the eastern Tibetan Plateau inferred from δ18O of tree-ring cellulose. Clim. Past 2015, 11, 327–337. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, T.; Guo, H.; Liu, D.; Zhao, Y.; Zhang, T.; Liu, Q.; Piao, S. Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems. Glob. Chang. Biol. 2017, 24, 1651–1662. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.P.; Jiang, Y.; Wang, B.; Jiao, L.; Wang, M.C. Seasonal water use by Larix principis-rupprechtii in an alpine habitat. For. Ecol. Manag. 2018, 409, 47–55. [Google Scholar] [CrossRef]
- West, A.G.; Hultine, K.R.; Burtch, K.G.; Ehleringer, J.R. Seasonal variations in moisture use in a piñon–juniper woodland. Oecologia 2007, 153, 787–798. [Google Scholar] [CrossRef] [PubMed]
- Shekhar, M.S.; Chand, H.; Kumar, S.; Srinivasav, K.; Ganju, A. Climate-change studies in the western Himalaya. Ann.Glaciol. 2010, 51, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Roxy, M.K.; Ritika, K.; Terray, P.; Murtugudde, R.; Ashok, K.; Goswami, B.N. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat. Commun. 2015, 6, 7423. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, R.; Sugi, M. Pacific decadal oscillation and variability of the Indian summer monsoon rainfall. Clim. Dyn. 2003, 21, 233–242. [Google Scholar] [CrossRef]
- Sano, M.; Xu, C.; Nakatsuka, T. A 300-year Vietnam hydroclimate and ENSO variability record reconstructed from tree ring δ18O. J. Geophys. Res. 2012, 117, D12115. [Google Scholar] [CrossRef]
- Liu, X.; An, W.; Treydte, K.; Shao, X.; Leavitt, S.; Hou, S.; Chen, T.; Sun, W.; Qin, D. Tree-ring δ18O in southwestern China linked to variations in regional cloud cover and tropical sea surface temperature. Chem. Geol. 2012, 291, 104–115. [Google Scholar] [CrossRef]
- Xu, C.; Ge, J.; Nakatsuka, T.; Yi, L.; Zheng, H.; Sano, M. Potential utility oftree ringδ18O series for reconstructingprecipitation records from the lower reaches of the Yangtze River, southeast China. J. Geophys. Res. Atmos. 2016, 121, 3954–3968. [Google Scholar] [CrossRef]
- Xu, C.; Pumijumnong, N.; Nakatsuka, T.; Sano, M.; Li, Z. A tree-ring cellulose δ18Obased July–October precipitation reconstruction since AD 1828, northwest Thailand. J. Hydrol. 2015, 529, 433–441. [Google Scholar] [CrossRef]
- Chung, C.E.; Ramanathan, V. Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel. J. Clim. 2006, 19, 2036–2045. [Google Scholar] [CrossRef] [Green Version]
- Naidu, C.V.; Durgalakshmi, K.; Muni Krishna, K.; Ramalingeswara, R.S.; Satyanarayana, G.C.; Lakshminarayana, P.; Malleswara, R.L. Is summer monsoon rainfall decreasing over India in the global warming era? J. Geophys. Res. 2009, 114, D24108. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Yu, R.; Li, H.; Wang, B. Ocean forcing to changes in global monsoon precipitation over the recent half-century. J. Clim. 2008, 21, 852. [Google Scholar] [CrossRef]
- Visbeck, M.H.; Hurrell, J.W.; Polvani, L.; Cullen, H.M. The North Atlantic Oscillation: Past, present, and future. Proc. Natl. Acad. Sci. USA 2001, 98, 12876–12877. [Google Scholar] [CrossRef] [Green Version]
- Pinto, J.G.; Raible, C.C. Past and recent changes in the North Atlantic Oscillation. WIREs Clim. Chang. 2012, 3, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, J.W. Decadal trends in the North Atlantic Oscillation and relationships to regional temperature and precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef] [Green Version]
Statistical Parameters of δ18OTRC Series | Values |
---|---|
Number of samples | 5 |
Length of chronology | 1960–2019 CE (60 years) |
Mean inter-series correlation (Rbar) | 0.54 |
Expressed Population Signal (EPS) | 0.85 |
Subsample signal strength (SSS) | 0.99 |
Minimum δ18OTRC value of mean series | 26.42‰ |
Maximum δ18OTRC value of mean series | 31.64‰ |
Mean Value (of mean δ18OTRC series) | 29.3‰ |
First-orderAutocorrelation (AC1) | 0.15 |
Standard Deviation (of mean δ18OTRC series) | 1.43 |
Magguchatti, Uttarakhand (Present Study Site) | Jumla, Nepal | Eastern Uttar Pradesh | All India Rainfall | ||||
---|---|---|---|---|---|---|---|
Year | δ18O (‰) | Year | RJJAS (mm) | Year | RJJAS (mm) | Year | RJJAS (mm) |
Years with low δ18OTRC and corresponding common years in bold | |||||||
1978 | 26.73 | 1975 | 962 | 1980 | 1433 | 1961 | 1020 |
1971 | 26.83 | 1980 | 793 | 1971 | 1183 | 1975 | 963 |
1983 | 26.86 | 1981 | 755 | 1975 | 1114 | 1988 | 961 |
1980 | 27.15 | 1969 | 637 | 1983 | 956 | ||
1975 | 27.35 | 1976 | 634 | ||||
2000 | 27.47 | ||||||
1993 | 27.70 | ||||||
2013 | 27.71 | ||||||
1977 | 27.77 | ||||||
Years with high δ18OTRC and corresponding common years in bold | |||||||
2004 | 31.84 | 1968 | 307 | 1979 | 465 | 1972 | 653 |
2002 | 31.79 | 1965 | 313 | 1965 | 566 | 1987 | 697 |
1969 | 31.78 | 1966 | 356 | 1987 | 607 | 1979 | 708 |
1966 | 31.65 | 1979 | 357 | 1966 | 639 | 1965 | 709 |
1985 | 31.64 | 1987 | 360 | 1982 | 735 | ||
1987 | 31.58 | ||||||
2009 | 31.55 | ||||||
1974 | 31.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chinthala, B.D.; Grießinger, J.; Ranhotra, P.S.; Tomar, N.; Singh, C.P.; Bräuning, A. Tree-Ring Oxygen Isotope Variations in Subalpine Firs from the Western Himalaya Capture Spring Season Temperature Signals. Forests 2022, 13, 437. https://doi.org/10.3390/f13030437
Chinthala BD, Grießinger J, Ranhotra PS, Tomar N, Singh CP, Bräuning A. Tree-Ring Oxygen Isotope Variations in Subalpine Firs from the Western Himalaya Capture Spring Season Temperature Signals. Forests. 2022; 13(3):437. https://doi.org/10.3390/f13030437
Chicago/Turabian StyleChinthala, Bency David, Jussi Grießinger, Parminder Singh Ranhotra, Nidhi Tomar, C. P. Singh, and Achim Bräuning. 2022. "Tree-Ring Oxygen Isotope Variations in Subalpine Firs from the Western Himalaya Capture Spring Season Temperature Signals" Forests 13, no. 3: 437. https://doi.org/10.3390/f13030437
APA StyleChinthala, B. D., Grießinger, J., Ranhotra, P. S., Tomar, N., Singh, C. P., & Bräuning, A. (2022). Tree-Ring Oxygen Isotope Variations in Subalpine Firs from the Western Himalaya Capture Spring Season Temperature Signals. Forests, 13(3), 437. https://doi.org/10.3390/f13030437