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Abstract: Fully understanding the past characteristics of climate and patterns of climate change
can contribute to future climate prediction. Tree-ring stable oxygen isotope ratio (δ18O) is crucial
for high-resolution research of past climate changes and their driving mechanisms. A tree-ring
δ18O chronology from 1896 to 2019 was established using Pinus tabulaeformis Carr. from the Yimeng
Mountains (YMMs) in the central part of eastern China. We found that precipitation from the
41st pentad (five days) of the previous year to the 40th pentad of the current year (P41–40) was
the main factor influencing the YMMs tree-ring δ18O change. We then created a transfer function
between P41–40 and tree-ring δ18O. The reconstructed P41–40 explained 39% of the variance in the
observed precipitation during the common period of 1960–2016. Over the past 124 years, the
YMMs experienced 19 dry years and 20 wet years. The spatial correlation results indicate that the
reconstructed precipitation could, to some extent, represent the precipitation changes in Shandong
Province, and even the central part of eastern China, from the early 20th century to the present. In
addition, it was found that the trends in YMMs tree-ring δ18O were similar at both high frequency
and low frequency to those in tree-ring δ18O series from Mt. Tianmu in eastern China and from Jirisan
National Park in southern South Korea. However, the YMMs tree-ring δ18O was only correlated
at low frequency with the tree-ring δ18O of the Ordos Plateau in northwestern China and that of
Nagano and Shiga in central Japan, which are far from the YMMs. The changes in precipitation and
tree-ring δ18O in the YMMs were, to some extent, influenced by the Pacific decadal oscillation.

Keywords: tree-ring stable oxygen isotope; precipitation reconstruction; Yimeng Mountains; eastern
China; Pacific decadal oscillation

1. Introduction

Climate changes, especially extreme climate events, have significant impacts on human
activities and economic development. Understanding the change characteristics and driv-
ing mechanisms of climate can help predict its future changes and prevent extreme climate
disasters [1]. However, due to their limited duration, observational data fall short in pro-
viding a comprehensive understanding of the characteristics of climate change. Research
into past climate, especially high-resolution climate reconstruction, can compensate for this
deficiency [2]. Tree rings have been widely used in global paleoclimate change studies due
to several advantages, including their long sequences, accurate cross-dating, continuity,
high resolution and high sensitivity to climate change, and are considered an important
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technique for obtaining high-resolution data on past climate change [3–7]. Furthermore,
tree rings are essential in predicting future climates [8]. Tree-ring stable oxygen isotope ratio
(δ18O) has become an important indicator for annual resolution paleoclimate reconstruction
and atmospheric circulation research due to multiple advantages, such as small sample
sizes, a clearly interpreted physiological mechanism, a lack of need for detrending, and less
influence from age effects, as well as retention of more low- and high-frequency climate
signals [9–12]. Early tree-ring δ18O research was conducted in Europe and America, where
a relatively complete data network of tree-ring δ18O has been established and significant
results have been achieved [13–15]. At present, there are few studies on tree-ring δ18O in
China, and they are mainly concentrated in western China. For example, tree-ring δ18O
of Qilian Juniper in the northeastern Tibetan Plateau region indicated changes in relative
humidity over the last thousand years [16]. Additionally, there was a modest drying trend
during the Middle Ages Climate Anomaly, a noticeable wet phase during the majority of
the Little Ice Age, and increasing moisture associated with the twentieth century warming
trend. Based on tree-ring δ18O from multiple regions, it was found that the primary cause
of the drought in the southern Tibetan Plateau since the 1860s could be the weakening
of the Asian summer monsoon [17]. Compared with central and western China, there
are fewer studies on tree-ring δ18O in eastern China. Using tree-ring δ18O of Fokienia
hodginsii (Dunn) Henry et Thomas, precipitation variations in Fujian Province over the
past 100 years were reconstructed [12], and it was found that diminished El Niño-Southern
Oscillation (ENSO) variance led to a weakened correlation between tree-ring δ18O in Fujian
and the sea surface temperatures (SST) of the tropical Pacific. Based on tree-ring δ18O,
the Palmer Drought Severity Index (PDSI) in the Mt. Tianmu region during the period of
1618–2013 was reconstructed, and it was found that tree-ring δ18O was connected to meiyu
rainbelt precipitation and the East Asian summer monsoon (EASM) intensity during the
May–June period [18].

The Yimeng Mountains (YMMs) are situated in the region of eastern China and are
also an important component of the Tai-Yi Mountain Range in Shandong Province [19]. The
YMMs belong to the temperate monsoon climate zone, which is influenced by the Asian
monsoon and is vulnerable to global change. Climate change plays a crucial role in shaping
the ecological environment of the YMMs and extends their impact to the broader eastern
monsoon area of China. In addition, the population of the YMMs and the surrounding
region is dense, and climate change plays a crucial role in the agricultural and economic
development. Understanding past climate change has instructive significance for the
economic and social development, ecological environment protection, and other aspects
of the region [20]. However, to date, the changing patterns of climate in the YMMs and
even the Shandong Province are still unclear, with especially limited understanding of
the characteristics of past centuries’ hydroclimate change. Therefore, it is necessary to
conduct high-resolution climate reconstruction research on the YMMs region in order
to fully understand climate variations in the Shandong Province and eastern China and
to predict future climate. Moreover, the research to date on dendroclimatology in the
YMMs and the central part of eastern China mainly focuses on tree-ring width and carbon
isotopes [20–22], and there has been no research on tree-ring δ18O.

In this study, we selected Pinus tabulaeformis Carr. in the YMMs as the research object
and determined the tree-ring δ18O sequence after accurate dating of the rings. Firstly,
this study establishes the tree-ring δ18O series of the YMMs, and then reconstructs the
precipitation changes over the previous 120 years in order to analyze its features and
patterns of change. Finally, we will discuss the impact of driving factors such as the Asian
monsoon and the Pacific decadal oscillation (PDO) on the long-term precipitation changes
in the YMMs region.
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2. Materials and Methods
2.1. Study Region and Sampling Site

The YMMs are located in Linyi, Shandong Province in the central part of eastern China
(Figure 1). The annual precipitation is 717 mm, with the bulk of precipitation occurring
predominantly in July and August (Figure 2). The minimum precipitation in January is
less than 10 mm, while the maximum precipitation in July is approximately 200 mm. The
mean annual temperature is 12.7 ◦C, with the highest recorded temperature of 25.9 ◦C in
July and the lowest recorded temperature of −2.4 ◦C in January. The monthly difference
in relative humidity is not significant, ranging from 56% to 80%. For this research, Pinus
tabuliformis was selected in the sampling site (YMMs, 35◦36′ N, 117◦51′ E; 1048–1100 m
above sea level; Figure 1), and 98 cores were collected from 49 trees. The growing season of
Pinus tabulaeformis in the YMMs is from April to October which is also the formation time
of tree rings.
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2.2. Tree-Ring δ18O Measurement

Utilizing dendrochronological methods, each tree-ring core was visually dated and
subsequently measured with the LINTAB measurement system to a precision of 0.01 mm.
The COFECHA program was instrumental in maintaining the quality of cross-dating [23],
providing an effective means for identifying and excluding any potential false or missing
rings. Any cores which were fractured and those for which a specific calendar year
could not be determined were excluded. Finally, 92 cores from 47 trees were retained
for analysis. The COFECHA results showed that the average of correlation coefficient
among these 92 individual series was 0.48 and that the mean sensitivity was 0.35. After
determining the calendar year, five cores with clear annual rings and fewer missing rings
were chosen, namely, YS1-12B, YS2-24A, YS2-02B, YS1-22A, and YS2-08A (Table 1). Under
microscopic examination, the rings of these five cores were sequentially peeled off. The
extraction of α-cellulose was conducted using the enhanced Jayme–Wise method [24].
The obtained α-cellulose was homogenized with an ultrasonic cell disruptor and freeze-
dried. Approximately 0.12–0.16 mg of eligible samples was enclosed within silver capsules
and these were placed in a Delta V Advantage elemental mass spectrometer to obtain
oxygen isotope values. The oxygen isotope ratio was denoted as δ18O, representing its
deviation from the Vienna standard mean ocean water (VSMOW). In our laboratory, we
selected MERCK microcrystalline cellulose (27.7‰) as the standard. Through repeated
measurements of the working standard, we ensured a measurement accuracy of less than
±0.2‰. The composite tree-ring δ18O chronology was derived by calculating the arithmetic
mean of these five series through the numerical mix method [18].

Table 1. Statistical features of five individual series as well as the composite series.

Statistical Parameters YS1-12B YS2-24A YS2-02B YS1-22A YS2-08A Composite

Length (years) * 89 102 103 108 102 124
Start year 1916 1917 1916 1896 1917 1896
End year 2008 2019 2019 2007 2019 2019

Maximum value (‰) 32.72 31.19 32.65 30.66 34.81 32.23
Minimum value (‰) 26.42 24.27 25.79 24.42 24.73 26.01

Mean value (‰) 29.22 27.91 28.98 28.20 29.32 28.67
AR1 0.16 0.25 0.33 0.32 0.13 0.20

Standard deviation (‰) 1.34 1.37 1.32 1.11 1.49 1.07
Skewness 0.06 0.07 0.16 0.34 1.58 0.37
Kurtosis 0.23 −0.15 0.18 −0.30 0.34 0.18

* It should be noted that some cores contain missing rings, so the length is not consistent with the difference
between the end year and start year. AR1: first-order autocorrelation [25].

2.3. Meteorological Data

Tree-ring δ18O mainly reflects regional climate change; therefore, five meteorological
stations were chosen in close proximity to the sampling site, namely, Yiyuan, Weifang,
Juxian, Pingdu, and Feixian (Figure 1). Due to the significant correlation between their
precipitation, temperature, and relative humidity (RH), the average data of the five stations
were used to represent regional climate change (Figure 2). The meteorological data mainly
come from the National Meteorological Science Data Center. In addition, the gridded
data utilized in this study were obtained from the Climatic Research Unit (CRU) [26].
The other tree-ring δ18O sequences come from the National Centers for Environmental
Prediction (NCEP) [27], and the PDO data were sourced from the KNMI Climate Explorer
(https://climexp.knmi.nl/start.cgi, accessed on 23 December 2023).

2.4. Methods

Pearson correlation analysis was used to investigate the relationship between tree-
ring δ18O and climate factors. Additionally, a linear regression model based on the least
squares method was utilized to recreate historical precipitation patterns. The assessment

https://climexp.knmi.nl/start.cgi
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of the reconstruction model’s dependability and stability was conducted using the split
calibration-verification approach [28]. The statistical parameters utilized to evaluate the
calibration period included the Pearson correlation coefficient (r) and the explained variance
(R2). In order to assess the accuracy of the calibrations, additional measures such as r, R2,
the reduction of error (RE), the coefficient of efficiency (CE) and the sign test (ST) were
employed. The values of RE and CE need to be higher than zero in order for the model to be
accepted [29]. Using the KNMI Climate Explorer, spatial correlation analysis was applied
to describe the variability in the climate signal at the regional scale. A low-pass filter was
utilized, which accepts signals below a cutoff frequency but attenuates frequencies over the
cutoff frequency [30] The filter creates gradual changes in the output values by eliminating
multiple frequencies, which facilitates the identification of low-frequency properties.

3. Results and Discussion

3.1. Tree-Ring δ18O Chronology

The mean values of the five individual tree-ring δ18O series in the YMMs range from
27.91‰ to 29.32‰, and the correlation among these five series is very significant (Table 2).
We used the numerical mixing method to synthesize the five series into a master series
sequence (Table 2, Figure 3). The mean δ18O of the composite series from 1896 to 2019 was
28.67‰, with a standard deviation of 1.07‰.

Table 2. Correlation coefficients among the five individual δ18O series.

YS1-12B YS2-24A YS2-02B YS1-22A

YS2-24A 0.753, 88
YS2-02B 0.550, 88 0.419, 101
YS1-22A 0.708, 83 0.745, 86 0.418, 87
YS2-08A 0.506, 87 0.410, 100 0.575, 100 0.531, 83

Note. The correlation coefficients in the table all passed the significance test.
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Figure 3. (a) Five individual series and the composite series of δ18O created by the numerical mixing
method. (b) The running mean interseries correlation (Rbar) and expressed population signal (EPS)
calculated using 30-year windows with a lag time of 15 years.

The expressed population signal (EPS) and Rbar (the mean correlation coefficient of
individual series) were used to determine the effective length of the tree-ring chronology,
and an EPS value greater than 0.85 was considered the threshold for the beginning year
of the tree-ring δ18O chronology. Since 1916, there have been three δ18O sequences with
EPS values greater than 0.85 (Figure 3). Due to the significant correlation between the core
YS1-22A and other sequences during their common time period (1916–2007), the composite
series during 1896–1915 containing only the core YS1-22A could also be used to reflect
regional tree-ring δ18O changes.
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3.2. Responses of Tree-Ring δ18O to Climate

The response analysis of tree rings to climate is usually based on climate data on a
monthly timescale, but the correlation between tree-ring chronology and climate on the
pentad (five days) timescale is more significant and better reflects the true climate signals
recorded in tree rings [31]. Therefore, we calculated the correlation between tree-ring
δ18O and precipitation, temperature, and RH at the pentad scale. The season selected for
climate response analysis extends from the twentieth pentad (early April) of the preceding
year to the sixtieth pentad (late October) of the current year, considering the influence
of the previous year’s climate on tree growth (Figure 4). The correlation between tree-
ring δ18O and temperature, precipitation, and RH varied significantly in each pentad,
with strong volatility (Figure 4). Tree-ring δ18O was mainly positively correlated with
temperature, with a significant correlation occurring in the twenty-third and twenty-ninth
pentads of the current year. There was mainly a positive correlation between tree-ring δ18O
and precipitation, and the significantly correlated seasons included some pentads in the
previous year and the current year (such as the 21st, 43rd, 44th, 47th, and 48th pentads of
the previous year, and the 3rd, 21st, 28th, 38th, 40th, and 46th pentads of the current year).
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By analyzing the pentad meteorological data from every season, we found that the
tree-ring δ18O had the highest correlation with temperature during the 29th to 31st pentad
of the current year (r = 0.350, p < 0.01), and that the strongest association with precipitation
appeared in the season from the 41st pentad of the previous year to the 40th pentad of
the current year (r = −0.625, p < 0.001). Lastly, the highest correlation with RH was found
in the season from the 21st to 52nd pentad of the current year (r = −0.556, p < 0.001). It
can be seen that precipitation had the most significant impact on tree-ring δ18O, which
indicated that the YMMs tree-ring δ18O mainly reflected precipitation change. The period of
strongest connection between tree-ring δ18O and precipitation occurred from July 21 of the
previous year to July 20 of the current year. This time span was approximately equivalent
to the period from August of the previous year to July of the current year. Therefore,
we calculated the correlation between tree-ring δ18O and precipitation from the previous
August to the current July (PA–J, r = −0.565, 1960–2016). This indicated that tree-ring δ18O
could to some extent reflect PA–J changes. In general, when precipitation is high, the isotopic
composition of rainwater is relatively depleted. Therefore, more precipitation is associated
with more δ18O-depleted precipitation, which in turn causes tree-ring δ18O to be lower [32].
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Conversely, because of insufficient atmospheric vapor pressure, low precipitation may
lead to higher concentrations of δ18O in leaf and tree rings [33]. In addition, the previous
year’s carbohydrates formed in trees make an important contribution to the formation of
the current year’s earlywood, while the latewood formation is mainly dependent on the
carbohydrates of the current year [34]. Therefore, the YMMs tree-ring δ18O reflects the
precipitation changes from the previous and current growing seasons of Pinus tabulaeformis.

3.3. YMMs Precipitation Reconstruction

Based on the correlation between tree-ring δ18O and precipitation from the 41st pentad
of the previous year to the 40th pentad of the current year (P41–40), we used the least squares
linear regression to establish a transformation equation between them during their com-
mon period of 1960 to 2016: P41–40 = 3026.13 − 80.83 × δ18Ot (n = 57, r = 0.625, R2 = 0.391,
R2adj = 0.380, F = 35.324, p < 0.001). The stability and reliability of the regression equation
was verified using the split-sample method (Table 3). These validation trials were per-
formed by dividing the common period (1960–2016) into two parts: 30 years for calibration
(1960–1989/1987–2016), and the remaining 27 years for verification (1990–2016/1960–1986).
The two rigorous verification statistics (RE and CE) were positive, indicating a rigorous
model skill. All these statistical parameters show that the regression model used in our
reconstruction was stable and reliable.

Table 3. The transfer function’s split calibration–verification test for the period of 1960–2016.

Calibration Verification

Period r R2 ST Period r R2 RE CE ST

1960–1989 0.645 ** 0.416 23 ** 1990–2016 0.654 ** 0.428 0.236 0.226 18

1987–2016 0.676 ** 0.457 22 * 1960–1986 0.598 ** 0.358 0.310 0.242 21 **

1960–2016 0.625 ** 0.391 40 **

** p < 0.01, * p < 0.05.

For the modeling period of 1960–2016, the reconstructed precipitation was generally
consistent with the observations (Figure 5a), and the first-order differences in the recon-
structed and observed precipitation showed similar variations (Figure 5b). The correlation
between the first-order differences of the reconstructed and observed precipitation was
0.564 (p < 0.001), which indicates that our reconstruction captured the changes characteristic
of the observed precipitation at both high and low frequencies.
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10 years of low-pass filtering, and the horizontal lines indicate the overall mean of the reconstruction
and one deviation (σ) from the mean value.
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3.4. YMMs Precipitation Changes over the Past 124 Years

According to the length of tree-ring δ18O sequence, we reconstructed the P41–40 change
from 1896 to 2019 (Figure 5c). During the past 124 years, the average precipitation in the
YMMs was 708.7 mm, with a standard deviation (σ) of 85.9 mm. Based on the relationship
between reconstructed value and the average plus or minus one σ, we considered wet
years to be defined as years with precipitation greater than 794.6 mm and dry years as
years with precipitation less than 622.8 mm. A total of 19 dry years and 20 wet years
were found, with the rest being normal years (Figure 5c, Table 4). Most wet and dry
years could be confirmed by historical records [35] and a database of the study region
(http://lib.sdsqw.cn/ftr/ftr.htm, accessed on 23 December 2023).

Table 4. Dry/wet years in the reconstructed precipitation of the YMMs from 1896 to 2019 and
the corresponding descriptions in the historical document “Local Chronicles of Linyi” [35] and in
the database “Situation of Shandong Province” (http://lib.sdsqw.cn/ftr/ftr.htm, accessed on 23
December 2023).

Wet Years Documentary Records Precipitation (mm) Dry
Years Documentary Records Precipitation(mm)

1898 NA * 833.8 1902 NA 601.5

1899 NA 822.1 1920 NA 562.0

1900 Heavy rain in Linyi
damaged crops. 844.1 1925

No rain from March to
middle of July in
Juxian County.

605.1

1911 Floods caused disasters
in six counties of Linyi. 805.4 1928

Severe drought hit Linyi,
resulting in an average

crop loss of 30%.
609.2

1912 NA 822.1 1929 NA 547.6

1916
Linyi suffered from
heavy rains, which

reduced crop yields.
813.1 1936 NA 596.9

1932
Heavy rain in Linyi led

to flash floods
breaking out.

827.6 1938 NA 592.3

1939 NA 803.8 1942

Feinan and Feibei
Counties were hit by
drought, with rivers

drying up and
crops dying.

557.1

1955

River banks burst in
Juxian County after

heavy rains,
injuring people.

923.6 1943
Tancheng County

experienced
severe drought.

532.4

1957

Linyi was subjected to
persistent heavy rains
and concentrated rains,

causing flash floods.

808.1 1944

Linyi experienced severe
drought, with almost six

months of little to no
rainfall, resulting in

near-total crop failure.

602.3

1964 Linyi experienced floods
due to excessive rainfall. 902.4 1945 NA 580.7

http://lib.sdsqw.cn/ftr/ftr.htm
http://lib.sdsqw.cn/ftr/ftr.htm
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Table 4. Cont.

Wet Years Documentary Records Precipitation (mm) Dry
Years Documentary Records Precipitation(mm)

1965

Feixian County was
soaked by heavy rains,
flash floods broke out,
and rivers overflowed.

802.9 1969

Mengyin and Yiyuan
Counties experienced

severe drought,
resulting in a reduction

of over 30% in
crop yields.

577.6

1971 Linyi experienced
summer floods. 803.5 1981

300,000 people in Linyi
had difficulty accessing

drinking water due
to drought.

616.2

1972 NA 856.1 1989

There was an
unprecedented drought

in Linyi, with rivers
drying up and
groundwater

levels declining.

613.7

1990

Heavy rains in Linyi
caused reservoirs to
overflow and river

floods to surge.

820.4 1992

Linyi suffered from
severe drought,

unprecedented in nearly
a century, leading to the

drying up of rivers.

421.0

1991

Linyi suffered the
largest rainstorm since
1974, causing massive

economic losses.

829.0 2000
57% of the arable land in

Linyi encountered
severe drought.

609.2

1995 Heavy rain hits Linyi. 905.8 2014

Linyi suffered from
severe drought, with

precipitation nearly 62%
less than the same

period in previous years.

501.4

1996 NA 851.4 2016

Linyi suffered from
severe drought, with

precipitation nearly 50%
less than the same

period in previous years.

615.2

1998 NA 834.4 2019

Precipitation in Pingyi
and Mengyin Counties
decreased nearly 50%

compared with the same
period in previous years.

595.3

2013 NA 811.3

* NA: not available.

3.5. Spatial Representativeness of the Reconstructed Precipitation

We found that the reconstructed P41–40 can to some extent reflect the PA–J changes.
Therefore, we calculated the spatial correlation between the observed and reconstructed
P41–40 and CRU gridded PA–J (1960–2016). The spatial correlation pattern between observed
P41–40 and CRU precipitation was consistent with that between the reconstructed P41–40
and CRU precipitation (Figure 6a,b), which shows that our reconstruction mainly reflected
the precipitation changes in Shandong Province. The correlation between reconstructed
precipitation and CRU PA–J from 1902 to 2019 indicates (Figure 6c) that our reconstruction
could also, to some extent, reflect regional precipitation changes over the past 100 years.
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Figure 6. Spatial correlations of the gridded precipitation from the previous August to current July
(PA–J) from CRU with the observed P41–40 (a) and reconstructed P41–40 (b) for 1960–2016. (c) Correla-
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We compared the reconstructed precipitation with the CRU grid precipitation in the
central part of eastern China (33–38◦ N, 115–123◦ E) and found that there was a significant
relationship between them (Figure 7). The correlation between them was 0.519 (p < 0.001)
from 1960 to 2019 and 0.438 (p < 0.001) from 1902 to 2019. In addition, the correlation
between them for the period 1902–1959 was also significant (r = 0.323, p = 0.013). This
further demonstrates that our reconstructed precipitation based on tree-ring δ18O represents
the precipitation changes in Shandong Province and the central part of eastern China.
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3.6. Comparisons between YMMs Tree-Ring δ18O Series and Other δ18O Records

To further verify the reliability of our tree-ring δ18O series, we compared it with tree-
ring δ18O data from Mt. Tianmu (MT) in eastern China [18] and Jirisan National Park (JNP)
in southern South Korea [36] (Figures 1 and 8). It was found that there was a consistent
change pattern between the tree-ring δ18O of YMMs and that of MT. The tree-ring δ18O of
MT had the most significant correlation with the June–October PDSI (r = −0.636, p < 0.001)
and the June–September precipitation (r = −0.611, p < 0.001) [18]. This indicates that the MT
tree-ring δ18O mainly reflected PDSI changes, but precipitation also had a significant impact
on tree-ring δ18O changes. Furthermore, a notable association was found between the tree-
ring δ18O series of the YMMs and JNP in southern South Korea, exhibiting comparable
variations in both high and low frequencies (Figure 8). The JNP tree-ring δ18O was also
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negatively correlated with precipitation and it could be used as a proxy for precipitation
change in May–July in southern South Korea [36].
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Figure 8. Comparisons between the YMMs tree-ring δ18O series in this study, (a,b) tree-ring δ18O data
from Mt. Tianmu (MT) in eastern China [18], and (c,d) tree-ring δ18O values from Jirisan National
Park (JNP) in southern South Korea [36]. (a,c) are original series, and (b,d) are 10-year low-pass
filter series.

Our findings indicate that there was no significant correlation between the tree-ring
δ18O of Nagano and Shiga (NS) in central Japan [37] and that of the Ordos Plateau (OP)
in northwestern China [38] at high frequencies (Figure 1). However, there was some
correlation at low frequencies. Specifically, after applying a low-pass filter for ten years, the
correlation coefficient between the tree-ring δ18O sequences of the YMMs and NS was 0.281
(1896–2005), while the correlation coefficient between the tree-ring δ18O sequences of YMMs
and OP was 0.208 (1896–2012). This also suggested that tree-ring δ18O at a given site might
reflect large-scale changes in δ18O at low frequencies. It should be noted that tree-ring δ18O
in both the OP and NS had more relative humidity signals than precipitation [37,38]. The
OP tree-ring δ18O reflected, to some extent, the changes in the Asian summer monsoon
(ASM) [38], and the precipitation in the YMMs is also influenced by the ASM. Thus, there
was some relationship between tree-ring δ18O of the YMMs and OP. The tree-ring δ18O in
JNP in southern South Korea was similarly influenced by the rainfall in Japan [37], leading
to a close relationship between the tree-ring δ18O of the YMMs and JNP. Therefore, the
tree-ring δ18O of the YMMs has some correspondence with that of NS in central Japan.

3.7. Possible Driving Mechanism of the YMMs Precipitation

The spatial correlation between the HadISST (Hadley Centre Sea Ice and Sea Surface
Temperature) grid data 39] and the observed precipitation as well as the reconstructed
precipitation showed that SST in the North Pacific had some impact on precipitation change
in the YMMs. Not only was the correlation pattern between the observed precipitation
and SST similar to that between of the reconstructed precipitation and SST for 1960–2016,
but the correlation between the reconstructed precipitation and SST was also significant
for 1896–2019. The significant correlation in the North Pacific (Figure 9) indicates that the
PDO (Pacific decadal oscillation) was a major influencing factor of precipitation changes
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in the YMMs. Therefore, we further analyzed the relationship between the reconstructed
precipitation and the PDO.
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Figure 9. Spatial correlation between the HadISST grid data [39], (a) observed precipitation and
(b) our reconstructed precipitation during the period of 1960–2016. (c) Correlation between the
gridded SST and reconstructed precipitation during the period of 1896–2019.

The relationships between three sets of PDO reanalysis data [40–42] and precipitation
were analyzed (Figure 10). Both at high and low frequencies, each set of PDO indices
was significantly correlated with reconstructed precipitation. This suggests that the PDO
exerted a notable influence on the changes in YMM precipitation. The PDO influences
precipitation change in the central part of eastern China by modulating the location of the
subtropical high and the strength of the Asian summer monsoon [43]. When the PDO is
in the warm phase, the western Pacific subtropical high moves southward, the East Asian
summer monsoon weakens, and the trade wind in the tropical Pacific also weakens. As a
result, there is significantly less water vapor transported from the western Pacific to the
central region of eastern China [44].
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Figure 10. Comparisons between the reconstructed precipitation in the YMMs, (a) the PDO from
NOAA based on the ERSST [40], (b) the PDO from SWFSC (Southwest Fisheries Science Center) [41],
and (c) the PDO from the KNMI Climate Explorer based on the HadISST [42]. (d–f) are the precipita-
tion and PDO after applying a 10-year low-pass filter. The PDO is the monthly mean Pacific Decadal
Oscillation (PDO) index from April to July.
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4. Conclusions

One tree-ring δ18O series spanning 124 years was carried out with tree-ring cores of
Pinus tabulaeformis from the YMMs in the central region of eastern China. After climate
response analysis, it was found that tree-ring δ18O was majorly influenced by P41–40 change.
Therefore, the YMMs P41–40 from 1896 to 2019 was reconstructed. The reconstruction
could explain 39% of the variance of observed P41–40 during their common period of
1960–2016. There were 19 dry years, 20 wet years and 85 normal years over the past
124 years. The spatial correlation indicates the P41–40 reconstruction reflects precipitation
changes in Shandong Province in eastern China. The YMMs tree-ring δ18O showed a
significant correlation with tree-ring δ18O in nearby regions, such as the MT in eastern
China and JNP in southern South Korea, at both high and low frequencies. However,
the YMMs tree-ring δ18O showed only a limited correlation with tree-ring δ18O from far
regions, such as NS in central Japan and OP in northwestern China, at low frequencies.
In addition, the PDO had a significant impact on the changes in YMMs precipitation and
tree-ring δ18O.
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