Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = traveling-wave tube

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 5092 KB  
Article
A Compact Heat Sink Compatible with a Ka-Band Gyro-TWT with Non-Superconducting Magnets
by Shaohang Ji, Boxin Dai, Zewei Wu, Wei Jiang, Xin Chen, Binyang Han, Jianwei Zhou, Qianqian Chen, Guo Liu, Yelei Yao, Jianxun Wang and Yong Luo
Quantum Beam Sci. 2026, 10(1), 4; https://doi.org/10.3390/qubs10010004 - 22 Jan 2026
Abstract
This paper presents a thermal management solution for a Ka-band gyrotron traveling wave tube (gyro-TWT) with non-superconducting magnets. At present, the miniaturization and non-superconductivity of gyro-TWT have become a trend, but miniaturization leads to a significant increase in power density and a severe [...] Read more.
This paper presents a thermal management solution for a Ka-band gyrotron traveling wave tube (gyro-TWT) with non-superconducting magnets. At present, the miniaturization and non-superconductivity of gyro-TWT have become a trend, but miniaturization leads to a significant increase in power density and a severe limitation in heat sink volume, which critically limits power capacity. To address this challenge, a joint microwave–thermal management evaluation model is used to investigate the heat transfer process and identify the crucial factors constraining the power capacity. A cylindrical heat sink with narrow rectangular grooves is introduced. Based on this, the cooling efficiency has been enhanced through structural optimization. The beam–wave interaction, electrothermal conversion, and heat conduction processes of the interaction circuit are analyzed. The compact heat sink achieves a 1.2-fold increase in coolant utilization and reduces the overall volume by 27.4%. Meanwhile, this heat sink improves the cooling performance and power capability of the gyro-TWT effectively. At 29 GHz, the gyro-TWT achieves a pulse power of 150 kW. Simulation results show that the maximum temperature is 348 °C at a 45% duty cycle, reduced by 159 °C. The power capacity of the Ka-band gyro-TWT increases by 40.6%. Full article
(This article belongs to the Section Radiation Scattering Fundamentals and Theory)
Show Figures

Figure 1

13 pages, 9913 KB  
Communication
An Automatic Optimization Approach to the Non-Periodic Folded-Waveguide Slow-Wave Structure for the High Efficiency Traveling Wave Tube
by Zheng Wen and Jun Zhang
Electronics 2025, 14(24), 4797; https://doi.org/10.3390/electronics14244797 - 5 Dec 2025
Viewed by 228
Abstract
An automatic optimization approach to the non-periodic (NP) folded-waveguide slow-wave structure (FW-SWS) is proposed for the high efficiency traveling wave tube (TWT). Considering the beam-wave synchronism condition, the data of the beam velocity distribution are analyzed and utilized for automatic optimization. For concise [...] Read more.
An automatic optimization approach to the non-periodic (NP) folded-waveguide slow-wave structure (FW-SWS) is proposed for the high efficiency traveling wave tube (TWT). Considering the beam-wave synchronism condition, the data of the beam velocity distribution are analyzed and utilized for automatic optimization. For concise expression, a W-band concentric arc NP FW-SWS TWT is automatically optimized as an example, where the beam voltage is set as 6000 V, the beam current is 0.12 A, the magnet field is 0.5 T, and the input power is 0.4 W. Without any training data or previous given datasets, the output power (electronic efficiency) can be optimized to reach 238.7 W (33.1%) at 94 GHz by the automatic optimization approach code within 22.7 h. Full article
Show Figures

Figure 1

9 pages, 1760 KB  
Article
A G-Band Pulsed Wave-Traveling Wave Tube for THz Radar
by Xingwang Bian, Pan Pan, Siji Xian, Di Yang, Lin Zhang, Jun Cai and Jinjun Feng
Electronics 2025, 14(23), 4721; https://doi.org/10.3390/electronics14234721 - 29 Nov 2025
Viewed by 339
Abstract
The growing interest in high-power amplifiers for the terahertz (THz) radar system leads to significant performance improvements of THz wave traveling-wave tubes (TWT). This article presents a detailed development of a G-band pulsed wave TWT with 120 W output power. Three approaches have [...] Read more.
The growing interest in high-power amplifiers for the terahertz (THz) radar system leads to significant performance improvements of THz wave traveling-wave tubes (TWT). This article presents a detailed development of a G-band pulsed wave TWT with 120 W output power. Three approaches have been combined to improve the tube’s output power including proposing the modified folded waveguide (MFWG) slow wave structure (SWS), using large beam current, and adopting phase velocity tapering (PVT). Firstly, the MFWG SWS circuit has an additional degree of freedom that can be used to achieve approximately 36% higher interaction impedance than that in the conventional folded waveguide (CFWG). Subsequently, the electron beam current was increased to approximately 100 mA to boost the DC power of the electron beam. Finally, the PVT technology dramatically enhanced the output power from 98 W to 143 W, concomitant with a notable increase in electronic efficiency from 4.75% to 7.03%. Hot experimental results show that the measured output power can be over 100 W at 20% duty cycle within a bandwidth of 5 GHz when the operation voltage and the current are 22.48 kV and 103.5 mA, respectively. In addition, the maximum power is 121 W with the corresponding electronic efficiency of 5.1%. The proposed G-band 100 W TWT will have broad applications in far-distance high-resolution imaging. Full article
Show Figures

Figure 1

13 pages, 3942 KB  
Article
Design of a W-Band Low-Voltage TWT Utilizing a Spoof Surface Plasmon Polariton Slow-Wave Structure and Dual-Sheet Beam
by Gangxiong Wu, Ruirui Jiang and Jin Shi
Sensors 2025, 25(18), 5641; https://doi.org/10.3390/s25185641 - 10 Sep 2025
Viewed by 3415
Abstract
This paper presents a W-band low-voltage traveling-wave tube (TWT) incorporating a spoof surface plasmon polariton (SSPP) slow-wave structure (SWS) and a dual-sheet beam. The SSPP-based SWS adopts a periodic double-F-groove configuration, which provides strong field localization, increases the interaction impedance, and reduces the [...] Read more.
This paper presents a W-band low-voltage traveling-wave tube (TWT) incorporating a spoof surface plasmon polariton (SSPP) slow-wave structure (SWS) and a dual-sheet beam. The SSPP-based SWS adopts a periodic double-F-groove configuration, which provides strong field localization, increases the interaction impedance, and reduces the phase velocity, thereby enabling a low synchronization voltage. Owing to its symmetric open geometry, the SWS naturally forms a dual-sheet beam tunnel, which enhances the effective beam current without increasing the aperture size. Eigenmode calculations indicate that, within the 92–97 GHz band, the normalized phase velocity is between 0.198 and 0.208, and the interaction impedance exceeds 2.65 Ω. Moreover, an energy-coupling structure was developed to ensure efficient signal transmission. Three-dimensional particle-in-cell (PIC) simulations predict a peak output power of 366.1 W and an electronic efficiency of 6.15% at 95.5 GHz for a 2 × 250 mA dual-sheet beam at 11.9 kV, with stable amplification and without self-oscillation observed. The proposed low-voltage, high-efficiency W-band TWT offers a manufacturable and easily integrable solution for next-generation millimeter-wave systems, supporting high-capacity wireless backhaul, airborne communication, radar imaging, and sensing platforms where compactness and reduced power-supply demands are critical. Full article
(This article belongs to the Special Issue Recent Development of Millimeter-Wave Technologies)
Show Figures

Figure 1

24 pages, 2752 KB  
Review
Challenges in the Design and Development of Slow-Wave Structure for THz Traveling-Wave Tube: A Tutorial Review
by Patibandla Anilkumar, Shaomeng Wang and Yubin Gong
Electronics 2025, 14(13), 2624; https://doi.org/10.3390/electronics14132624 - 29 Jun 2025
Cited by 3 | Viewed by 2404
Abstract
As solid-state devices continue to advance, vacuum electron devices maintain critical importance due to their superior high-frequency power handling, long-term reliability, and operational efficiency. Among these, traveling-wave tubes (TWTs) excel in high-power microwave (HPM) applications, offering exceptional bandwidth and gain. However, developing THz-range [...] Read more.
As solid-state devices continue to advance, vacuum electron devices maintain critical importance due to their superior high-frequency power handling, long-term reliability, and operational efficiency. Among these, traveling-wave tubes (TWTs) excel in high-power microwave (HPM) applications, offering exceptional bandwidth and gain. However, developing THz-range TWT slow-wave structures (SWSs) presents significant design challenges. This work systematically outlines the SWS design methodology while addressing key obstacles and their solutions. As a demonstration, a staggered double vane (SDV) SWS operating at 1 THz (980–1080 GHz) achieves 650 mW output power, 23.35 dB gain, 0.14% electronic efficiency, and compact 21 mm length. Comparative analysis with deformed quasi-sine waveguide (D-QSWG) SWS confirms the SDV design’s superior performance for THz applications. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

16 pages, 4266 KB  
Article
Leak Identification and Positioning Strategies for Downhole Tubing in Gas Wells
by Yun-Peng Yang, Guo-Hua Luan, Lian-Fang Zhang, Ming-Yong Niu, Guang-Gui Zou, Xu-Liang Zhang, Jin-You Wang, Jing-Feng Yang and Mo-Song Li
Processes 2025, 13(6), 1708; https://doi.org/10.3390/pr13061708 - 29 May 2025
Viewed by 1041
Abstract
Accurate detection of downhole tubing leakage in gas wells is essential for planning effective repair operations and mitigating safety risks in annulus pressure buildup wells. Current localization methods employ autocorrelation analysis to exploit the time-delay features of acoustic signals traveling through the tubing–casing [...] Read more.
Accurate detection of downhole tubing leakage in gas wells is essential for planning effective repair operations and mitigating safety risks in annulus pressure buildup wells. Current localization methods employ autocorrelation analysis to exploit the time-delay features of acoustic signals traveling through the tubing–casing annulus. This allows non-invasive wellhead detection, avoiding costly tubing retrieval or production shutdowns. However, field data show that multiphase flow noise, overlapping reflected waves, and coupled multi-leakage points in the wellbore frequently introduce multi-peak interference in acoustic autocorrelation curves. Such interference severely compromises the accuracy of time parameter extraction. To resolve this issue, our study experimentally analyzes how leakage pressure differential, aperture size, depth, and multiplicity affect the autocorrelation coefficients of acoustic signals generated by leaks. It compares the effects of different noise reduction parameters on leakage localization accuracy and proposes a characteristic time selection principle for autocorrelation curves, providing a new solution for precise leakage localization under complex downhole conditions. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 3344 KB  
Article
Experimental Study on Interface Debonding Defect Detection and Localization in Underwater Grouting Jacket Connections with Surface Wave Measurements
by Qian Liu, Bin Xu, Xinhai Zhu, Ronglin Chen and Hanbin Ge
Sensors 2025, 25(11), 3277; https://doi.org/10.3390/s25113277 - 23 May 2025
Viewed by 879
Abstract
Interface debonding between high-strength grouting materials and the inner surfaces of steel tubes in grouting jacket connections (GJCs), which have been widely employed in offshore wind turbine support structures, negatively affects their mechanical behavior. In this study, an interface debonding defect detection and [...] Read more.
Interface debonding between high-strength grouting materials and the inner surfaces of steel tubes in grouting jacket connections (GJCs), which have been widely employed in offshore wind turbine support structures, negatively affects their mechanical behavior. In this study, an interface debonding defect detection and localization approach for scaled underwater GJC specimens using surface wave measurements with piezoelectric lead zirconate titanate (PZT) actuation and sensing technology was validated experimentally. Firstly, GJC specimens with artificially mimicked interface debonding defects of varying dimensions were designed and fabricated in the lab, and the specimens were immersed in water to replicate the actual underwater working environment of GJCs in offshore wind turbine structures. Secondly, to verify the feasibility of the proposed interface debonding detection approach using surface wave measurements, the influence of the height and circumferential dimension of the debonding defects on the output voltage signal of PZT sensors was systematically studied experimentally using a one pitch and one catch (OPOC) configuration. Thirdly, a one pitch and multiple catch (OPMC) configuration was further employed to localize and visualize the debonding defect regions. An abnormal value analysis was carried out on the amplitude of the output voltage signals from PZT sensors with identical wave traveling paths, and the corresponding abnormal surface wave propagation paths were identified. Finally, based on the influence of interface debonding on the surface wave measurements mentioned above, the mimicked interface debonding defect was detected successfully and the region of debonding was determined with the intersection of the identified abnormal wave travelling paths. The results showed that the mimicked debonding defect can be visualized. The feasibility of this method for interface debonding defect detection in underwater GJCs was confirmed experimentally. The proposed approach provides a novel non-destructive debonding defect detection approach for the GJCs in offshore wind turbine structures. Full article
(This article belongs to the Special Issue Sensor-Based Structural Health Monitoring of Civil Infrastructure)
Show Figures

Figure 1

20 pages, 6969 KB  
Article
Multi-Physics Coupling Simulation of Surface Stress Waves for Interface Debonding Detection in Underwater Grouting Jacket Connections with PZT Patches
by Bin Xu, Qian Liu, Xinhai Zhu and Hanbin Ge
Sensors 2025, 25(10), 3124; https://doi.org/10.3390/s25103124 - 15 May 2025
Cited by 1 | Viewed by 876
Abstract
Interface debonding between the steel tube and grouting materials in grouting jacket connections (GJCs) of offshore wind turbine supporting structures leads to negative effects on the load-carrying capacity and safety concerns. In this paper, an interface debonding defect detection and localization approach for [...] Read more.
Interface debonding between the steel tube and grouting materials in grouting jacket connections (GJCs) of offshore wind turbine supporting structures leads to negative effects on the load-carrying capacity and safety concerns. In this paper, an interface debonding defect detection and localization approach for scale underwater GJC specimens using surface wave measurement is proposed and validated numerically. A multi-physics finite element model (FEM) of underwater GJCs with mimicked interface debonding defects, surrounded by water, and coupled with surface-mounted piezoelectric lead zirconate titanate (PZT) patches is established. Under the excitation of a five-cycle modulated signal, the surface stress wave propagation, including transmission, diffraction, and reflection, within the outer steel tube, grouting material, and inner steel tube is simulated. The influence of mimicked interface debonding defects of varying dimensions on stress wave propagation is systematically analyzed through stress wave field distributions at distinct time intervals. Additionally, the response of surface-mounted PZT sensors in the underwater GJC model under a one-pitch-one-catch (OPOC) configuration is analyzed. Numerical results demonstrate that the wavelet packet energy (WPE) of the surface wave measurement from the PZT sensors corresponding to the traveling path with a mimicked interface debonding defect is larger than that without a defect. To further localize the debonding region, a one pitch and multiple catch (OPMC) configuration is employed, and an abnormal value analysis is conducted on the WPEs of PZT sensor measurements with identical and comparable wave traveling patches. The identified debonding regions correspond to the simulated defects in the models. Full article
(This article belongs to the Special Issue Sensor-Based Structural Health Monitoring of Civil Infrastructure)
Show Figures

Figure 1

13 pages, 7970 KB  
Article
Investigation of a 220 GHz Traveling-Wave Tube Based upon a Flat-Roofed Sine Waveguide with a Coupling Structure
by Shuanzhu Fang, Ruixiang Xie, Jun Luo, Zhizhe Wang, Tieyang Wang and Fangfang Song
Electronics 2025, 14(9), 1756; https://doi.org/10.3390/electronics14091756 - 25 Apr 2025
Viewed by 948
Abstract
This paper presents the design and investigation of a two-stage flat-roofed sine waveguide (SWG) traveling-wave tube (TWT) incorporating a novel coupling structure. Initially, the slow-wave structure (SWS) of a 220 GHz flat-roofed SWG was optimized, and the output performance of the corresponding TWT [...] Read more.
This paper presents the design and investigation of a two-stage flat-roofed sine waveguide (SWG) traveling-wave tube (TWT) incorporating a novel coupling structure. Initially, the slow-wave structure (SWS) of a 220 GHz flat-roofed SWG was optimized, and the output performance of the corresponding TWT was thoroughly analyzed. Subsequently, a specialized coupling structure was designed and fabricated, with the experimental results demonstrating an excellent agreement with the simulation predictions. The coupling structure exhibits low reflection and is easily manufacturable, making it highly suitable for energy coupling in two-stage TWTs. Finally, a two-stage TWT, integrating both the optimized flat-roofed SWG structure and the coupling structure, was developed and characterized. Under operating conditions of a 20.8 kV beam voltage, 150 mA current, and 150 mW input power, the proposed TWT achieved remarkable performance metrics: a maximum output power of 160 W within the frequency range 210–230 GHz and a 3 dB bandwidth exceeding 20 GHz. This research provides a valuable reference solution for the realization of high-power, broadband terahertz radiation sources, contributing significantly to the advancement of terahertz vacuum electronic devices. Full article
(This article belongs to the Special Issue Vacuum Electronics: From Micro to Nano)
Show Figures

Figure 1

14 pages, 3882 KB  
Article
Acoustic Losses in Cryogenic Hydrogen at Transitions Between Tubes of Different Diameters
by Kian Conroy and Konstantin I. Matveev
Hydrogen 2025, 6(2), 25; https://doi.org/10.3390/hydrogen6020025 - 14 Apr 2025
Cited by 1 | Viewed by 1231
Abstract
Acoustic oscillations in cryogenic systems can either be imposed intentionally, as in pulse-tube cryocoolers, or occur spontaneously due to Taconis-type thermoacoustic instabilities. To predict the propagation of sound waves in ducts with sudden changes in cross-sectional areas, minor losses associated with such transitions [...] Read more.
Acoustic oscillations in cryogenic systems can either be imposed intentionally, as in pulse-tube cryocoolers, or occur spontaneously due to Taconis-type thermoacoustic instabilities. To predict the propagation of sound waves in ducts with sudden changes in cross-sectional areas, minor losses associated with such transitions in oscillatory flows must be known. However, the current modeling approaches usually rely on correlations for minor loss coefficients obtained in steady flows, which may not accurately represent minor losses in sound waves. In this study, high-fidelity computational fluid dynamics simulations are undertaken for acoustic oscillations at transitions between tubes of different diameters filled with cryogenic hydrogen. The variable parameters include the tube diameter ratios, temperatures (80 K and 30 K), and acoustic impedances corresponding to standing and traveling waves. Computational simulation results are compared with reduced-order acoustic models to develop corrections for minor loss coefficients that describe transition losses in sound waves more precisely. The present findings can improve the accuracy of design calculations for acoustic cryocoolers and predictions of Taconis instabilities. Full article
Show Figures

Figure 1

13 pages, 13195 KB  
Article
A 220 GHz Traveling-Wave Tube Based on a Modified Staggered Double Corrugated Waveguide
by Weihua Ge and Sheng Yu
Electronics 2024, 13(22), 4483; https://doi.org/10.3390/electronics13224483 - 15 Nov 2024
Cited by 1 | Viewed by 1819
Abstract
Staggered double-grating slow-wave structures (SDG-SWSs), which are easy to fabricate and have broadband characteristics, play a core role in research on high-power terahertz (THz) traveling-wave tubes (TWTs). However, their relatively low interaction impedance restricts further improvements in the output power of SDG-TWTs. A [...] Read more.
Staggered double-grating slow-wave structures (SDG-SWSs), which are easy to fabricate and have broadband characteristics, play a core role in research on high-power terahertz (THz) traveling-wave tubes (TWTs). However, their relatively low interaction impedance restricts further improvements in the output power of SDG-TWTs. A modified staggered double corrugated waveguide (MSDCW) SWS that evolved from a staggered double corrugated waveguide (SDCW) SWS is proposed in this study for the first time. The MSDCW-SWS has both the advantages of a wide bandwidth and a high interaction impedance. The width of the beam tunnel also has little effect on the lower cutoff frequency. High-frequency calculations reveal that the passband of the MSDCW-SWS is 10 GHz wider than that of the SDG-SWS, and the interaction impedance is about 1.34 ohm higher than that of the SDG-SWS and 1.07 ohm higher than that of the SDCW-SWS at 220 GHz when the dispersion is the same. The results of the interaction simulation show that the MSDCW-TWT has a maximum gain of ~22.11 dB with a maximum output power of ~117 W and a maximum electron efficiency of ~2.64% at 220 GHz with an electron beam of 24.6 kV and 180 mA. The MSDCW should therefore be considered as a promising SWS for high-power and wideband THz traveling-wave amplification. Full article
Show Figures

Figure 1

12 pages, 5787 KB  
Article
A Symmetrical Quasi-Synchronous Step-Transition Folded Waveguide Slow Wave Structure for 650 GHz Traveling Wave Tubes
by Duo Xu, Tenglong He, Yuan Zheng, Zhigang Lu, Huarong Gong, Zhanliang Wang, Zhaoyun Duan and Shaomeng Wang
Sensors 2024, 24(16), 5289; https://doi.org/10.3390/s24165289 - 15 Aug 2024
Cited by 1 | Viewed by 1604
Abstract
For the purpose of improving performance and reducing the fabrication difficulty of terahertz traveling wave tubes (TWTs), this paper proposes a novel single-section high-gain slow wave structure (SWS), which is named the symmetrical quasi-synchronous step-transition (SQSST) folded waveguide (FW). The SQSST-FW SWS has [...] Read more.
For the purpose of improving performance and reducing the fabrication difficulty of terahertz traveling wave tubes (TWTs), this paper proposes a novel single-section high-gain slow wave structure (SWS), which is named the symmetrical quasi-synchronous step-transition (SQSST) folded waveguide (FW). The SQSST-FW SWS has an artificially designed quasi-synchronous region (QSR) to suppress self-oscillations for sustaining a high gain in an untruncated circuit. Simultaneously, a symmetrical design can improve the efficiency performance to some extent. A prototype of the SQSST-FW SWS for 650 GHz TWTs is designed based on small-signal analysis and numerical simulation. The simulation results indicate that the maximum saturation gain of the designed 650 GHz SQSST-FW TWT is 39.1 dB in a 34.3 mm slow wave circuit, occurring at the 645 GHz point when a 25.4 kV 15 mA electron beam and a 0.43 mW sinusoidal input signal are applied. In addition, a maximum output power exceeding 4 W is observed at the 648 GHz point using the same beam with an increased input power of around 2.8 mW. Full article
(This article belongs to the Special Issue Millimeter Wave and Terahertz Source, Sensing and Imaging)
Show Figures

Figure 1

19 pages, 4925 KB  
Article
Experimental Study on the Detection of the Existence and Location of Mimicked and Unexpected Interface Debonding Defects in an Existing Rectangular CFST Column with PZT Materials
by Qian Liu, Bin Xu, Genda Chen, Weilong Ni, Zhixun Liu, Chun Lin and Zhiyou Zhuang
Materials 2024, 17(13), 3154; https://doi.org/10.3390/ma17133154 - 27 Jun 2024
Cited by 6 | Viewed by 1296
Abstract
Interface bonding conditions between concrete and steel materials play key roles in ensuring the composite effect and load-carrying capacity of concrete–steel composite structures such as concrete-filled steel tube (CFST) members in practice. A method using both surface wave and electromechanical impedance (EMI) measurement [...] Read more.
Interface bonding conditions between concrete and steel materials play key roles in ensuring the composite effect and load-carrying capacity of concrete–steel composite structures such as concrete-filled steel tube (CFST) members in practice. A method using both surface wave and electromechanical impedance (EMI) measurement for detecting the existence and the location of inaccessible interface debonding defects between the concrete core and steel tube in CFST members using piezoelectric lead zirconate titanate (PZT) patches as actuators and sensors is proposed. A rectangular CFST specimen with two artificially mimicked interface debonding defects was experimentally verified using PZT patches as the actuator and sensor. By comparing the surface wave measurement of PZT sensors at different surface wave travelling paths under both a continuous sinusoidal signal and a 10-period sinusoidal windowed signal, three potential interface debonding defects are quickly identified. Furthermore, the accurate locations of the three detected potential interface debonding defects are determined with the help of EMI measurements from a number of additional PZT sensors around the three potential interface debonding defects. Finally, the accuracy of the proposed interface debonding detection method is verified with a destructive observation by removing the local steel tube at the three detected interface debonding locations. The observation results show that the three detected interface debonding defects are two mimicked interface debonding defects, and an unexpected debonding defect occurred spontaneously due to concrete shrinkage in the past one and a half years before conducting the test. Results in this study indicate that the proposed method can be an efficient and accurate approach for the detection of unknown interface debonding defects in existing CFST members. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

9 pages, 4745 KB  
Communication
A Staggered Vane-Shaped Slot-Line Slow-Wave Structure for W-Band Dual-Sheet Electron-Beam-Traveling Wave Tubes
by Yuxin Wang, Jingyu Guo, Yang Dong, Duo Xu, Yuan Zheng, Zhigang Lu, Zhanliang Wang and Shaomeng Wang
Sensors 2024, 24(12), 3709; https://doi.org/10.3390/s24123709 - 7 Jun 2024
Cited by 1 | Viewed by 1745
Abstract
A staggered vane-shaped slot-line slow-wave structure (SV-SL SWS) for application in W-band traveling wave tubes (TWTs) is proposed in this article. In contrast to the conventional slot-line SWSs with dielectric substrates, the proposed SWS consists only of a thin metal sheet inscribed with [...] Read more.
A staggered vane-shaped slot-line slow-wave structure (SV-SL SWS) for application in W-band traveling wave tubes (TWTs) is proposed in this article. In contrast to the conventional slot-line SWSs with dielectric substrates, the proposed SWS consists only of a thin metal sheet inscribed with periodic grooves and two half-metal enclosures, which means it can be easily manufactured and assembled and has the potential for mass production. This SWS not only solves the problem of the dielectric loading effect but also improves the heat dissipation capability of such structures. Meanwhile, the SWS design presented here covers a −15 dB S11 frequency range from 87.5 to 95 GHz. The 3-D simulation for a TWT based on the suggested SWS is also investigated. Under dual-electron injection conditions with a total voltage of 17.2 kV and a total current of 0.3 A, the maximum output power at 90 GHz is 200 W, with a 3 dB bandwidth up to 4 GHz. With a good potential for fabrication using microfabrication techniques, this structure can be a good candidate for millimeter-wave TWT applications. Full article
(This article belongs to the Special Issue Millimeter Wave and Terahertz Source, Sensing and Imaging)
Show Figures

Figure 1

22 pages, 10955 KB  
Article
Power Generation Enhancement through Latching Control for a Sliding Magnet-Based Wave Energy Converter
by Yongseok Lee, HeonYong Kang and MooHyun Kim
J. Mar. Sci. Eng. 2024, 12(4), 656; https://doi.org/10.3390/jmse12040656 - 16 Apr 2024
Cited by 2 | Viewed by 2091
Abstract
A Surface-Riding Wave Energy Converter (SR-WEC) featuring a sliding magnet inside a pitching cylindrical hull is investigated as an easily deployable small power device to support small-scale marine operations. This study extends the earlier development of the system by authors to enhance power [...] Read more.
A Surface-Riding Wave Energy Converter (SR-WEC) featuring a sliding magnet inside a pitching cylindrical hull is investigated as an easily deployable small power device to support small-scale marine operations. This study extends the earlier development of the system by authors to enhance power performance through the application of end spring and latching control. The inclusion of springs at the tube’s end enhances the magnet release and travel speeds as well as the average power output compared to systems without them. Further improvement of power output can also be achieved by employing optimal latching control. We introduced constant-angle and variable-angle unlatching strategies to determine optimal parameters in combination with passive and reactive power take-off (PTO) controls to assess their effectiveness. The optimized latching control and end spring can increase 60–80% more power output compared with the case without them under certain PTO damping. Additionally, we discussed the effects of limiting peak powers and associated energy leaks with latching. Full article
(This article belongs to the Topic Control and Optimisation for Offshore Renewable Energy)
Show Figures

Figure 1

Back to TopTop