Investigation of a 220 GHz Traveling-Wave Tube Based upon a Flat-Roofed Sine Waveguide with a Coupling Structure
Abstract
:1. Introduction
2. Flat-Roofed SWG TWT
2.1. Geometry and Dispersion Characteristics of a Flat-Roofed SWG SWS
2.2. Transmission Characteristics of One-Stage Sheet Electron Beam Flat-Roofed SWG TWT
2.3. Beam–Wave Interaction of Flat-Roofed SWG TWT
3. Design and Cold Test of Broad Bandwidth Coupling Structure
3.1. Analysis and Design of Broad Bandwidth Coupling Structure
3.2. Cold Test of Broad Bandwidth Input/Output Coupling Structure
4. Simulation of the Beam–Wave Interaction of the Two-Stage Dual-Beam Flat-Roofed SWG TWT
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, H.-J.; Lee, N. Terahertz Communications: Challenges in the Next Decade. IEEE Trans. Terahertz Sci. Technol. 2022, 12, 105–117. [Google Scholar]
- Siegel, P.H. Terahertz Technology in Biology and Medicine. IEEE Trans. Microw. Theory Tech. 2004, 52, 2438–2447. [Google Scholar]
- Guerboukha, H.; Nallappan, K.; Skorobogatiy, M. Toward Real-Time Terahertz Imaging. Adv. Opt. Photonics 2018, 10, 2018. [Google Scholar]
- Leitenstorfer, A.; Moskalenko, A.S.; Kampfrath, T.; Kono, J.; Castro-Camus, E.; Peng, K.; Qureshi, N.; Turchinovich, D.; Tanaka, K.; Markelz, A.G.; et al. The 2023 Terahertz Science and Technology Roadmap. J. Phys. D Appl. Phys. 2023, 56, 223001. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, G.; Ge, H.; Wang, F.; Li, L.; Chen, X.; Lu, M.; Zhang, Y. Machine Learning and Application in Terahertz Technology: A Review on Achievements and Future Challenges. IEEE Access 2022, 10, 53761–53776. [Google Scholar] [CrossRef]
- Shu, G.; Pan, H.; Xie, X.; Ma, S.; Tang, J.; Liu, S.; Li, M.; Ruan, C.; He, W. Study of Magnetic Focusing Structures for 220 GHz Sheet Beam Traveling Wave Tubes. IEEE Trans. Terahertz Sci. Technol. 2025, 15, 120–127. [Google Scholar] [CrossRef]
- Duan, J.; Lu, Z.; Gao, P.; Wang, Z.; Guo, J.; Dong, Y.; Zheng, Y.; Wang, Z.; Wang, S.; Gong, H.; et al. Quadruple Folded Groove-Guide Slow Wave Structure with Power Synthesis Circuit for Terahertz TWT. IEEE Electron Device Lett. 2025, 46, 302–305. [Google Scholar]
- Lyu, Z.; Dong, J.; Jiang, S.; Jin, D.; Sun, S.; Tang, T.; Wang, Z.; Gong, H.; Gong, Y.; Zhang, C.; et al. Performing Intelligent Design of Broadband Pillbox Window for a Terahertz Traveling-Wave Tube by Using Physics-Informed Neural Network and Genetic Algorithm. IEEE Trans. Electron Devices 2024, 71, 4998–5004. [Google Scholar]
- Jiang, S.; Tang, X.; Huang, S.; Lyu, Z.; Wang, Z.; Tang, T.; Gong, H.; Gong, Y.; Duan, Z. Metamaterial-Inspired 0.22 THz Traveling-Wave Tubes with Double Sheet Beams. IEEE Trans. Electron Devices 2023, 70, 1306–1311. [Google Scholar]
- Zhang, X.; Cai, J.; Zhang, X.; Du, Y.; Gao, C.; Mu, H.; Feng, J. Four-Port Folded Waveguide Slow Wave Structure for W-Band 1-kW Pulsed Traveling Wave Tube. IEEE Electron Device Lett. 2025, 46, 100–102. [Google Scholar]
- Jiang, S.; Yang, G.; Wang, Z.; Wang, X.; Zhang, X.; Lyu, Z.; Tang, T.; Gong, H.; Gong, Y.; Duan, Z. Experimental Investigation of a Shape-Optimized Staggered Double-Vane Slow-Wave Structure for Terahertz Traveling-Wave Tubes. IEEE Trans. Electron Devices 2022, 69, 4632–4637. [Google Scholar]
- Lee, J.; Choi, H.E.; Choi, W.; Choi, E. Advanced Bragg Resonator Integration for Enhanced Bandwidth and Stability in G-Band TWT with Staggered Double Vane Structure. IEEE Trans. Electron Devices 2025, 72, 459–466. [Google Scholar] [CrossRef]
- Fang, S.; Xu, J.; Yin, H.; Lei, X.; Jiang, X.; Yin, P.; Wu, G.; Yang, R.; Li, Q.; Guo, G.; et al. Experimental Verification of the Low Transmission Loss of a Flat-Roofed Sine Waveguide Slow-Wave Structure. IEEE Electron Device Lett. 2019, 40, 808–811. [Google Scholar] [CrossRef]
- Yan, S.; Su, W.; Wang, Y.; Xu, A. Design and Theoretical Analysis of Multibeam Folded Waveguide Traveling-Wave Tube for Subterahertz Radiation. IEEE Trans. Plasma Sci. 2015, 43, 414–421. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, J.; Cai, J.; Du, Y.; Dong, R.; Wu, X. Power Enhancement in W-Band Pulsed Folded Waveguide TWT. IEEE Trans. Electron Devices 2021, 68, 2504–2508. [Google Scholar]
- Gong, Y.; Yin, H.; Yue, L.; Lu, Z.; Wei, Y.; Feng, J.; Duan, Z.; Xu, X. A 140-GHz Two-Beam Overmoded Folded-Waveguide Traveling-Wave Tube. IEEE Trans. Plasma Sci. 2011, 39, 847–851. [Google Scholar]
- Zhou, K.; Feng, J. Cold Characteristics of Overmoded Ridge- and Groove-Loaded Folded Waveguides for High-Power Traveling Wave Tubes. IEEE Trans. Plasma Sci. 2021, 49, 4009–4016. [Google Scholar]
- Zhang, J.; Xu, J.; Cai, J.; Yue, L.; Yin, H.; Xu, Y.; Yin, P.; Luo, J.; Zhao, G.; Wang, W.; et al. A Novel Non-Quasi-2D Slow-Wave Structure for THz Sheet Beam TWTs. IEEE Electron Device Lett. 2024, 45, 700–703. [Google Scholar] [CrossRef]
- Xu, X.; Wei, Y.; Shen, F.; Duan, Z.; Gong, Y.; Yin, H.; Wang, W. Sine Waveguide for 0.22-THz Traveling-Wave Tube. IEEE Electron Device Lett. 2011, 32, 1152–1154. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, G.; Jiang, Y.; Lei, W.; Hu, P.; Tang, X.; Chen, H.; Wei, Y. Demonstration of a Double Flat-Roofed Sine Waveguide Slow Wave Structure with Low Loss for 220-GHz Traveling-Wave Tube. IEEE Micro. Wireless Technol. Lett. 2023, 33, 291–294. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, Y.; Lei, W.; Hu, P.; Guo, J.; Song, R.; Tang, X.; Ma, G.; Chen, H.; Wei, Y. A Piecewise Sine Waveguide for Terahertz Traveling Wave Tube. Sci. Rep. 2022, 12, 10449. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value (μm) |
---|---|
a | 770 |
b | 500 |
p | 460 |
h | 215 |
hb | 140 |
hc | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, S.; Xie, R.; Luo, J.; Wang, Z.; Wang, T.; Song, F. Investigation of a 220 GHz Traveling-Wave Tube Based upon a Flat-Roofed Sine Waveguide with a Coupling Structure. Electronics 2025, 14, 1756. https://doi.org/10.3390/electronics14091756
Fang S, Xie R, Luo J, Wang Z, Wang T, Song F. Investigation of a 220 GHz Traveling-Wave Tube Based upon a Flat-Roofed Sine Waveguide with a Coupling Structure. Electronics. 2025; 14(9):1756. https://doi.org/10.3390/electronics14091756
Chicago/Turabian StyleFang, Shuanzhu, Ruixiang Xie, Jun Luo, Zhizhe Wang, Tieyang Wang, and Fangfang Song. 2025. "Investigation of a 220 GHz Traveling-Wave Tube Based upon a Flat-Roofed Sine Waveguide with a Coupling Structure" Electronics 14, no. 9: 1756. https://doi.org/10.3390/electronics14091756
APA StyleFang, S., Xie, R., Luo, J., Wang, Z., Wang, T., & Song, F. (2025). Investigation of a 220 GHz Traveling-Wave Tube Based upon a Flat-Roofed Sine Waveguide with a Coupling Structure. Electronics, 14(9), 1756. https://doi.org/10.3390/electronics14091756