A Staggered Vane-Shaped Slot-Line Slow-Wave Structure for W-Band Dual-Sheet Electron-Beam-Traveling Wave Tubes
Abstract
:1. Introduction
2. SWS Design and Discussion
2.1. Design and Electromagnetic Parameters
2.2. S-Parameters
3. Beam-Wave Interaction Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qiu, J.X.; Levush, B.; Pasour, J.; Katz, A.; Armstrong, C.M.; Whaley, D.R.; Tucek, J.; Kreischer, K.; Gallagher, D. Vacuum tube amplifiers. IEEE Microw. 2009, 10, 38–51. [Google Scholar] [CrossRef]
- Field, M.; Kimura, T.; Atkinson, J.; Gamzina, D.; Luhmann, N.C.; Stockwell, B.; Grant, T.J.; Griffith, Z.; Borwick, R.; Hillman, C.; et al. Development of a 100-W 200-GHz High Bandwidth mm-Wave Amplifier. IEEE Trans. Electron Devices 2018, 65, 2122–2128. [Google Scholar] [CrossRef]
- Ryskin, N.M.; Rozhnev, A.G.; Starodubov, A.V.; Serdobintsev, A.A.; Pavlov, A.M.; Benedik, A.I.; Sinitsyn, N.I. Planar Microstrip Slow-Wave Structure for Low-Voltage V-Band Traveling-Wave Tube with a Sheet Electron Beam. IEEE Electron Device Lett. 2018, 39, 757–760. [Google Scholar] [CrossRef]
- Torgashov, R.A.; Ryskin, N.M.; Rozhnev, A.G.; Starodubov, A.V.; Serdobintsev, A.A.; Pavlov, A.M.; Molchanov, S.Y. Theoretical and Experimental Study of a Compact Planar Slow-Wave Structure on a Dielectric Substrate for the band Traveling-Wave Tube. Tech. Phys. 2020, 65, 660–665. [Google Scholar] [CrossRef]
- Ulisse, G.; Krozer, V.; Ryskin, N.; Starodubov, A.; Serdobintsev, A.; Pavlov, A. Fabrication and measurements of a planar slow wave structure operating in V-band. In Proceedings of the International Vacuum Electronics Conference (IVEC), Busan, Republic of Korea, 28 April–1 May 2019. [Google Scholar]
- Yin, P.C.; Xu, J.; Yang, R.C.; Yue, L.N.; Luo, J.J.; Zhang, J.; Wei, Y.Y. An Approach to Focus the Sheet Electron Beam in the Planar Microstrip Line Slow Wave Structure. IEEE Trans. Electron Devices 2022, 69, 3373–3379. [Google Scholar] [CrossRef]
- Ryskin, N.M.; Starodubov, A.V.; Torgashov, R.A.; Rozhnev, A.G.; Pavlov, A.M.; Galushka, V.V.; Serdobintsev, A.A.; Kozhevnikov, I.O.; Ulisse, G.; Krozer, V. Development of a millimeter-band traveling-wave tube with a meander-line microstrip slow wave structure. In Proceedings of the 4th International Conference on Terahertz and Microwave Radiation: Generation, Detection, and Applications (Proc. SPIE), Tomsk, Russia, 24–26 August 2020. [Google Scholar]
- Starodubov, A.V.; Serdobintsev, A.A.; Pavlov, A.M.; Galushka, V.V.; Sinev, I.V.; Rozhnev, A.G.; Torgashov, R.A.; Torgashov, G.V.; Ryskin, N.M. Experimental and numerical study of electromagnetic parameters of planar slow-wave structures for millimeter-wave vacuum electronic devices. In Proceedings of the 6th Annual International Symposium on Optics and Biophotonics/22nd Annual Saratov Fall Meeting (SFM)—Laser Physics, Photonic Technologies and Molecular Modeling, Saratov, Russia, 24–29 September 2018. [Google Scholar]
- Socuellamos, J.M.; Dionisio, R.; Letizia, R.; Paoloni, C. Experimental Validation of Phase Velocity and Interaction Impedance of Meander-Line Slow-Wave Structures for Space Traveling-Wave Tubes. IEEE Trans. Microw. Theory Tech. 2021, 69, 2148–2154. [Google Scholar] [CrossRef]
- Li, Q.; Yin, P.; Yang, R.; Wei, Y. A Broadband Suspended Coplanar Waveguide Slow-wave Structure for Planar TWTs. In Proceedings of the 2021 22nd International Vacuum Electronics Conference (IVEC), Rotterdam, The Netherlands, 27–30 April 2021. [Google Scholar]
- Torgashov, G.V.; Torgashov, R.A.; Titov, V.N.; Rozhnev, A.G.; Ryskin, N.M. Meander-Line Slow-Wave Structure for High-Power Millimeter-Band Traveling-Wave Tubes with Multiple Sheet Electron Beam. IEEE Electron Device Lett. 2019, 40, 1980–1983. [Google Scholar] [CrossRef]
- Yang, R.C. KResearch on High Frequency Systems of Traveling Wave Devices. Ph.D. Thesis, University of Electronic Science and Technology of China, Chengdu, China, 2022. [Google Scholar]
- Zhao, C.; Tian, S.; Liu, W.; Liao, X.; Fang, X.; Wang, S. Design and RF Characterization of the Co-Planar Slow Wave Structure for Millimeter-Wave BWO Applications. IEEE Trans. Electron Devices 2023, 71, 833–839. [Google Scholar] [CrossRef]
- Wang, S.; Aditya, S.; Xia, X.; Ali, Z.; Miao, J. On-Wafer Microstrip Meander-Line Slow-Wave Structure at Ka-Band. IEEE Trans. Electron Devices 2018, 65, 2142–2148. [Google Scholar] [CrossRef]
- Ryskin, N.M.; Torgashov, G.V.; Torgashov, R.A.; Ploskih, A.E.; Rozhnev, A.G.; Titov, V.N.; Starodubov, A.V.; Navrotskiy, I.A.; Emelyanov, V.V. Development of Miniature Millimeter-Band Traveling-Wave Tubes with Sheet and Multiple Electron Beams. In Proceedings of the 2020 7th All-Russian Microwave Conference (RMC), Moscow, Russia, 25–27 November 2020. [Google Scholar]
- Ruan, C.J.; Zhang, M.W.; Dai, J.; Zhang, C.Q.; Wang, S.Z.; Yang, X.D.; Feng, J.J. W-Band Multiple Beam Staggered Double-Vane Traveling Wave Tube with Broad Band and High Output Power. IEEE Trans. Plasma Sci. 2015, 43, 2132–2139. [Google Scholar] [CrossRef]
- Introduction of CST Microwave Studio; Dassault Systemes: Paris, France. Available online: https://www.cst.com/products/cstms (accessed on 1 December 2016).
- Wang, Y.X.; Wang, S.M.; Dong, Y.; Guo, J.Y.; Xu, D.; Zheng, Y.; Wang, Z.L.; Lu, Z.G.; Gong, H.R.; Duan, Z.Y.; et al. Investigation of a Novel Planar Meander Slot-Line Slow-Wave Structure. IEEE Electron Device Lett. 2024, 45, 476–479. [Google Scholar] [CrossRef]
- Yelizarov, A.A.; Kukharenko, A.S.; Skuridin, A.A. Investigations of a Wideband Metamaterial-based Microstrip Meander Line with Slotted Screen. In Proceedings of the 2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), Rome, Italy, 16–19 September 2019. [Google Scholar]
- Sengele, S.; Jiang, H.R.; Booske, J.H.; Kory, C.L.; Vander, W.D.; Daniel, W.; Ives, R.L. Microfabrication and Characterization of a Selectively Metallized W-Band Meander-Line TWT Circuit. IEEE Trans. Electron Devices 2009, 56, 730–737. [Google Scholar] [CrossRef]
- Introduction of CST Particle Studio; Dassault Systemes: Paris, France. Available online: https://www.cst.com/products/cstps (accessed on 1 December 2016).
- Galdetskiy, A.; Rakova, E. New slow wave structure for W-band TWT. In Proceedings of the 2017 Eighteenth International Vacuum Electronics Conference (IVEC), London, UK, 24–26 April 2017. [Google Scholar]
- Socuéllamos, J.M.; Letizia, R.; Dionisio, R.; Paoloni, C. Pillared Meander Line Slow Wave Structure for W-band Traveling Wave Tubes. In Proceedings of the 2021 22nd International Vacuum Electronics Conference (IVEC), Rotterdam, The Netherlands, 27–30 April 2021. [Google Scholar]
- Lu, J.; Yue, L.; Liu, C.; Wang, W.; Zhao, G.; Wei, Y. Design of a W-Band U-shaped Meander-line for Traveling-Wave Tube. In Proceedings of the 2021 22nd International Vacuum Electronics Conference (IVEC), Rotterdam, The Netherlands, 27–30 April 2021. [Google Scholar]
- Yue, L.; Shan, W.; Liu, C.; Lu, J.; Wang, W.; Xu, J.; Chen, D.; Zhao, G.; Yin, H.; Guo, G.; et al. A High Interaction Impedance Microstrip Meander-Line with Conformal Dielectric Substrate Layer for a W-Band Traveling-Wave Tube. IEEE Trans. Electron Devices 2022, 69, 5826–5831. [Google Scholar] [CrossRef]
- Torgashov, R.A.; Nozhkin, D.A.; Starodubov, A.V.; Ryskin, N.M. Development and Investigation of a Slow-Wave Structure for a Miniature Multiple-Beam W-Band Traveling Wave Tube. Commun. Technol. Electron. 2023, 68, 1209–1213. [Google Scholar] [CrossRef]
Parameters | Dimension (mm) | Parameters | Dimension (mm) |
---|---|---|---|
p | 1.2 | ws1 | 0.55 |
wa | 1.5 | ws2 | 0.1 |
ta | 0.375 | d | 0.05 |
ds | 0.65 | ts | 0.05 |
Parameters | Dimension (mm) | Parameters | Dimension (mm) |
---|---|---|---|
s1 | 0.5 | w3 | 0.6 |
s2 | 0.4 | w4 | 0.9 |
s3 | 0.8 | g1 | 0.95 |
w1 | 0.24 | g2 | 1 |
w2 | 0.39 | g3 | 1 |
Type | Operating Parameters | Simulation Output Power, Efficiency and BW |
---|---|---|
Metalized ML TWT [20] | 9 kV, 0.028 A | 10 W, 4%, 3 GHz |
ML SWS with the CVD diamond substrate [22] | 15.6 kV, 0.043 A | 40 W, 5.96%, 5 GHz |
PML SWS (cylindrical beam) [23] | 6.5 kV, 0.04 A | 36 W, 1.38%, 5 GHz |
U-shaped ML SWS [24] | 7.1 kV, 0.1 A | 20.77 W, 2.9%, 7 GHz |
ML SWS with a conformal substrate [25] | 6.55 kV, 0.1 A | 31.4 W,4.8%, 6 GHz |
Miniature ML SWS [26] | 14 kV, 0.2 A | 121 W, 4.32%, 3.5 GHz |
SV-SL SWS | 17.2 kV, 0.3 A | 200 W, 3.63%, 4 GHz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Guo, J.; Dong, Y.; Xu, D.; Zheng, Y.; Lu, Z.; Wang, Z.; Wang, S. A Staggered Vane-Shaped Slot-Line Slow-Wave Structure for W-Band Dual-Sheet Electron-Beam-Traveling Wave Tubes. Sensors 2024, 24, 3709. https://doi.org/10.3390/s24123709
Wang Y, Guo J, Dong Y, Xu D, Zheng Y, Lu Z, Wang Z, Wang S. A Staggered Vane-Shaped Slot-Line Slow-Wave Structure for W-Band Dual-Sheet Electron-Beam-Traveling Wave Tubes. Sensors. 2024; 24(12):3709. https://doi.org/10.3390/s24123709
Chicago/Turabian StyleWang, Yuxin, Jingyu Guo, Yang Dong, Duo Xu, Yuan Zheng, Zhigang Lu, Zhanliang Wang, and Shaomeng Wang. 2024. "A Staggered Vane-Shaped Slot-Line Slow-Wave Structure for W-Band Dual-Sheet Electron-Beam-Traveling Wave Tubes" Sensors 24, no. 12: 3709. https://doi.org/10.3390/s24123709
APA StyleWang, Y., Guo, J., Dong, Y., Xu, D., Zheng, Y., Lu, Z., Wang, Z., & Wang, S. (2024). A Staggered Vane-Shaped Slot-Line Slow-Wave Structure for W-Band Dual-Sheet Electron-Beam-Traveling Wave Tubes. Sensors, 24(12), 3709. https://doi.org/10.3390/s24123709