Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,238)

Search Parameters:
Keywords = travel route

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1152 KiB  
Article
Coordinated Truck Loading and Routing Problem: A Forestry Logistics Case Study
by Cristian Oliva, Manuel Cepeda and Sebastián Muñoz-Herrera
Mathematics 2025, 13(15), 2537; https://doi.org/10.3390/math13152537 - 7 Aug 2025
Abstract
This study addresses a real-world logistics problem in forestry operations: the distribution of plants from cultivation centers to planting sites under strict delivery time windows and limited depot resources. We introduce the Coordinated Truck Loading and Routing Problem (CTLRP), an extension of the [...] Read more.
This study addresses a real-world logistics problem in forestry operations: the distribution of plants from cultivation centers to planting sites under strict delivery time windows and limited depot resources. We introduce the Coordinated Truck Loading and Routing Problem (CTLRP), an extension of the classical Vehicle Routing Problem with Time Windows (VRPTW) that integrates routing decisions with truck loading schedules at a single depot with constrained capacity. To solve this NP-hard problem, we develop a metaheuristic algorithm based on Ant Colony Optimization (ACO), enhanced with a global memory system and a novel stochastic return rule that allows trucks to return to the depot when additional deliveries are suboptimal. Parameter calibration experiments are conducted to determine optimal values for the return probability and ant population size. The algorithm is tested on a real forestry dispatch scenario over six working days. The results show that an Ant Colony System (ACS–CTLRP) algorithm reduces total distance traveled by 23%, travel time by 22%, and the number of trucks used by 13 units, while increasing fleet utilization from 54% to 83%. These findings demonstrate that the proposed method significantly outperforms current company planning and offers a transferable framework for depot-constrained routing problems in time-sensitive distribution environments. Full article
Show Figures

Figure 1

30 pages, 2584 KiB  
Article
Travel Frequent-Route Identification Based on the Snake Algorithm Using License Plate Recognition Data
by Feiyang Liu, Jie Zeng, Jinjun Tang and TianJian Yu
Mathematics 2025, 13(15), 2536; https://doi.org/10.3390/math13152536 - 7 Aug 2025
Abstract
Path flow always plays a critical role in extracting vehicle travel patterns and reflecting network-scale traffic features. However, the comprehensive topological structure of urban road networks induces massive route choices, so frequent travel routes have been gradually regarded as an ideal countermeasure to [...] Read more.
Path flow always plays a critical role in extracting vehicle travel patterns and reflecting network-scale traffic features. However, the comprehensive topological structure of urban road networks induces massive route choices, so frequent travel routes have been gradually regarded as an ideal countermeasure to represent traffic states. Widely used license plate recognition (LPR) devices can collect the abundant traffic features of all vehicles, but their sparse spatial distributions restrict the conventional models in frequent travel identification. Therefore, this study develops a network reconstruction method to construct a topological network from the LPR dataset, avoiding the adverse effects caused by the sparse distribution of detectors on the road network and further uses the Snake algorithm to fully utilize the road network structure and traffic attributes for clustering to obtain various travel patterns, with frequent routes under different travel patterns finally identified based on Steiner trees and frequent item recognition. To address the sparse spatial distribution of LPR devices, we utilize the word2vec model to extract spatial correlations among intersections. A threshold-based method is then applied to transform the correlation matrix into a reconstructed network, connecting intersections with strong vehicle transition relationships. This community structure can be interpreted as representing different travel patterns. Consequently, the Snake algorithm is employed to cluster intersections into distinct categories, reflecting these varied travel patterns. By leveraging the word2vec model, the detector installation rate requirement for Snake is significantly reduced, ensuring that the clustering results accurately represent the intrinsic relevance of traffic roads. Subsequently, frequent routes are identified from both macro- and micro-perspectives using the Steiner tree and Frequent Pattern Growth (FP Growth) algorithm, respectively. Validated on the LPR dataset in Changsha, China, the experiment results demonstrate that the proposed method can effectively identify travel patterns and extract frequent routes in the sparsely installed LPR devices. Full article
Show Figures

Figure 1

37 pages, 2030 KiB  
Article
Open Competency Optimization with Combinatorial Operators for the Dynamic Green Traveling Salesman Problem
by Rim Benjelloun, Mouna Tarik and Khalid Jebari
Information 2025, 16(8), 675; https://doi.org/10.3390/info16080675 - 7 Aug 2025
Abstract
This paper proposes the Open Competency Optimization (OCO) approach, based on adaptive combinatorial operators, to solve the Dynamic Green Traveling Salesman Problem (DG-TSP), which extends the classical TSP by incorporating dynamic travel conditions, realistic road gradients, and energy consumption considerations. The objective is [...] Read more.
This paper proposes the Open Competency Optimization (OCO) approach, based on adaptive combinatorial operators, to solve the Dynamic Green Traveling Salesman Problem (DG-TSP), which extends the classical TSP by incorporating dynamic travel conditions, realistic road gradients, and energy consumption considerations. The objective is to minimize fuel consumption and emissions by reducing the total tour length under varying conditions. Unlike conventional metaheuristics based on real-coded representations, our method directly operates on combinatorial structures, ensuring efficient adaptation without costly transformations. Embedded within a dynamic metaheuristic framework, our operators continuously refine the routing decisions in response to environmental and demand changes. Experimental assessments conducted in practical contexts reveal that our algorithm attains a tour length of 21,059, which is indicative of a 36.16% reduction in fuel consumption relative to Ant Colony Optimization (ACO) (32,994), a 4.06% decrease when compared to Grey Wolf Optimizer (GWO) (21,949), a 2.95% reduction in relation to Particle Swarm Optimization (PSO) (21,701), and a 0.90% decline when juxtaposed with Genetic Algorithm (GA) (21,251). In terms of overall offline performance, our approach achieves the best score (21,290.9), significantly outperforming ACO (36,957.6), GWO (122,881.04), GA (59,296.5), and PSO (36,744.29), confirming both solution quality and stability over time. These findings underscore the resilience and scalability of the proposed approach for sustainable logistics, presenting a pragmatic resolution to enhance transportation operations within dynamic and ecologically sensitive environments. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

24 pages, 4441 KiB  
Article
Simulation of Trip Chains in a Metropolitan Area to Evaluate the Energy Needs of Electric Vehicles and Charging Demand
by Pietro Antonio Centrone, Giuseppe Brancaccio and Francesco Deflorio
World Electr. Veh. J. 2025, 16(8), 435; https://doi.org/10.3390/wevj16080435 - 4 Aug 2025
Viewed by 228
Abstract
The typical ranges available for electric vehicles (EVs) may be considered by users to be inadequate when compared to long, real-life trips, and charging operations may need to be planned along journeys. To evaluate the compatibility between vehicle features and charging options for [...] Read more.
The typical ranges available for electric vehicles (EVs) may be considered by users to be inadequate when compared to long, real-life trips, and charging operations may need to be planned along journeys. To evaluate the compatibility between vehicle features and charging options for realistic journeys performed by car, a simulation approach is proposed here, using travel data collected from real vehicles to obtain trip chains for multiple consecutive days. Car travel activities, including stops with the option of charging, were simulated by applying an agent-based approach. Charging operations can be integrated into trip chains for user activities, assuming that they remain unchanged in the event that vehicles switch to electric. The energy consumption of the analyzed trips, disaggregated by vehicle type, was estimated using the average travel speed, which is useful for capturing the main route features (ranging from urban to motorways). Data were recorded for approximately 25,000 vehicles in the Turin Metropolitan Area for six consecutive days. Market segmentation of the vehicles was introduced to take into consideration different energy consumption rates and charging times, given that the electric power, battery size, and consumption rate can be related to the vehicle category. Charging activities carried out using public infrastructure during idle time between consecutive trips, as well as those carried out at home or work, were identified in order to model different needs. Full article
Show Figures

Figure 1

17 pages, 2222 KiB  
Article
A Comprehensive User Acceptance Evaluation Framework of Intelligent Driving Based on Subjective and Objective Integration—From the Perspective of Value Engineering
by Wang Zhang, Fuquan Zhao, Zongwei Liu, Haokun Song and Guangyu Zhu
Systems 2025, 13(8), 653; https://doi.org/10.3390/systems13080653 - 2 Aug 2025
Viewed by 134
Abstract
Intelligent driving technology is expected to reshape urban transportation, but its promotion is hindered by user acceptance challenges and diverse technical routes. This study proposes a comprehensive user acceptance evaluation framework for intelligent driving from the perspective of value engineering (VE). The novelty [...] Read more.
Intelligent driving technology is expected to reshape urban transportation, but its promotion is hindered by user acceptance challenges and diverse technical routes. This study proposes a comprehensive user acceptance evaluation framework for intelligent driving from the perspective of value engineering (VE). The novelty of this framework lies in three aspects: (1) It unifies behavioral theory and utility theory under the value engineering framework, and it extracts key indicators such as safety, travel efficiency, trust, comfort, and cost, thus addressing the issue of the lack of integration between subjective and objective factors in previous studies. (2) It establishes a systematic mapping mechanism from technical solutions to evaluation indicators, filling the gap of insufficient targeting at different technical routes in the existing literature. (3) It quantifies acceptance differences via VE’s core formula of V = F/C, overcoming the ambiguity of non-technical evaluation in prior research. A case study comparing single-vehicle intelligence vs. collaborative intelligence and different sensor combinations (vision-only, map fusion, and lidar fusion) shows that collaborative intelligence and vision-based solutions offer higher comprehensive acceptance due to balanced functionality and cost. This framework guides enterprises in technical strategy planning and assists governments in formulating industrial policies by quantifying acceptance differences across technical routes. Full article
(This article belongs to the Special Issue Modeling, Planning and Management of Sustainable Transport Systems)
Show Figures

Figure 1

27 pages, 1832 KiB  
Review
Breaking the Traffic Code: How MaaS Is Shaping Sustainable Mobility Ecosystems
by Tanweer Alam
Future Transp. 2025, 5(3), 94; https://doi.org/10.3390/futuretransp5030094 - 1 Aug 2025
Viewed by 184
Abstract
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and [...] Read more.
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and improving the user experience. This review critically examines the role of MaaS in fostering sustainable mobility ecosystems. MaaS aims to enhance user-friendliness, service variety, and sustainability by adopting a customer-centric approach to transportation. The findings reveal that successful MaaS systems consistently align with multimodal transport infrastructure, equitable access policies, and strong public-private partnerships. MaaS enhances the management of routes and traffic, effectively mitigating delays and congestion while concurrently reducing energy consumption and fuel usage. In this study, the authors examine MaaS as a new mobility paradigm for a sustainable transportation system in smart cities, observing the challenges and opportunities associated with its implementation. To assess the environmental impact, a sustainability index is calculated based on the use of different modes of transportation. Significant findings indicate that MaaS systems are proliferating in both quantity and complexity, increasingly integrating capabilities such as real-time multimodal planning, dynamic pricing, and personalized user profiles. Full article
Show Figures

Figure 1

22 pages, 2136 KiB  
Article
Methodology and Innovation in the Design of Shared Transportation Systems for Academic Environments
by Roberto López-Chila, Mario Dávila-Moreno, Gustavo Muñoz-Franco and Marcelo Estrella-Guayasamin
Sustainability 2025, 17(15), 6946; https://doi.org/10.3390/su17156946 - 31 Jul 2025
Viewed by 302
Abstract
At the Politecnica Salesiana University (UPS) in Guayaquil, Ecuador, urban mobility challenges were addressed with the aim of improving students’ quality of life and promoting sustainability. This study evaluated the technical, economic, and social feasibility of implementing a shared transportation (carpooling) system using [...] Read more.
At the Politecnica Salesiana University (UPS) in Guayaquil, Ecuador, urban mobility challenges were addressed with the aim of improving students’ quality of life and promoting sustainability. This study evaluated the technical, economic, and social feasibility of implementing a shared transportation (carpooling) system using a quantitative-descriptive approach. Surveys were applied to a stratified sample of 256 students to analyze transportation habits. Route planning was performed using ArcGIS software, and costs were calculated with Microsoft Excel. Social impact assessment involved focus groups and analysis of variables such as changes in mobility patterns, system acceptance, and perceived safety, comfort, and accessibility. Key indicators included the percentage of students willing to participate in the pilot (82.7%), satisfaction with travel time savings (85.7% fully satisfied), and positive perceptions of safety and comfort. The results suggest that the proposed system is not only economically viable but also widely accepted by students, contributing to reduced stress, travel time, and single-occupancy vehicle use. This study demonstrates the feasibility of shared transport in urban universities and provides a replicable model to guide sustainable mobility policies that improve safety, comfort, and efficiency in student commuting. Full article
Show Figures

Figure 1

52 pages, 3733 KiB  
Article
A Hybrid Deep Reinforcement Learning and Metaheuristic Framework for Heritage Tourism Route Optimization in Warin Chamrap’s Old Town
by Rapeepan Pitakaso, Thanatkij Srichok, Surajet Khonjun, Natthapong Nanthasamroeng, Arunrat Sawettham, Paweena Khampukka, Sairoong Dinkoksung, Kanya Jungvimut, Ganokgarn Jirasirilerd, Chawapot Supasarn, Pornpimol Mongkhonngam and Yong Boonarree
Heritage 2025, 8(8), 301; https://doi.org/10.3390/heritage8080301 - 28 Jul 2025
Viewed by 712
Abstract
Designing optimal heritage tourism routes in secondary cities involves complex trade-offs between cultural richness, travel time, carbon emissions, spatial coherence, and group satisfaction. This study addresses the Personalized Group Trip Design Problem (PGTDP) under real-world constraints by proposing DRL–IMVO–GAN—a hybrid multi-objective optimization framework [...] Read more.
Designing optimal heritage tourism routes in secondary cities involves complex trade-offs between cultural richness, travel time, carbon emissions, spatial coherence, and group satisfaction. This study addresses the Personalized Group Trip Design Problem (PGTDP) under real-world constraints by proposing DRL–IMVO–GAN—a hybrid multi-objective optimization framework that integrates Deep Reinforcement Learning (DRL) for policy-guided initialization, an Improved Multiverse Optimizer (IMVO) for global search, and a Generative Adversarial Network (GAN) for local refinement and solution diversity. The model operates within a digital twin of Warin Chamrap’s old town, leveraging 92 POIs, congestion heatmaps, and behaviorally clustered tourist profiles. The proposed method was benchmarked against seven state-of-the-art techniques, including PSO + DRL, Genetic Algorithm with Multi-Neighborhood Search (Genetic + MNS), Dual-ACO, ALNS-ASP, and others. Results demonstrate that DRL–IMVO–GAN consistently dominates across key metrics. Under equal-objective weighting, it attained the highest heritage score (74.2), shortest travel time (21.3 min), and top satisfaction score (17.5 out of 18), along with the highest hypervolume (0.85) and Pareto Coverage Ratio (0.95). Beyond performance, the framework exhibits strong generalization in zero- and few-shot scenarios, adapting to unseen POIs, modified constraints, and new user profiles without retraining. These findings underscore the method’s robustness, behavioral coherence, and interpretability—positioning it as a scalable, intelligent decision-support tool for sustainable and user-centered cultural tourism planning in secondary cities. Full article
(This article belongs to the Special Issue AI and the Future of Cultural Heritage)
Show Figures

Figure 1

22 pages, 5960 KiB  
Article
Application of Integrated Geospatial Analysis and Machine Learning in Identifying Factors Affecting Ride-Sharing Before/After the COVID-19 Pandemic
by Afshin Allahyari and Farideddin Peiravian
ISPRS Int. J. Geo-Inf. 2025, 14(8), 291; https://doi.org/10.3390/ijgi14080291 - 28 Jul 2025
Viewed by 287
Abstract
Ride-pooling, as a sustainable mode of ride-hailing services, enables different riders to share a vehicle while traveling along similar routes. The COVID-19 pandemic led to the suspension of this service, but Transportation Network Companies (TNCs) such as Uber and Lyft resumed it after [...] Read more.
Ride-pooling, as a sustainable mode of ride-hailing services, enables different riders to share a vehicle while traveling along similar routes. The COVID-19 pandemic led to the suspension of this service, but Transportation Network Companies (TNCs) such as Uber and Lyft resumed it after a significant delay following the lockdown. This raises the question of what determinants shape ride-pooling in the post-pandemic era and how they spatially influence shared ride-hailing compared to the pre-pandemic period. To address this gap, this study employs geospatial analysis and machine learning to examine the factors affecting ride-pooling trips in pre- and post-pandemic periods. Using over 66 million trip records from 2019 and 43 million from 2023, we observe a significant decline in shared trip adoption, from 16% to 2.91%. The results of an extreme gradient boosting (XGBoost) model indicate a robust capture of non-linear relationships. The SHAP analysis reveals that the percentage of the non-white population is the dominant predictor in both years, although its influence weakened post-pandemic, with a breakpoint shift from 78% to 90%, suggesting reduced sharing in mid-range minority areas. Crime density and lower car ownership consistently correlate with higher sharing rates, while dense, transit-rich areas exhibit diminished reliance on shared trips. Our findings underscore the critical need to enhance transportation integration in underserved communities. Concurrently, they highlight the importance of encouraging shared ride adoption in well-served, high-demand areas where solo ride-hailing is prevalent. We believe these results can directly inform policies that foster more equitable, cost-effective, and sustainable shared mobility systems in the post-pandemic landscape. Full article
Show Figures

Figure 1

24 pages, 74760 KiB  
Article
The Application of Mobile Devices for Measuring Accelerations in Rail Vehicles: Methodology and Field Research Outcomes in Tramway Transport
by Michał Urbaniak, Jakub Myrcik, Martyna Juda and Jan Mandrysz
Sensors 2025, 25(15), 4635; https://doi.org/10.3390/s25154635 - 26 Jul 2025
Viewed by 423
Abstract
Unbalanced accelerations occurring during tram travel have a significant impact on passenger comfort and safety, as well as on the rate of wear and tear on infrastructure and rolling stock. Ideally, these dynamic forces should be monitored continuously in real-time; however, traditional systems [...] Read more.
Unbalanced accelerations occurring during tram travel have a significant impact on passenger comfort and safety, as well as on the rate of wear and tear on infrastructure and rolling stock. Ideally, these dynamic forces should be monitored continuously in real-time; however, traditional systems require high-precision accelerometers and proprietary software—investments often beyond the reach of municipally funded tram operators. To this end, as part of the research project “Accelerometer Measurements in Rail Passenger Transport Vehicles”, pilot measurement campaigns were conducted in Poland on tram lines in Gdańsk, Toruń, Bydgoszcz, and Olsztyn. Off-the-shelf smartphones equipped with MEMS accelerometers and GPS modules, running the Physics Toolbox Sensor Suite Pro app, were used. Although the research employs widely known methods, this paper addresses part of the gap in affordable real-time monitoring by demonstrating that, in the future, equipment equipped solely with consumer-grade MEMS accelerometers can deliver sufficiently accurate data in applications where high precision is not critical. This paper presents an analysis of a subset of results from the Gdańsk tram network. Lateral (x) and vertical (z) accelerations were recorded at three fixed points inside two tram models (Pesa 128NG Jazz Duo and Düwag N8C), while longitudinal accelerations were deliberately omitted at this stage due to their strong dependence on driver behavior. Raw data were exported as CSV files, processed and analyzed in R version 4.2.2, and then mapped spatially using ArcGIS cartograms. Vehicle speed was calculated both via the haversine formula—accounting for Earth’s curvature—and via a Cartesian approximation. Over the ~7 km route, both methods yielded virtually identical results, validating the simpler approach for short distances. Acceleration histograms approximated Gaussian distributions, with most values between 0.05 and 0.15 m/s2, and extreme values approaching 1 m/s2. The results demonstrate that low-cost mobile devices, after future calibration against certified accelerometers, can provide sufficiently rich data for ride-comfort assessment and show promise for cost-effective condition monitoring of both track and rolling stock. Future work will focus on optimizing the app’s data collection pipeline, refining standard-based analysis algorithms, and validating smartphone measurements against benchmark sensors. Full article
(This article belongs to the Collection Sensors and Actuators for Intelligent Vehicles)
Show Figures

Figure 1

22 pages, 4836 KiB  
Article
Time-Variant Instantaneous Unit Hydrograph Based on Machine Learning Pretraining and Rainfall Spatiotemporal Patterns
by Wenyuan Dong, Guoli Wang, Guohua Liang and Bin He
Water 2025, 17(15), 2216; https://doi.org/10.3390/w17152216 - 24 Jul 2025
Viewed by 298
Abstract
The hydrological response of a watershed is strongly influenced by the spatiotemporal dynamics of rainfall. Rainfall events of similar magnitude can produce markedly different flood processes due to variations in the spatiotemporal patterns of rainfall, posing significant challenges for flood forecasting under complex [...] Read more.
The hydrological response of a watershed is strongly influenced by the spatiotemporal dynamics of rainfall. Rainfall events of similar magnitude can produce markedly different flood processes due to variations in the spatiotemporal patterns of rainfall, posing significant challenges for flood forecasting under complex rainfall scenarios. Traditional methods typically rely on high-resolution or synthetic rainfall data to characterize the scale, direction and velocity of rainstorms, in order to analyze their impact on the flood process. These studies have shown that storms traveling along the main river channel tend to exert the greatest impact on flood processes. Therefore, tracking the movement of the rainfall center along the flow direction, especially when only rain gauge data are available, can reduce model complexity while maintaining forecast accuracy and improving model applicability. This study proposes a machine learning-based time-variable instantaneous unit hydrograph that integrates rainfall spatiotemporal dynamics using quantitative spatial indicators. To overcome limitations of traditional variable unit hydrograph methods, a pre-training and fine-tuning strategy is employed to link the unit hydrograph S-curve with rainfall spatial distribution. First, synthetic pre-training data were used to enable the machine learning model to learn the shape of the S-curve and its general pattern of variation with rainfall spatial distribution. Then, real flood data were employed to learn the actual runoff routing characteristics of the study area. The improved model allows the unit hydrograph to adapt dynamically to rainfall evolution during the flood event, effectively capturing hydrological responses under varying spatiotemporal patterns. The case study shows that the improved model exhibits superior performance across all runoff routing metrics under spatiotemporal rainfall variability. The improved model increased the simulation qualified rate for historical flood events, with significant rainfall center movement during the event from 63% to 90%. This study deepens the understanding of how rainfall dynamics influence watershed response and enhances hourly-scale flood forecasting, providing support for disaster early warning with strong theoretical and practical significance. Full article
Show Figures

Figure 1

19 pages, 2642 KiB  
Article
Calculation of Greenhouse Gas Emissions from Tourist Vehicles Using Mathematical Methods: A Case Study in Altai Tavan Bogd National Park
by Yerbakhyt Badyelgajy, Yerlan Doszhanov, Bauyrzhan Kapsalyamov, Gulzhaina Onerkhan, Aitugan Sabitov, Arman Zhumazhanov and Ospan Doszhanov
Sustainability 2025, 17(15), 6702; https://doi.org/10.3390/su17156702 - 23 Jul 2025
Viewed by 354
Abstract
The transportation sector significantly contributes to greenhouse gas (GHG) emissions and remains a key research focus on emission quantification and mitigation. Although numerous models exist for estimating vehicle-based emissions, most lack accuracy at regional scales, particularly in remote or underdeveloped areas, including backcountry [...] Read more.
The transportation sector significantly contributes to greenhouse gas (GHG) emissions and remains a key research focus on emission quantification and mitigation. Although numerous models exist for estimating vehicle-based emissions, most lack accuracy at regional scales, particularly in remote or underdeveloped areas, including backcountry national parks and mountainous regions lacking basic infrastructure. This study addresses that gap by developing and applying a terrain-adjusted, segment-based methodology to estimate GHG emissions from tourist vehicles in Altai Tavan Bogd National Park, one of Mongolia’s most remote protected areas. The proposed method uses Tier 1 IPCC emission factors but incorporates field-segmented route analysis, vehicle categorization, and terrain-based fuel adjustments to achieve a spatially disaggregated Tier 1 approach. Results show that carbon dioxide (CO2) emissions increased from 118.7 tons in 2018 to 2239 tons in 2024. Tourist vehicle entries increased from 712 in 2018 to 13,192 in 2024, with 99.1% of entries occurring between May and October. Over the same period, cumulative methane (CH4) and nitrous oxide (N2O) emissions were estimated at 300.9 kg and 45.75 kg, respectively. This modular approach is especially suitable for high-altitude, infrastructure-limited regions where real-time emissions monitoring is not feasible. By integrating localized travel patterns with global frameworks such as the IPCC 2006 Guidelines, this model enables more precise and context-sensitive GHG estimates from vehicles in national parks and similar environments. Full article
Show Figures

Figure 1

16 pages, 5175 KiB  
Data Descriptor
From Raw GPS to GTFS: A Real-World Open Dataset for Bus Travel Time Prediction
by Aigerim Mansurova, Aigerim Mussina, Sanzhar Aubakirov, Aliya Nugumanova and Didar Yedilkhan
Data 2025, 10(8), 119; https://doi.org/10.3390/data10080119 - 23 Jul 2025
Viewed by 465
Abstract
The data descriptor introduces an open, high-resolution dataset of real-world bus operations in Astana, Kazakhstan, captured from GPS trajectories between July and September 2024. The data covers three high-frequency routes and have been processed into a GTFS format, enabling direct use with existing [...] Read more.
The data descriptor introduces an open, high-resolution dataset of real-world bus operations in Astana, Kazakhstan, captured from GPS trajectories between July and September 2024. The data covers three high-frequency routes and have been processed into a GTFS format, enabling direct use with existing transit modeling tools. Unlike typical static GTFS feeds, this dataset provides empirically observed dwell times, run times, and travel times, offering a detailed snapshot of operational variability in urban bus systems. The dataset supports applications in machine learning–based travel time prediction, timetable optimization, and transit reliability analysis, especially in settings where live feeds are unavailable. By releasing this dataset publicly, we aim to promote transparent, data-driven transport research in emerging urban contexts. Full article
Show Figures

Figure 1

4 pages, 162 KiB  
Proceeding Paper
Understanding Commuters’ Willingness to Shift to Transfer-Type Buses Using a Latent Class Model
by Hwan-Seung Lee and Ho-Chul Park
Eng. Proc. 2025, 102(1), 1; https://doi.org/10.3390/engproc2025102001 - 22 Jul 2025
Viewed by 154
Abstract
The Korean government proposes introducing a transfer-type bus system to reduce urban congestion. Transfer-type buses turn around at the Seoul border, requiring passengers to transfer to other modes to reach downtown. These buses have shorter routes, allowing reduced headways and increased bus supply. [...] Read more.
The Korean government proposes introducing a transfer-type bus system to reduce urban congestion. Transfer-type buses turn around at the Seoul border, requiring passengers to transfer to other modes to reach downtown. These buses have shorter routes, allowing reduced headways and increased bus supply. While this approach reduces congestion in the downtown area, it may cause transfer resistance, making it essential to analyze willingness to shift (WTS). This study uses a latent class model to categorize potential interregional bus users into three types: transfer avoidance, cost-sensitive, and time-sensitive. Over 50% of users in each group express WTS, showing a positive response to the transfer-type bus introduction. The choice model results indicate that the travel time and cost of direct type buses affect WTS, suggesting that policies should consider these factors for effective implementation. Full article
27 pages, 16832 KiB  
Article
Effective Bus Travel Time Prediction System of Multiple Routes: Introducing PMLNet Based on MDARNN
by Jianmei Lei, Yulan Chen, Qingwen Han, Lingqiu Zeng and Guangyan He
Appl. Sci. 2025, 15(14), 8104; https://doi.org/10.3390/app15148104 - 21 Jul 2025
Viewed by 196
Abstract
Accurate bus travel time prediction is crucial for improving travel experience, especially in transfer journeys. This study introduces a novel multi-route bus travel time prediction system-based PMLNet, a partition and combination prediction framework, addressing the gap in accurate prediction models by incorporating macro [...] Read more.
Accurate bus travel time prediction is crucial for improving travel experience, especially in transfer journeys. This study introduces a novel multi-route bus travel time prediction system-based PMLNet, a partition and combination prediction framework, addressing the gap in accurate prediction models by incorporating macro and local impact factors. The system employs a pre-processing algorithm for constructing travel chains, partitions travel time into four components, utilizes LSTM along with the newly proposed MDARNN model for predicting each component, and applies four real-time traffic impact factors to calibrate the predictions of each component. Experimental validation on four bus routes demonstrates PMLNet’s superior performance, achieving mean absolute percentage errors (MAPE) as low as 2.91% and mean absolute errors (MAE) below 1.45 min, outperforming traditional models and various partitioned combination frameworks. These findings underscore PMLNet’s potential to significantly improve public transportation services by providing more accurate travel time predictions, ultimately enhancing the user experience in intelligent transportation systems. Full article
Show Figures

Figure 1

Back to TopTop