Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (184)

Search Parameters:
Keywords = trapezoidal test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7661 KiB  
Article
Bioinspired Kirigami Structure for Efficient Anchoring of Soft Robots via Optimization Analysis
by Muhammad Niaz Khan, Ye Huo, Zhufeng Shao, Ming Yao and Umair Javaid
Appl. Sci. 2025, 15(14), 7897; https://doi.org/10.3390/app15147897 - 15 Jul 2025
Viewed by 253
Abstract
Kirigami-inspired geometries offer a lightweight, bioinspired strategy for friction enhancement and anchoring in soft robotics. This study presents a bioinspired kirigami structure designed to enhance the anchoring performance of soft robotic systems through systematic geometric and actuation parameter optimization. Drawing inspiration from the [...] Read more.
Kirigami-inspired geometries offer a lightweight, bioinspired strategy for friction enhancement and anchoring in soft robotics. This study presents a bioinspired kirigami structure designed to enhance the anchoring performance of soft robotic systems through systematic geometric and actuation parameter optimization. Drawing inspiration from the anisotropic friction mechanisms observed in reptilian scales, we integrated linear, triangular, trapezoidal, and hybrid kirigami cuts onto flexible plastic sheets. A compact 12 V linear actuator enabled cyclic actuation via a custom firmware loop, generating controlled buckling and directional friction for effective locomotion. Through experimental trials, we quantified anchoring efficiency using crawling distance and stride metrics across multiple cut densities and actuation conditions. Among the tested configurations, the triangular kirigami with a 4 × 20 unit density on 100 µm PET exhibited the most effective performance, achieving a stride efficiency of approximately 63% and an average crawling speed of ~47 cm/min under optimized autonomous operation. A theoretical framework combining buckling mechanics and directional friction validated the observed trends. This study establishes a compact, tunable anchoring mechanism for soft robotics, offering strong potential for autonomous exploration in constrained environments. Full article
(This article belongs to the Special Issue Advances in Robotics and Autonomous Systems)
Show Figures

Figure 1

23 pages, 11962 KiB  
Article
Model Test on Excavation Face Stability of Shallow-Buried Rectangular Pipe Jacking in Sand Layer
by Yunlong Zhang, Peng Zhang, Yong Xu and Jiahao Mei
Appl. Sci. 2025, 15(14), 7847; https://doi.org/10.3390/app15147847 - 14 Jul 2025
Viewed by 194
Abstract
This study addresses the critical challenge of excavation face instability in rectangular pipe jacking through systematic physical model tests. Utilizing a half-section symmetry apparatus with non-contact photogrammetry and pressure monitoring, the study investigates failure mechanisms under varying overburden ratios and sand densities. Key [...] Read more.
This study addresses the critical challenge of excavation face instability in rectangular pipe jacking through systematic physical model tests. Utilizing a half-section symmetry apparatus with non-contact photogrammetry and pressure monitoring, the study investigates failure mechanisms under varying overburden ratios and sand densities. Key findings reveal that support pressure evolution follows a four-stage trajectory: rapid decline (elastic deformation), slow decline (soil arching development), slow rise (arch degradation), and stabilization (global shear failure). The minimum support pressure ratio Pmin decreases by 39–58% in loose sand but only 10–37% in dense sand due to enhanced arching effects. Distinctive failure mechanisms include the following: (1) failure angles exceeding 70°, substantially larger than theoretical predictions; (2) bimodal ground settlement characterized by without settlement followed by abrupt collapse, contrasting with gradual transitions in circular excavations; (3) trapezoidal settlement surfaces with equilibrium arch angles ranging 41°–48°. These new discoveries demonstrate that real-time support pressure monitoring is essential for risk mitigation, as ground deformation exhibits severe hysteresis preceding catastrophic rapid collapse. The experimental framework provides fundamental insights into optimizing excavation face support design in shallow-buried rectangular tunneling. Full article
Show Figures

Figure 1

21 pages, 4831 KiB  
Article
Aerodynamic Optimization and Thermal Deformation Effects on Mid-Altitude Sounding Rockets: A Computational and Structural Analysis
by Aslam Abdullah, Mohd Fadhli Zulkafli, Muhammad Akmal Abdul Halim, Ramanathan Ashwin Thanneermalai and Bambang Basuno
Dynamics 2025, 5(3), 28; https://doi.org/10.3390/dynamics5030028 - 9 Jul 2025
Viewed by 244
Abstract
Mid-altitude sounding rockets are essential for atmospheric research and suborbital experimentation, where aerodynamic optimization and structural integrity are crucial for achieving targeted apogees. This study uses OpenRocket v23.09 for preliminary flight performance prediction and SolidWorks 2024 to integrate aerodynamic and structural analyses through [...] Read more.
Mid-altitude sounding rockets are essential for atmospheric research and suborbital experimentation, where aerodynamic optimization and structural integrity are crucial for achieving targeted apogees. This study uses OpenRocket v23.09 for preliminary flight performance prediction and SolidWorks 2024 to integrate aerodynamic and structural analyses through Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA). SolidWorks Flow Simulation and SolidWorks Simulation are used to assess how nose cone and fin geometries, as well as thermal deformation, influence flight performance. Among nine tested configurations, the ogive nose cone with trapezoidal fins achieved the highest simulated apogee of 2639 m, with drag coefficients of 0.480 (OpenRocket) and 0.401 (SolidWorks Flow Simulation). Thermal–structural analysis revealed a maximum nose tip displacement of 0.7249 mm for the rocket with the ogive nose cone, leading to an increasing drag coefficient of 0.404. However, thermal deformation of the ellipsoid nose cone led to a reduction in the drag coefficient from 0.419 to 0.399, even though it exhibited a slightly higher maximum displacement of 0.7443 mm. Mesh independence was confirmed with outlet velocity deviations below 1% across refinements. These results highlight the importance of integrated CFD–FEA approaches, geometric optimization, and material resilience for enhancing the aerodynamic performance of subsonic sounding rockets. Full article
Show Figures

Figure 1

17 pages, 4138 KiB  
Article
From Control Algorithm to Human Trial: Biomechanical Proof of a Speed-Adaptive Ankle–Foot Orthosis for Foot Drop in Level-Ground Walking
by Pouyan Mehryar, Sina Firouzy, Uriel Martinez-Hernandez and Abbas Dehghani-Sanij
Biomechanics 2025, 5(3), 51; https://doi.org/10.3390/biomechanics5030051 - 4 Jul 2025
Viewed by 286
Abstract
Background/Objectives: This study focuses on the motion planning and control of an active ankle–foot orthosis (AFO) that leverages biomechanical insights to mitigate footdrop, a deficit that prevents safe toe clearance during walking. Methods: To adapt the motion of the device to the user’s [...] Read more.
Background/Objectives: This study focuses on the motion planning and control of an active ankle–foot orthosis (AFO) that leverages biomechanical insights to mitigate footdrop, a deficit that prevents safe toe clearance during walking. Methods: To adapt the motion of the device to the user’s walking speed, a geometric model was used, together with real-time measurement of the user’s gait cycle. A geometric speed-adaptive model also scales a trapezoidal ankle-velocity profile in real time using the detected gait cycle. The algorithm was tested at three different walking speeds, with a prototype of the AFO worn by a test subject. Results: At walking speeds of 0.44 and 0.61 m/s, reduced tibialis anterior (TA) muscle activity was confirmed by electromyography (EMG) signal measurement during the stance phase of assisted gait. When the AFO was in assistance mode after toe-off (initial and mid-swing phase), it provided an average of 48% of the estimated required power to make up for the deliberate inactivity of the TA muscle. Conclusions: Kinematic analysis of the motion capture data showed that sufficient foot clearance was achieved at all three speeds of the test. No adverse effects or discomfort were reported during the experiment. Future studies should examine the device in populations with footdrop and include a comprehensive evaluation of safety. Full article
(This article belongs to the Section Injury Biomechanics and Rehabilitation)
Show Figures

Figure 1

22 pages, 48463 KiB  
Article
Study on the Evolution of Overlying Strata Fractures and Gas Control Technology of High Gas-Drainage Roadways Under Gob-Side Entry Retaining with Roadside Filling
by Yunfei Yang, Zetian Li, Anxiu Liu, Hongwei Liu, Zhangyang Li, Hongguang Guo and Zhigang Li
Appl. Sci. 2025, 15(13), 7445; https://doi.org/10.3390/app15137445 - 2 Jul 2025
Viewed by 275
Abstract
In order to examine the fracture development law of overlying strata in goafs and to reasonably lay out a high gas-drainage roadway under gob-side entry retaining with roadside filling, the 91–105 working face of the Wangzhuang Coal Mine was selected as the engineering [...] Read more.
In order to examine the fracture development law of overlying strata in goafs and to reasonably lay out a high gas-drainage roadway under gob-side entry retaining with roadside filling, the 91–105 working face of the Wangzhuang Coal Mine was selected as the engineering case study. The failure laws and fracture development characteristics of the overlying strata in both the strike and dip directions using gob-side entry retaining and roadside filling were studied through rock mechanic tests and PFC numerical simulations. The optimal layout of the high gas-drainage roadway was determined through theoretical analysis and coupled Fluent–PFC numerical simulations, and on-site monitoring was conducted to evaluate the extraction effects. The results indicate that the first weighting interval of the 91–105 working face was 40 m, while the periodic weighting interval was approximately 14 m. The height of the falling zone was 14.4 m, and the height of the gas-conducting fracture zone was 40.7 m. In the dip direction, compared with coal pillar retaining, gob-side entry retaining with roadside filling formed an inverted trapezoid secondary breaking zone above the retaining roadway. Using this method, the span of the separation zone increased to 30 m, and the collapse angle decreased to 52°, resulting in a shift in the separation zone—the primary space for gas migration—toward the goaf. It was determined that the optimal location of the high gas-drainage roadway was 28 m above the coal roof and 30 m horizontally from the return air roadway. Compared with the 8105 working face, this position was 10 m closer toward the goaf. On-site gas extraction monitoring data indicate that, at this optimized position, the gas concentration in the high gas-drainage roadway increased by 22%, and the net gas flow increased by 18%. Full article
Show Figures

Figure 1

31 pages, 8354 KiB  
Article
The Design and Experiment of a Motion Control System for the Whole-Row Reciprocating Seedling Picking Mechanism of an Automatic Transplanter
by Jiawei Shi, Jianping Hu, Wei Liu, Junpeng Lv, Yongwang Jin, Mengjiao Yao and Che Wang
Agriculture 2025, 15(13), 1423; https://doi.org/10.3390/agriculture15131423 - 30 Jun 2025
Viewed by 335
Abstract
Aiming at the problem that the whole row of reciprocating seedling picking mechanism is prone to inertial impacts during operation due to its excessive mass, causing seedling damage and positioning errors, this study builds a motion control system with a PLC controller as [...] Read more.
Aiming at the problem that the whole row of reciprocating seedling picking mechanism is prone to inertial impacts during operation due to its excessive mass, causing seedling damage and positioning errors, this study builds a motion control system with a PLC controller as the core and proposes a composite motion control strategy based on planned S-curve acceleration and deceleration and fuzzy PID to achieve rapid response, precise positioning, and smooth operation of the seedling picking mechanism. By establishing the objective function and constraint conditions and taking into account the dynamic change of the seedling picking displacement, the S-curve acceleration and deceleration control algorithm is planned in six and seven stages to meet the requirements of a smooth transition of the speed and continuous change of the acceleration curve of the seedling picking mechanism during movement. A fuzzy PID positioning control system is designed, the control system transfer function is constructed, and fuzzy rules are formulated to dynamically compensate for the error and its rate of change to meet the requirements of fast response and no overshoot oscillation of the positioning control system. The speed and acceleration of the seedling picking mechanism under the six-segment and seven-segment S-curve acceleration and deceleration motion control conditions were simulated using MATLAB2024a simulation software and compared with the trapezoidal acceleration and deceleration motion control. The planned S-curve acceleration and deceleration control algorithm has a more stable control effect on the seedling picking mechanism when it operates under the conditions of the dynamic change of the displacement, and it meets the design requirements of seedling picking efficiency. The positioning control system was modeled and simulated using the Simulink simulation platform. When KP = 15, KI = 3, and KD = 1, the whole-row seedling picking control system ran stably, responded quickly, and had no overshoot. Compared with the PID control system with fixed parameters, the fuzzy PID control system reduced the time consumption in the rising stage by 24.5% and shortened the overall stabilization process by 17.6%. The zero overshoot characteristic was ensured, and the response speed was faster. When a disturbance signal is added, the overshoot of the fuzzy PID control system is reduced by 2.4%, and the response speed is increased by 6.8% compared with the fixed-parameter PID control system. The dynamic response rate and anti-disturbance performance are better than those of the fixed-parameter PID control system. A bench comparison test was carried out. The results showed that the S-curve acceleration and deceleration motion control algorithm reduced the average mass loss rate of seedlings by 46.19% compared with the trapezoidal acceleration and deceleration motion control algorithm, and the seedling picking efficiency met the design requirements. Fuzzy PID positioning control was used, and the maximum displacement error of the end effector during seedling picking was −1.4 mm, and the average relative error rate was 0.22%, which met the positioning accuracy requirements of the end effector in the X-axis direction and verified the stability and accuracy of the designed control system. The designed control system was tested in the field, and the average comprehensive success rate of seedling picking and throwing reached 96.2%, which verified the feasibility and practicality of the control system. Full article
(This article belongs to the Special Issue Soil-Machine Systems and Its Related Digital Technologies Application)
Show Figures

Figure 1

24 pages, 3754 KiB  
Article
Route Optimization of Multimodal Transport Considering Regional Differences under Carbon Tax Policy
by Liqing Gao and Miaomiao Zhan
Sustainability 2025, 17(13), 5743; https://doi.org/10.3390/su17135743 - 22 Jun 2025
Viewed by 470
Abstract
Environmental sustainability is receiving growing global attention, making the development of low-carbon and green transportation increasingly important. Low-carbon policies offer significant advantages in incentivizing energy conservation and reducing emissions in the transportation sector; however, it is vital to consider the impacts of regional [...] Read more.
Environmental sustainability is receiving growing global attention, making the development of low-carbon and green transportation increasingly important. Low-carbon policies offer significant advantages in incentivizing energy conservation and reducing emissions in the transportation sector; however, it is vital to consider the impacts of regional differences on the implementation effect of low-carbon policies. This paper explores multimodal transportation route optimization under a carbon tax policy. First, a bi-objective route optimization model is constructed, with the goal of minimizing total transportation cost and time, while accounting for uncertain demand, fixed departure schedules, and regional differences. Trapezoidal fuzzy numbers are used to represent uncertain demand, and a fuzzy adaptive non-dominated sorting genetic algorithm is designed to solve the bi-objective optimization model. The algorithm is then tested on differently sized networks and on real-world transportation networks in eastern and western China to validate its effectiveness and to assess the impacts of regional differences. The experimental results show the following. (1) When considering transportation tasks at different network scales, the proposed fuzzy adaptive non-dominated sorting genetic algorithm outperforms the NSGA-II algorithm, achieving minimum differences in percentages of cost and time of 9.25% and 7.72%, respectively. (2) For transportation tasks assessed using real-world networks in eastern and western China, an increase in the carbon tax rate significantly affects carbon emissions, costs, and time. The degree of carbon emission reduction varies depending on the development of the regional transportation network. In the more developed eastern region, carbon emissions are reduced by up to 44.17% as the carbon tax rate increases. In the less developed western region, the maximum reduction in carbon emissions is 14.37%. The carbon tax policy has a more limited impact in the western region compared to the eastern one. Therefore, formulating differentiated carbon tax policies based on local conditions is an effective way to maximize the economic and environmental benefits of multimodal transportation. Full article
Show Figures

Figure 1

27 pages, 4160 KiB  
Article
Analysis and Assessment of a Brushless DC Outrunner Motor for Agriculture Drones Using JMAG
by Javier de la Cruz Soto, Jose J. Gascon-Avalos, Jesse Y. Rumbo-Morales, Gerardo Ortiz-Torres, Manuel A. Zurita-Gil, Felipe D. J. Sorcia-Vázquez, Javier Pérez-Ramírez, Obed A. Valle-López, Susana E. Garcia-Castro, Hector M. Buenabad-Arias, Moises Ramos-Martinez and Maria A. López-Osorio
Appl. Syst. Innov. 2025, 8(3), 81; https://doi.org/10.3390/asi8030081 - 12 Jun 2025
Viewed by 1751
Abstract
Designing propulsion systems for agricultural drones involves a repetitive process that is both expensive and time-intensive. At the same time, conducting comprehensive experimental tests demands specialized equipment and strict safety protocols. In this work, the design and assessment of the propulsion system (propeller, [...] Read more.
Designing propulsion systems for agricultural drones involves a repetitive process that is both expensive and time-intensive. At the same time, conducting comprehensive experimental tests demands specialized equipment and strict safety protocols. In this work, the design and assessment of the propulsion system (propeller, motor, and battery) for large-sized drones in agricultural applications are conducted using numerical methods. To properly predict and validate the performance of a brushless direct current motor, a three half-bridge inverter circuit, featuring a trapezoidal commutation, is implemented and constructed. First, the propeller is studied using the finite volume method, obtaining a maximum variation of 6.32% for thrust and 10.1% for torque. Additionally, an electromagnetic analysis on a commercial brushless direct current motor (BLDC) using JMAG software from JSOL corporation (JMAG designer 23.2, Cd.Obregón, México) resulted in 4.43% deviation from experimental electrical measurements. The selected propulsion system is implemented in a 30 kg drone, where motor performance is evaluated for two instants of time in a typical agriculture trajectory. The findings demonstrate that numerical methods provide valuable insights in large-sized unmanned aerial vehicle (UAV) design, decreasing the experimental tests conducted and accelerating implementation time. Full article
Show Figures

Figure 1

19 pages, 3584 KiB  
Article
Adaptive Neuro-Fuzzy Optimization of Reservoir Operations Under Climate Variability in the Chao Phraya River Basin
by Luksanaree Maneechot, Jackson Hian-Wui Chang, Kai He, Maochuan Hu, Wan Abd Al Qadr Imad Wan-Mohtar, Zul Ilham, Carlos García Castro and Yong Jie Wong
Water 2025, 17(12), 1740; https://doi.org/10.3390/w17121740 - 9 Jun 2025
Viewed by 470
Abstract
Reservoir operations play a pivotal role in shaping the flow regime of the Chao Phraya River Basin (CPRB), where two major reservoirs exert substantial hydrological influence. Despite ongoing efforts to manage water resources effectively, current operational strategies often lack the adaptability required to [...] Read more.
Reservoir operations play a pivotal role in shaping the flow regime of the Chao Phraya River Basin (CPRB), where two major reservoirs exert substantial hydrological influence. Despite ongoing efforts to manage water resources effectively, current operational strategies often lack the adaptability required to address the compounded uncertainties of climate change and increasing water demands. This research addresses this critical gap by developing an optimization model for reservoir operation that explicitly incorporates climate variability. An Adaptive Neuro-Fuzzy Inference System (ANFIS) was employed using four fundamental inputs: reservoir inflow, storage, rainfall, and water demands. Daily resolution data from 2000 to 2012 were used, with 2005–2012 selected for training due to the inclusion of multiple extreme hydrological events, including the 2011 flood, which enriched the model’s learning capability. The period 2000–2004 was reserved for testing to independently assess model generalizability. Eight types of membership functions (MFs) were tested to determine the most suitable configuration, with the trapezoidal MF selected for its favorable performance. The optimized models achieved Nash-Sutcliffe efficiency (NSE) values of 0.43 and 0.47, R2 values of 0.59 and 0.50, and RMSE values of 77.64 and 89.32 for Bhumibol and Sirikit Dams, respectively. The model enables the evaluation of both dam operations and climate change impacts on downstream discharges. Key findings highlight the importance of adaptive reservoir management by identifying optimal water release timings and corresponding daily release-storage ratios. The proposed approach contributes a novel, data-driven framework that enhances decision-making for integrated water resources management under changing climatic conditions. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

15 pages, 2833 KiB  
Article
Solid and Hollow Pre-Tensioned, Pre-Stressed Concrete Orchard Posts—Computational and Experimental Comparative Analysis
by Jarosław Michałek and Jacek Dudkiewicz
Materials 2025, 18(11), 2525; https://doi.org/10.3390/ma18112525 - 27 May 2025
Viewed by 1860
Abstract
For several years now, fruit-growers have increasingly often used pre-tensioned, pre-stressed concrete posts for supporting branches of fruit trees and suspending protective nets in order to limit damage to fruits caused by hail, wind, snow, heavy rainfall, insects and birds. Pre-tensioned, pre-stressed concrete [...] Read more.
For several years now, fruit-growers have increasingly often used pre-tensioned, pre-stressed concrete posts for supporting branches of fruit trees and suspending protective nets in order to limit damage to fruits caused by hail, wind, snow, heavy rainfall, insects and birds. Pre-tensioned, pre-stressed concrete posts most often have a trapezoidal cross-section, which is ideally suitable for mass production in a self-supporting non-dismantlable steel mould on a pre-stressing bed. Posts with 70 mm × 75 mm, 80 mm × 85 mm and 90 mm × 95 mm cross-sections are typically produced, whereas 100 mm × 120 mm and 130 mm × 140 mm posts are manufactured to order. Furthermore, it is proposed to produce hollow posts. Such posts are lighter than solid posts, but they require a more complicated production technology. This paper presents selected parts of a comparative computational–experimental analysis of solid and hollow posts. In the Building Structures Laboratory in the Building Structures Department at the Civil Engineering Faculty of the Wrocław University of Science and Technology, experimental tests of pre-stressed concrete orchard posts of 70 mm × 75 mm and 90 mm × 95 mm with solid and hollow cross-sections were carried out on a full scale. The theoretical analysis and research has shown that the resistance to bending, cracking resistance and rigidity of hollow posts (with their cross-sectional outline unchanged) will not significantly differ from those of the currently produced solid posts. At same time, material savings will be achieved. Therefore, the main task is to master the continuous moulding of hollow posts from dense plastic concrete with the simultaneous pulling out of the cores, producing longitudinal hollows in the posts. Full article
(This article belongs to the Special Issue Study on Mechanical Properties of Concrete Structures and RC Beams)
Show Figures

Figure 1

32 pages, 15795 KiB  
Article
Flexural Behavior of Orthotropic Steel–LUHPC Composite Bridge Decks: Experimental and Numerical Study
by Zebene Worku, Muyu Liu, Xin Wang and Guangzu Sheng
Materials 2025, 18(9), 2106; https://doi.org/10.3390/ma18092106 - 3 May 2025
Viewed by 724
Abstract
Orthotropic Steel Bridge Decks (OSBDs) are often used in long-span bridges due to their high performance and ease of installation. However, issues such as fatigue cracking and the deterioration of asphalt overlays due to their local stiffness inefficiency necessitate innovative solutions. Orthotropic Steel–Ultra-High-Performance [...] Read more.
Orthotropic Steel Bridge Decks (OSBDs) are often used in long-span bridges due to their high performance and ease of installation. However, issues such as fatigue cracking and the deterioration of asphalt overlays due to their local stiffness inefficiency necessitate innovative solutions. Orthotropic Steel–Ultra-High-Performance Concrete Composite Bridge Decks (OS-UHPC-CBDs) have enhanced OSBD performance; however, they have disadvantages such as a heavier weight and high initial cost requirements. In this study, an Orthotropic Steel–Lightweight Ultra-High-Performance Concrete Composite Bridge Deck (OS-LUHPC-CBD) is proposed as a solution that integrates a novel Lightweight Ultra-High-Performance Concrete (LUHPC) with a high-strength Q425 steel deck and trapezoidal ribs. A comprehensive experimental investigation, including full-scale four-point bending tests, was undertaken to evaluate the flexural behavior of the proposed OS-LUHPC-CBD compared to the OS-UHPC-CBD. The experimental results show that the proposed OS-LUHPC-CBD has equivalent flexural capacity and improved ductility compared to the OS-UHPC-CBD. This study found the proposed OS-LUHPC-CBD to be a promising solution for application in long-span bridges with an 8.4% lighter weight and a 6.8% lower cost, and with the same ease of construction as OS-UHPC-CBDs. A finite element model with a strong correlation was developed and validated through the experimental results. Based on this, a parametric study was undertaken on the effect of the key geometric design parameters on the flexural capacity of the OS-LUHPC-CBD. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

26 pages, 3160 KiB  
Article
Research on Pavement Performance of Steel Slag Asphalt Mastic and Mixtures
by Jianmin Guo, Jincheng Wei, Feiping Xu, Qinsheng Xu, Liang Kang, Wenjuan Wu, Wencheng Shi and Xiangpeng Yan
Coatings 2025, 15(5), 525; https://doi.org/10.3390/coatings15050525 - 28 Apr 2025
Viewed by 518
Abstract
In order to explore the influence of steel slag on the road performance of asphalt mastic and its mixtures, steel slag powder (SSP) and steel slag aggregate (SSA) were used to replace limestone mineral powder filler (MF) and natural limestone aggregate (LA) respectively [...] Read more.
In order to explore the influence of steel slag on the road performance of asphalt mastic and its mixtures, steel slag powder (SSP) and steel slag aggregate (SSA) were used to replace limestone mineral powder filler (MF) and natural limestone aggregate (LA) respectively to prepare asphalt mastic and mixture. A series of standardized tests including penetration, softening point, ductility, viscosity, pull-off strength, dynamic shear rheometer (DSR), and bending beam rheometer (BBR) were carried out to evaluate the performance of asphalt mastics with SSP. Meanwhile, high- and low-temperature performance, moisture stability, volumetric stability, and fatigue resistance were evaluated by wheel tracking, uniaxial penetration strength, Hamburg, three-point bending, freeze–thaw splitting, immersed Marshall stability, water immersion expansion, and two-point bending trapezoidal beam fatigue tests. The results show that compared to the asphalt mastic with MF, enhanced high-temperature deformation resistance and reduced low-temperature cracking resistance of asphalt mastic with SSP were observed, as well as superior aging resistance. The improvements in high-temperature stability, moisture resistance, and fatigue performance were confirmed for asphalt mixtures with SSP/SSA. Additionally, compromised volumetric stability and low-temperature crack resistance were found when SSP/SSA was used in mixtures. Although asphalt mixtures with SSA exhibited 257.79%–424.60% higher expansion rate after 21-day immersion than those with LA, the 3-day immersion expansion rates complied with specification limits (<1.5% per JTG F40-2004). Critical volume expansion control measures should be adopted for full-component applications of steel slag powder/aggregates due to the hydration potential of free lime (f-CaO) and magnesium oxide (MgO) in steel slag under moisture exposure. Full article
Show Figures

Figure 1

18 pages, 11277 KiB  
Article
Mechanical Characteristics and Mechanisms of Destruction of Trapezoidal Sandstone Samples Under Uneven Loading
by Bao Pan, Weijian Yu, Ke Li, Zilu Liu, Tao Huang and Jie Yang
Processes 2025, 13(4), 1169; https://doi.org/10.3390/pr13041169 - 12 Apr 2025
Viewed by 423
Abstract
Predicting rock failure under excavation-induced non-uniform stress remains challenging due to the inability of conventional homogeneous specimens to replicate field-scale stress gradients. A novel trapezoidal sandstone specimen with adjustable top-surface inclinations (S75/S85) is proposed, uniquely simulating asymmetric stress gradients to mimic excavation unloading. [...] Read more.
Predicting rock failure under excavation-induced non-uniform stress remains challenging due to the inability of conventional homogeneous specimens to replicate field-scale stress gradients. A novel trapezoidal sandstone specimen with adjustable top-surface inclinations (S75/S85) is proposed, uniquely simulating asymmetric stress gradients to mimic excavation unloading. Geometric asymmetry combined with multi-scale characterization (CT, SEM, PFC) decouples stress gradient effects from material heterogeneity. The key findings include the following points. (1) Inclination angles > 15° reduce peak strength by 24.2%, transitioning failure from brittle (transgranular cracks > 60) to mixed brittle-ductile modes (2) Stress gradients govern fracture pathways: transgranular cracks dominate high-stress zones, while intergranular cracks propagate along weak cementation interfaces. (3) PFC simulations reveal a 147% stress disparity between specimen sides and validate shear localization angles θ = 52° ± 3°), aligning with field data. This experimental–numerical framework resolves limitations of traditional methods, providing mechanistic insights into non-uniform load-driven failure. The methodology enables targeted support strategies for deep asymmetric roadways, including shear band mitigation and plastic zone reinforcement. By bridging lab-scale tests and engineering stress states, the study advances safety and sustainability in deep roadway excavation. Full article
Show Figures

Figure 1

13 pages, 1749 KiB  
Article
Precision and Reliability of a Dynamometer for Trunk Extension Strength and Steadiness Assessment
by Franciele Parolini, Márcio Goethel, Johan Robalino, Klaus Becker, Manoela Sousa, Barbara C. Pulcineli, Ulysses F. Ervilha, João Paulo Vilas-Boas and Rubim Santos
Appl. Sci. 2025, 15(8), 4081; https://doi.org/10.3390/app15084081 - 8 Apr 2025
Viewed by 634
Abstract
Low back pain is a major cause of disability worldwide, often associated with deficits in trunk extensor strength control. Accurate assessment of trunk extension strength control is crucial for diagnosing impairments and monitoring interventions. This study evaluated the reliability of a dynamometry-based protocol [...] Read more.
Low back pain is a major cause of disability worldwide, often associated with deficits in trunk extensor strength control. Accurate assessment of trunk extension strength control is crucial for diagnosing impairments and monitoring interventions. This study evaluated the reliability of a dynamometry-based protocol for isometric trunk extension strength control assessment. Twenty-eight healthy volunteers (9 females, 19 males) completed two sessions, seven days apart. A single-point load cell system, encapsulated within a 3D-printed structure and connected to a Delsys system® at a sampling frequency of 2000 Hz, was used for data acquisition. Participants performed maximal voluntary contractions (MVC) and submaximal isometric contractions (SMVC) guided by trapezoidal visual feedback. Key outcome variables included peak force, mean force, and force steadiness. Calibration demonstrated high accuracy (R2 = 1) with a low root mean square error (0.55 N). Test–retest analysis showed excellent reliability for peak force (ICC = 0.81, SEM = 0.50, MDC = 1.39), mean force (ICC = 0.93, SEM = 0.17, MDC = 1.08), and steadiness (ICC = 0.87, SEM = 0.85, MDC = 2.36), with no significant intersession differences (p > 0.05). This study demonstrates the high reliability of using dynamometry to assess trunk extension strength during MVC and SMVC, endorsing the dynamometer as a tool for functional assessment and the development of personalized rehabilitation and training strategies. Full article
(This article belongs to the Special Issue Advanced Technologies in Physical Therapy and Rehabilitation)
Show Figures

Figure 1

33 pages, 12750 KiB  
Article
Experimental Study on Fiber Optic Strain Characterization of Overlying Rock Layer Movement Forms and States Using DFOS
by Tao Hu, Fengjun Wei, Jintao Wang, Yan Wang, Chunhua Song, Kuiliang Han and Kaiqiang Han
Photonics 2025, 12(4), 321; https://doi.org/10.3390/photonics12040321 - 30 Mar 2025
Viewed by 452
Abstract
Mastering the movement laws of hard overlying rock layers is the foundation of the development of coal mining technology and plays an important role in improving coal mine safety production. Therefore, an indoor similar simulation experiment was conducted based on an actual coal [...] Read more.
Mastering the movement laws of hard overlying rock layers is the foundation of the development of coal mining technology and plays an important role in improving coal mine safety production. Therefore, an indoor similar simulation experiment was conducted based on an actual coal mining face to test the strain variations of the pre-embedded optical fibers in the model using distributed fiber optic sensing. Finally, the fiber optic strain distribution curve was used to characterize the movement form and state of the overlying rock layer and fractured rock blocks. The experimental results showed the following. (1) The strain distribution of horizontally laid optical fibers is characterized by an upward trapezoidal convex platform, reflecting the evolution law of various horizontal movement forms of overlying rock layers: voussoir beam → cantilever beam → reverse cantilever beam → voussoir beam. The strain curve of vertically laid optical fibers is characterized by two levels of right-handed trapezoidal protrusions above and below, representing the motion state of the upper voussoir beam–lower cantilever beam structure of the overburden. (2) In addition, as excavation progresses, the range and height of the failure deformation of the overlying rock layers develop in a stepped shape. (3) In the end, the final vertical development heights of the cantilever beam structure and the voussoir beam structure in the overburden were 90.27 m and 24.99 m, respectively. The experimental results are highly consistent with the UDEC numerical simulation and mandatory calculation formulas, thus verifying the feasibility of the experiment. These research results provide theoretical and experimental support for safe coal mining in practical working faces. Full article
Show Figures

Figure 1

Back to TopTop