Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,810)

Search Parameters:
Keywords = transportation vehicles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 5438 KiB  
Article
Research on Dynamic Particle Swarm Optimization for Multi-Objective Reconnaissance Task Allocation of UAVs
by Suyu Wang, Peihong Qiao, Quan Yue, Zhenlei Xu and Qichen Shang
Drones 2025, 9(8), 556; https://doi.org/10.3390/drones9080556 (registering DOI) - 7 Aug 2025
Abstract
With the increasingly widespread application of unmanned aerial vehicle (UAV) systems in disaster monitoring, urban management, logistics transportation, and reconnaissance, efficient dynamic task allocation has become a key issue in improving task execution efficiency. To address the challenges posed by dynamic changes in [...] Read more.
With the increasingly widespread application of unmanned aerial vehicle (UAV) systems in disaster monitoring, urban management, logistics transportation, and reconnaissance, efficient dynamic task allocation has become a key issue in improving task execution efficiency. To address the challenges posed by dynamic changes in task objectives and resource constraints that traditional task allocation methods struggle with in complex environments, this paper proposes a multi-objective particle swarm optimization algorithm, DCMPSO, for UAV dynamic reconnaissance task allocation. First, the framework of DCMPSO is constructed, dividing the optimization of dynamic problems into three parts: environment change detection, environment change response, and actual optimization, with the designed strategy of range prediction strategy based on centroid translation. Then, simulation experiments are conducted to verify the effectiveness of the algorithm mechanisms through ablation experiments and to demonstrate the superiority of DCMPSO in convergence and distribution compared to DNSGA-II and SGEA through comparative experiments. Finally, a multi-UAV dynamic task allocation model is established and optimized, proving that DCMPSO can correctly solve the UAV dynamic multi-objective allocation problem and effectively find its optimal solution, providing an effective solution for practical applications. Full article
24 pages, 1486 KiB  
Article
Improving Vehicular Network Authentication with Teegraph: A Hashgraph-Based Efficiency Approach
by Rubén Juárez Cádiz, Ruben Nicolas-Sans and José Fernández Tamámes
Sensors 2025, 25(15), 4856; https://doi.org/10.3390/s25154856 - 7 Aug 2025
Abstract
Vehicular ad hoc networks (VANETs) are a critical aspect of intelligent transportation systems, improving safety and comfort for drivers. These networks enhance the driving experience by offering timely information vital for safety and comfort. Yet, VANETs come with their own set of challenges [...] Read more.
Vehicular ad hoc networks (VANETs) are a critical aspect of intelligent transportation systems, improving safety and comfort for drivers. These networks enhance the driving experience by offering timely information vital for safety and comfort. Yet, VANETs come with their own set of challenges concerning security, privacy, and design reliability. Traditionally, vehicle authentication occurs every time a vehicle enters the domain of the roadside unit (RSU). In our study, we suggest that authentication should take place only when a vehicle has not covered a set distance, increasing system efficiency. The rise of the Internet of Things (IoT) has seen an upsurge in the use of IoT devices across various fields, including smart cities, healthcare, and vehicular IoT. These devices, while gathering environmental data and networking, often face reliability issues without a trusted intermediary. Our study delves deep into implementing Teegraph in VANETs to enhance authentication. Given the integral role of VANETs in Intelligent Transportation Systems and their inherent challenges, we turn to Hashgraph—an alternative to blockchain. Hashgraph offers a decentralized, secure, and trustworthy database. We introduce an efficient authentication system, which triggers only when a vehicle has not traversed a set distance, optimizing system efficiency. Moreover, we shed light on the indispensable role Hashgraph can occupy in the rapidly expanding IoT landscape. Lastly, we present Teegraph, a novel Hashgraph-based technology, as a superior alternative to blockchain, ensuring a streamlined, scalable authentication solution. Our approach leverages the logical key hierarchy (LKH) and packet update keys to ensure data privacy and integrity in vehicular networks. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

29 pages, 28606 KiB  
Article
The Speed of Shared Autonomous Vehicles Is Critical to Their Demand Potential
by Tilmann Schlenther and Kai Nagel
World Electr. Veh. J. 2025, 16(8), 447; https://doi.org/10.3390/wevj16080447 - 7 Aug 2025
Abstract
Under a 2021 amendment to German law, the KelRide project became the first public on-demand service operating electric autonomous vehicles (AVs) without fixed routes on public roads. This paper addresses two notable gaps in the literature by (1) conducting an ex post evaluation [...] Read more.
Under a 2021 amendment to German law, the KelRide project became the first public on-demand service operating electric autonomous vehicles (AVs) without fixed routes on public roads. This paper addresses two notable gaps in the literature by (1) conducting an ex post evaluation of demand predictions for a non-infrastructure (Mobility-on-Demand (MoD)) project and (2) using real-world data to analyze how demand responds to key Autonomous Mobility-on-Demand (AMoD) system parameters in a rural context. Earlier simulation-based demand forecasts are compared to observed booking data, and the recalibrated model is used to investigate the sensitivity of passenger numbers to vehicle speed, fleet size, service area, operating hours, and idle vehicle positioning. Results show that increasing vehicle speed leads to a superlinear rise in passenger numbers—especially at small fleet sizes—while demand saturates at large fleet sizes. A linear increase in demand is observed with expanding service areas, provided fleet size is sufficient. Extending operating hours from 9 a.m.–4 p.m. to full-day service increases demand by a factor of two to four. Passengers numbers also vary notably depending on the positioning of idle vehicles. Consistent with empirical findings, the analysis underscores that raising AV speed is essential for ensuring the long-term viability of autonomous mobility services. Full article
Show Figures

Figure 1

16 pages, 3989 KiB  
Article
Secure Context-Aware Traffic Light Scheduling System: Integrity of Vehicles’ Identities
by Marah Yahia, Maram Bani Younes, Firas Najjar, Ahmad Audat and Said Ghoul
World Electr. Veh. J. 2025, 16(8), 448; https://doi.org/10.3390/wevj16080448 - 7 Aug 2025
Abstract
Autonomous vehicles and intelligent traffic transportation are widely investigated for road networks. Context-aware traffic light scheduling algorithms determine signal phases by analyzing the real-time characteristics and contextual information of competing traffic flows. The context of traffic flows mainly considers the existence of regular, [...] Read more.
Autonomous vehicles and intelligent traffic transportation are widely investigated for road networks. Context-aware traffic light scheduling algorithms determine signal phases by analyzing the real-time characteristics and contextual information of competing traffic flows. The context of traffic flows mainly considers the existence of regular, emergency, or heavy vehicles. This is an important factor in setting the phases of the traffic light schedule and assigning a high priority for emergency vehicles to pass through the signalized intersection first. VANET technology, through its communication capabilities and the exchange of data packets among moving vehicles, is utilized to collect real-time traffic information for the analyzed road scenarios. This introduces an attractive environment for hackers, intruders, and criminals to deceive drivers and intelligent infrastructure by manipulating the transmitted packets. This consequently leads to the deployment of less efficient traffic light scheduling algorithms. Therefore, ensuring secure communications between traveling vehicles and verifying the integrity of transmitted data are crucial. In this work, we investigate the possible attacks on the integrity of transferred messages and vehicles’ identities and their effects on the traffic light schedules. Then, a new secure context-aware traffic light scheduling system is proposed that guarantees the integrity of transmitted messages and verifies the vehicles’ identities. Finally, a comprehensive series of experiments were performed to assess the proposed secure system in comparison to the absence of security mechanisms within a simulated road intersection. We can infer from the experimental study that attacks on the integrity of vehicles have different effects on the efficiency of the scheduling algorithm. The throughput of the signalized intersection and the waiting delay time of traveling vehicles are highly affected parameters. Full article
Show Figures

Figure 1

25 pages, 3588 KiB  
Article
An Intelligent Collaborative Charging System for Open-Pit Mines
by Jinbo Li, Lin Bi, Zhuo Wang and Liyun Zhou
Appl. Sci. 2025, 15(15), 8720; https://doi.org/10.3390/app15158720 - 7 Aug 2025
Abstract
To address challenges in automated charging operations of bulk explosive trucks in open-pit mines—specifically difficulties in borehole identification, positioning inaccuracies, and low operational efficiency—this study proposes an intelligent collaborative charging system integrating three modular components: (1) an explosive transport vehicle (with onboard terminal, [...] Read more.
To address challenges in automated charging operations of bulk explosive trucks in open-pit mines—specifically difficulties in borehole identification, positioning inaccuracies, and low operational efficiency—this study proposes an intelligent collaborative charging system integrating three modular components: (1) an explosive transport vehicle (with onboard terminal, explosive compartment, and mobility system enabling optimal routing and quantitative dispensing), (2) a charging robot (equipped with borehole detection, loading mechanisms, and mobility system for optimized search path planning and precision positioning), and (3) interconnection systems (coupling devices and interfaces facilitating auxiliary explosive transfer). This approach resolves three critical limitations of conventional systems: (i) mechanical arm-based borehole detection difficulties, (ii) blast hole positioning inaccuracies, and (iii) complex transport routing. The experimental results demonstrate that the intelligent cooperative charging method for open-pit mines achieves an 18% improvement in operational efficiency through intelligent collaboration among its modular components, while simultaneously realizing automated and intelligent charging operations. This advancement has significant implications for promoting intelligent development in open-pit mining operations. Full article
(This article belongs to the Special Issue Novel Technologies in Intelligent Coal Mining)
Show Figures

Figure 1

26 pages, 2444 KiB  
Article
A Multi-Stage Feature Selection and Explainable Machine Learning Framework for Forecasting Transportation CO2 Emissions
by Mohammad Ali Sahraei, Keren Li and Qingyao Qiao
Energies 2025, 18(15), 4184; https://doi.org/10.3390/en18154184 - 7 Aug 2025
Abstract
The transportation sector is a major consumer of primary energy and is a significant contributor to greenhouse gas emissions. Sustainable transportation requires identifying and quantifying factors influencing transport-related CO2 emissions. This research aims to establish an adaptable, precise, and transparent forecasting structure [...] Read more.
The transportation sector is a major consumer of primary energy and is a significant contributor to greenhouse gas emissions. Sustainable transportation requires identifying and quantifying factors influencing transport-related CO2 emissions. This research aims to establish an adaptable, precise, and transparent forecasting structure for transport CO2 emissions of the United States. For this reason, we proposed a multi-stage method that incorporates explainable Machine Learning (ML) and Feature Selection (FS), guaranteeing interpretability in comparison to conventional black-box models. Due to high multicollinearity among 24 initial variables, hierarchical feature clustering and multi-step FS were applied, resulting in five key predictors: Total Primary Energy Imports (TPEI), Total Fossil Fuels Consumed (FFT), Annual Vehicle Miles Traveled (AVMT), Air Passengers-Domestic and International (APDI), and Unemployment Rate (UR). Four ML methods—Support Vector Regression, eXtreme Gradient Boosting, ElasticNet, and Multilayer Perceptron—were employed, with ElasticNet outperforming the others with RMSE = 45.53, MAE = 30.6, and MAPE = 0.016. SHAP analysis revealed AVMT, FFT, and APDI as the top contributors to CO2 emissions. This framework aids policymakers in making informed decisions and setting precise investments. Full article
Show Figures

Figure 1

17 pages, 5929 KiB  
Article
Optimization of Operations in Bus Company Service Workshops Using Queueing Theory
by Sergej Težak and Drago Sever
Vehicles 2025, 7(3), 82; https://doi.org/10.3390/vehicles7030082 - 6 Aug 2025
Abstract
Public transport companies are aware that the success of their operations largely depends on the proper sizing and optimization of their processes. Among the key activities are the maintenance and repair of the vehicle fleet. This paper presents the application of mathematical optimization [...] Read more.
Public transport companies are aware that the success of their operations largely depends on the proper sizing and optimization of their processes. Among the key activities are the maintenance and repair of the vehicle fleet. This paper presents the application of mathematical optimization methods from the field of operations research to improve the efficiency of service workshops for bus maintenance and repair. Based on an analysis of collected data using queueing theory, the authors assessed the current system performance and found that the queueing system still has spare capacity and could be downsized, which aligns with the company’s management goals. Specifically, the company plans to reduce the number of bus repair service stations (servers in a queueing system). The main question is whether the system will continue to function effectively after this reduction. Three specific downsizing solutions were proposed and evaluated using queueing theory methods: extending the daily operating hours of the workshops, reducing the number of arriving buses, and increasing the productivity of a service station (server). The results show that, under high system load, only those solutions that increase the productivity of individual service stations (servers) in the queueing system provide optimal outcomes. Other solutions merely result in longer queues and associated losses due to buses waiting for service, preventing them from performing their intended function and causing financial loss to the company. Full article
Show Figures

Figure 1

14 pages, 849 KiB  
Article
Autonomous Last-Mile Logistics in Emerging Markets: A Study on Consumer Acceptance
by Emerson Philipe Sinesio, Marcele Elisa Fontana, Júlio César Ferro de Guimarães and Pedro Carmona Marques
Logistics 2025, 9(3), 106; https://doi.org/10.3390/logistics9030106 - 6 Aug 2025
Abstract
Background: Rapid urbanization has intensified the challenges of freight transport, particularly in last-mile (LM) delivery, leading to rising costs and environmental externalities. Autonomous vehicles (AVs) have emerged as a promising innovation to address these issues. While much of the existing literature emphasizes business [...] Read more.
Background: Rapid urbanization has intensified the challenges of freight transport, particularly in last-mile (LM) delivery, leading to rising costs and environmental externalities. Autonomous vehicles (AVs) have emerged as a promising innovation to address these issues. While much of the existing literature emphasizes business and operational perspectives, this study focuses on the acceptance of AVs from the standpoint of e-consumers—individuals who make purchases via digital platforms—in an emerging market context. Methods: Grounded in an extended Unified Theory of Acceptance and Use of Technology 2 (UTAUT2), which is specifically suited to consumer-focused technology adoption research, this study incorporates five constructs tailored to AV adoption. Structural Equation Modeling (SEM) was applied to survey data collected from 304 e-consumers in Northeast Brazil. Results: The findings reveal that performance expectancy, hedonic motivation, and environmental awareness exert significant positive effects on acceptance and intention to use AVs for LM delivery. Social influence shows a weaker, yet still positive, impact. Importantly, price sensitivity exhibits a minimal effect, suggesting that while consumers are generally cost-conscious, perceived value may outweigh price concerns in early adoption stages. Conclusions: These results offer valuable insights for policymakers and logistics providers aiming to implement consumer-oriented, cost-effective AV solutions in LM delivery, particularly in emerging economies. The findings emphasize the need for strategies that highlight the practical, emotional, and environmental benefits of AVs to foster market acceptance. Full article
(This article belongs to the Section Last Mile, E-Commerce and Sales Logistics)
Show Figures

Figure 1

12 pages, 8263 KiB  
Proceeding Paper
Comparing Dynamic Traffic Flow Between Human-Driven and Autonomous Vehicles Under Cautious and Aggressive Vehicle Behavior
by Maftuh Ahnan and Dukgeun Yun
Eng. Proc. 2025, 102(1), 11; https://doi.org/10.3390/engproc2025102011 (registering DOI) - 5 Aug 2025
Abstract
This study explores the impact of driving behaviors, specifically cautious and aggressive, on the performance of human-driven vehicles (HDVs) and autonomous vehicles (AVs) in traffic flow dynamics. It focuses on various metrics, including level of service (LOS), average speed, traffic volume, queue delays, [...] Read more.
This study explores the impact of driving behaviors, specifically cautious and aggressive, on the performance of human-driven vehicles (HDVs) and autonomous vehicles (AVs) in traffic flow dynamics. It focuses on various metrics, including level of service (LOS), average speed, traffic volume, queue delays, carbon emissions, and fuel consumption, to assess their effects on overall performance. The findings reveal significant differences between cautious and aggressive AVs, particularly at varying market penetration rates (MPRs). Aggressive autonomous vehicles demonstrate greater traffic efficiency compared to their cautious counterparts. They achieve higher levels of service, improving from poor performance at low MPRs to significantly better performance at higher MPRs and in fully autonomous scenarios. In contrast, cautious AVs often experience poor service ratings at low MPRs, with an improvement in performance only at higher MPRs. Regarding environmental performance, aggressive AVs outperform cautious ones in terms of reduced emissions and fuel consumption. The emissions produced by aggressive AVs are significantly lower than those from cautious AVs, and they further decrease as the MPRs increases. Additionally, aggressive AVs show a considerable reduction in fuel usage compared to cautious AVs. While cautious AVs improve slightly at higher MPRs, they continue to generate higher emissions and consume more fuel than their aggressive counterparts. In conclusion, aggressive AVs offer better traffic efficiency and environmental performance than both cautious AVs. Their ability to improve road efficiency and reduce congestion positions them as a valuable asset for sustainable transportation. Strategically incorporating aggressive AVs into transportation systems could lead to significant advancements in traffic management and environmental sustainability. Full article
Show Figures

Figure 1

41 pages, 7308 KiB  
Review
Challenges and Opportunities for Extending Battery Pack Life Using New Algorithms and Techniques for Battery Electric Vehicles
by Pedro S. Gonzalez-Rodriguez, Jorge de J. Lozoya-Santos, Hugo G. Gonzalez-Hernandez, Luis C. Felix-Herran and Juan C. Tudon-Martinez
World Electr. Veh. J. 2025, 16(8), 442; https://doi.org/10.3390/wevj16080442 - 5 Aug 2025
Abstract
The shift from Internal Combustion Engine Vehicles (ICEVs) to Battery Electric Vehicles (BEVs) has accelerated global efforts to decarbonize transportation. However, battery degradation, high costs, and limited lifespan remain critical barriers. This review synthesizes recent innovations to extend Li-ion battery life in BEVs [...] Read more.
The shift from Internal Combustion Engine Vehicles (ICEVs) to Battery Electric Vehicles (BEVs) has accelerated global efforts to decarbonize transportation. However, battery degradation, high costs, and limited lifespan remain critical barriers. This review synthesizes recent innovations to extend Li-ion battery life in BEVs by exploring advances in degradation modeling, adaptive Battery Management Systems (BMSs), electronic component simulations, and real-world usage profiling. The authors have systematically analyzed over 80 recent studies using a PRISMA-guided review protocol. A novel comparative framework highlights gaps in current literature, particularly regarding real-world driving impacts, ripple current effects, and second-life battery applications. This review article critically compares model-driven, data-driven, and hybrid model approaches, emphasizing trade-offs in interpretability, accuracy, and deployment feasibility. Finally, the review links battery life extension to broader sustainability metrics, including circular economy models and predictive maintenance algorithms. This review offers actionable insights for researchers, engineers, and policymakers aiming to design longer-lasting and more sustainable electric mobility systems. Full article
(This article belongs to the Special Issue Electric Vehicle Battery Pack and Electric Motor Sizing Methods)
Show Figures

Figure 1

16 pages, 825 KiB  
Article
Geographic Scale Matters in Analyzing the Effects of the Built Environment on Choice of Travel Modes: A Case Study of Grocery Shopping Trips in Salt Lake County, USA
by Ensheng Dong, Felix Haifeng Liao and Hejun Kang
Urban Sci. 2025, 9(8), 307; https://doi.org/10.3390/urbansci9080307 - 5 Aug 2025
Abstract
Compared to commuting, grocery shopping trips, despite their profound implications for mixed land use and transportation planning, have received limited attention in travel behavior research. Drawing upon a travel diary survey conducted in a fast-growing metropolitan region of the United States, i.e., Salt [...] Read more.
Compared to commuting, grocery shopping trips, despite their profound implications for mixed land use and transportation planning, have received limited attention in travel behavior research. Drawing upon a travel diary survey conducted in a fast-growing metropolitan region of the United States, i.e., Salt Lake County, UT, this research investigated a variety of influential factors affecting mode choices associated with grocery shopping. We analyze how built environment (BE) characteristics, measured at seven spatial scales or different ways of aggregating spatial data—including straight-line buffers, network buffers, and census units—affect travel mode decisions. Key predictors of choosing walking, biking, or transit over driving include age, household size, vehicle ownership, income, land use mix, street density, and distance to the central business district (CBD). Notably, the influence of BE factors on mode choice is sensitive to different spatial aggregation methods and locations of origins and destinations. The straight-line buffer was a good indicator for the influence of store sales amount on mode choices; the network buffer was more suitable for the household built environment factors, whereas the measurement at the census block and block group levels was more effective for store-area characteristics. These findings underscore the importance of considering both the spatial analysis method and the location (home vs. store) when modeling non-work travel. A multi-scalar approach can enhance the accuracy of travel demand models and inform more effective land use and transportation planning strategies. Full article
Show Figures

Figure 1

42 pages, 14160 KiB  
Article
Automated Vehicle Classification and Counting in Toll Plazas Using LiDAR-Based Point Cloud Processing and Machine Learning Techniques
by Alexander Campo-Ramírez, Eduardo F. Caicedo-Bravo and Bladimir Bacca-Cortes
Future Transp. 2025, 5(3), 105; https://doi.org/10.3390/futuretransp5030105 - 5 Aug 2025
Abstract
This paper presents the design and implementation of a high-precision vehicle detection and classification system for toll stations on national highways in Colombia, leveraging LiDAR-based 3D point cloud processing and supervised machine learning. The system integrates a multi-sensor architecture, including a LiDAR scanner, [...] Read more.
This paper presents the design and implementation of a high-precision vehicle detection and classification system for toll stations on national highways in Colombia, leveraging LiDAR-based 3D point cloud processing and supervised machine learning. The system integrates a multi-sensor architecture, including a LiDAR scanner, high-resolution cameras, and Doppler radars, with an embedded computing platform for real-time processing and on-site inference. The methodology covers data preprocessing, feature extraction, descriptor encoding, and classification using Support Vector Machines. The system supports eight vehicular categories established by national regulations, which present significant challenges due to the need to differentiate categories by axle count, the presence of lifted axles, and vehicle usage. These distinctions affect toll fees and require a classification strategy beyond geometric profiling. The system achieves 89.9% overall classification accuracy, including 96.2% for light vehicles and 99.0% for vehicles with three or more axles. It also incorporates license plate recognition for complete vehicle traceability. The system was deployed at an operational toll station and has run continuously under real traffic and environmental conditions for over eighteen months. This framework represents a robust, scalable, and strategic technological component within Intelligent Transportation Systems and contributes to data-driven decision-making for road management and toll operations. Full article
Show Figures

Figure 1

20 pages, 2225 KiB  
Article
Network Saturation: Key Indicator for Profitability and Sensitivity Analyses of PRT and GRT Systems
by Joerg Schweizer, Giacomo Bernieri and Federico Rupi
Future Transp. 2025, 5(3), 104; https://doi.org/10.3390/futuretransp5030104 - 4 Aug 2025
Viewed by 168
Abstract
Personal Rapid Transit (PRT) and Group Rapid Transit (GRT) are classes of fully automated public transport systems, where passengers can travel in small vehicles on an interconnected, grade-separated network of guideways, non-stop, from origin to destination. PRT and GRT are considered sustainable as [...] Read more.
Personal Rapid Transit (PRT) and Group Rapid Transit (GRT) are classes of fully automated public transport systems, where passengers can travel in small vehicles on an interconnected, grade-separated network of guideways, non-stop, from origin to destination. PRT and GRT are considered sustainable as they are low-emission and able to attract car drivers. The parameterized cost modeling framework developed in this paper has the advantage that profitability of different PRT/GRT systems can be rapidly verified in a transparent way and in function of a variety of relevant system parameters. This framework may contribute to a more transparent, rapid, and low-cost evaluation of PRT/GRT schemes for planning and decision-making purposes. The main innovation is the introduction of the “peak hour network saturation” S: the number of vehicles in circulation during peak hour divided by the maximum number of vehicles running at line speed with minimum time headways. It is an index that aggregates the main uncertainties in the planning process, namely the demand level relative to the supply level. Furthermore, a maximum S can be estimated for a PRT/GRT project, even without a detailed demand estimation. The profit per trip is analytically derived based on S and a series of more certain parameters, such as fares, capital and maintenance costs, daily demand curve, empty vehicle share, and physical properties of the system. To demonstrate the ability of the framework to analyze profitability in function of various parameters, we apply the methods to a single vehicle PRT, a platooned PRT, and a mixed PRT/GRT. The results show that PRT services with trip length proportional fares could be profitable already for S>0.25. The PRT capacity, profitability, and robustness to tripled infrastructure costs can be increased by vehicle platooning or GRT service during peak hours. Full article
Show Figures

Figure 1

22 pages, 4426 KiB  
Article
A Digital Twin Platform for Real-Time Intersection Traffic Monitoring, Performance Evaluation, and Calibration
by Abolfazl Afshari, Joyoung Lee and Dejan Besenski
Infrastructures 2025, 10(8), 204; https://doi.org/10.3390/infrastructures10080204 - 4 Aug 2025
Viewed by 177
Abstract
Emerging transportation challenges necessitate cutting-edge technologies for real-time infrastructure and traffic monitoring. To create a dynamic digital twin for intersection monitoring, data gathering, performance assessment, and calibration of microsimulation software, this study presents a state-of-the-art platform that combines high-resolution LiDAR sensor data with [...] Read more.
Emerging transportation challenges necessitate cutting-edge technologies for real-time infrastructure and traffic monitoring. To create a dynamic digital twin for intersection monitoring, data gathering, performance assessment, and calibration of microsimulation software, this study presents a state-of-the-art platform that combines high-resolution LiDAR sensor data with VISSIM simulation software. Intending to track traffic flow and evaluate important factors, including congestion, delays, and lane configurations, the platform gathers and analyzes real-time data. The technology allows proactive actions to improve safety and reduce interruptions by utilizing the comprehensive information that LiDAR provides, such as vehicle trajectories, speed profiles, and lane changes. The digital twin technique offers unparalleled precision in traffic and infrastructure state monitoring by fusing real data streams with simulation-based performance analysis. The results show how the platform can transform real-time monitoring and open the door to data-driven decision-making, safer intersections, and more intelligent traffic data collection methods. Using the proposed platform, this study calibrated a VISSIM simulation network to optimize the driving behavior parameters in the software. This study addresses current issues in urban traffic management with real-time solutions, demonstrating the revolutionary impact of emerging technology in intelligent infrastructure monitoring. Full article
Show Figures

Figure 1

31 pages, 1986 KiB  
Article
Machine Learning-Based Blockchain Technology for Secure V2X Communication: Open Challenges and Solutions
by Yonas Teweldemedhin Gebrezgiher, Sekione Reward Jeremiah, Xianjun Deng and Jong Hyuk Park
Sensors 2025, 25(15), 4793; https://doi.org/10.3390/s25154793 - 4 Aug 2025
Viewed by 139
Abstract
Vehicle-to-everything (V2X) communication is a fundamental technology in the development of intelligent transportation systems, encompassing vehicle-to-vehicle (V2V), infrastructure (V2I), and pedestrian (V2P) communications. This technology enables connected and autonomous vehicles (CAVs) to interact with their surroundings, significantly enhancing road safety, traffic efficiency, and [...] Read more.
Vehicle-to-everything (V2X) communication is a fundamental technology in the development of intelligent transportation systems, encompassing vehicle-to-vehicle (V2V), infrastructure (V2I), and pedestrian (V2P) communications. This technology enables connected and autonomous vehicles (CAVs) to interact with their surroundings, significantly enhancing road safety, traffic efficiency, and driving comfort. However, as V2X communication becomes more widespread, it becomes a prime target for adversarial and persistent cyberattacks, posing significant threats to the security and privacy of CAVs. These challenges are compounded by the dynamic nature of vehicular networks and the stringent requirements for real-time data processing and decision-making. Much research is on using novel technologies such as machine learning, blockchain, and cryptography to secure V2X communications. Our survey highlights the security challenges faced by V2X communications and assesses current ML and blockchain-based solutions, revealing significant gaps and opportunities for improvement. Specifically, our survey focuses on studies integrating ML, blockchain, and multi-access edge computing (MEC) for low latency, robust, and dynamic security in V2X networks. Based on our findings, we outline a conceptual framework that synergizes ML, blockchain, and MEC to address some of the identified security challenges. This integrated framework demonstrates the potential for real-time anomaly detection, decentralized data sharing, and enhanced system scalability. The survey concludes by identifying future research directions and outlining the remaining challenges for securing V2X communications in the face of evolving threats. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

Back to TopTop