Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,456)

Search Parameters:
Keywords = transport network design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1369 KiB  
Article
Optimizing Cold Food Supply Chains for Enhanced Food Availability Under Climate Variability
by David Hernandez-Cuellar, Krystel K. Castillo-Villar and Fernando Rey Castillo-Villar
Foods 2025, 14(15), 2725; https://doi.org/10.3390/foods14152725 - 4 Aug 2025
Viewed by 27
Abstract
Produce supply chains play a critical role in ensuring fruits and vegetables reach consumers efficiently, affordably, and at optimal freshness. In recent decades, hub-and-spoke network models have emerged as valuable tools for optimizing sustainable cold food supply chains. Traditional optimization efforts typically focus [...] Read more.
Produce supply chains play a critical role in ensuring fruits and vegetables reach consumers efficiently, affordably, and at optimal freshness. In recent decades, hub-and-spoke network models have emerged as valuable tools for optimizing sustainable cold food supply chains. Traditional optimization efforts typically focus on removing inefficiencies, minimizing lead times, refining inventory management, strengthening supplier relationships, and leveraging technological advancements for better visibility and control. However, the majority of models rely on deterministic approaches that overlook the inherent uncertainties of crop yields, which are further intensified by climate variability. Rising atmospheric CO2 concentrations, along with shifting temperature patterns and extreme weather events, have a substantial effect on crop productivity and availability. Such uncertainties can prompt distributors to seek alternative sources, increasing costs due to supply chain reconfiguration. This research introduces a stochastic hub-and-spoke network optimization model specifically designed to minimize transportation expenses by determining optimal distribution routes that explicitly account for climate variability effects on crop yields. A use case involving a cold food supply chain (CFSC) was carried out using several weather scenarios based on climate models and real soil data for California. Strawberries were selected as a representative crop, given California’s leading role in strawberry production. Simulation results show that scenarios characterized by increased rainfall during growing seasons result in increased yields, allowing distributors to reduce transportation costs by sourcing from nearby farms. Conversely, scenarios with reduced rainfall and lower yields require sourcing from more distant locations, thereby increasing transportation costs. Nonetheless, supply chain configurations may vary depending on the choice of climate models or weather prediction sources, highlighting the importance of regularly updating scenario inputs to ensure robust planning. This tool aids decision-making by planning climate-resilient supply chains, enhancing preparedness and responsiveness to future climate-related disruptions. Full article
(This article belongs to the Special Issue Climate Change and Emerging Food Safety Challenges)
Show Figures

Figure 1

31 pages, 5334 KiB  
Article
Tailoring a Three-Layer Track Model to Delay Instability and Minimize Critical Velocity Effects at Very High Velocities
by Zuzana Dimitrovová
Infrastructures 2025, 10(8), 200; https://doi.org/10.3390/infrastructures10080200 - 31 Jul 2025
Viewed by 89
Abstract
The aim of this paper is to tailor the geometry and material parameters of a three-layer railway track model to achieve favorable properties for the circulation of high-speed trains at very high velocities. The three layers imply that the model should have three [...] Read more.
The aim of this paper is to tailor the geometry and material parameters of a three-layer railway track model to achieve favorable properties for the circulation of high-speed trains at very high velocities. The three layers imply that the model should have three critical velocities for resonance. However, in many cases, some of these values are missing and must be replaced by pseudo-critical values. Since no resonance occurs at pseudo-critical velocities, even in the absence of damping, deflections never reach infinity. By using optimization techniques, it is possible to adjust the model’s parameters, so that the increase in vibrations remains minimal and does not pose a real danger. In this way, circulation velocities could be extended beyond the critical value, thereby increasing the network capacity and, consequently, improving the competitiveness of rail transport compared to other modes of transportation, thus contributing to decarbonization. The presented results are preliminary and require further analysis and validation. Several optimization techniques are implemented, leading to the establishment of designs that already have rather high pseudo-critical velocities. Further research will show how these theoretical findings can be utilized in practice. Full article
Show Figures

Figure 1

24 pages, 3500 KiB  
Article
Optimized Collaborative Routing for UAVs and Ground Vehicles in Integrated Logistics Systems
by Hafiz Muhammad Rashid Nazir, Yanming Sun and Yongjun Hu
Drones 2025, 9(8), 538; https://doi.org/10.3390/drones9080538 - 30 Jul 2025
Viewed by 191
Abstract
This study investigates the optimization of urban parcel delivery by integrating logistics vehicles and onboard drones within a static road network. A centralized delivery hub is responsible for coordinating both modes of transport to minimize total vehicle operation costs and customer waiting times. [...] Read more.
This study investigates the optimization of urban parcel delivery by integrating logistics vehicles and onboard drones within a static road network. A centralized delivery hub is responsible for coordinating both modes of transport to minimize total vehicle operation costs and customer waiting times. A simulation-based framework is developed to accurately model the delivery process. An enhanced Ant Colony Optimization (ACO) algorithm is proposed, incorporating a multi-objective formulation to improve route planning efficiency. Additionally, a scheduling algorithm is designed to synchronize the operations of multiple delivery bikes and drones, ensuring coordinated execution. The proposed integrated approach yields substantial improvements in both cost and service efficiency. Simulation results demonstrate a 16% reduction in vehicle operation costs and an 8% decrease in average customer waiting times relative to benchmark methods, indicating the practical applicability of the approach in urban logistics scenarios. Full article
Show Figures

Figure 1

14 pages, 3688 KiB  
Article
Oxygen-Vacancy Engineered SnO2 Dots on rGO with N-Doped Carbon Nanofibers Encapsulation for High-Performance Sodium-Ion Batteries
by Yue Yan, Bingxian Zhu, Zhengzheng Xia, Hui Wang, Weijuan Xu, Ying Xin, Qingshan Zhao and Mingbo Wu
Molecules 2025, 30(15), 3203; https://doi.org/10.3390/molecules30153203 - 30 Jul 2025
Viewed by 240
Abstract
The widespread adoption of sodium-ion batteries (SIBs) remains constrained by the inherent limitations of conventional anode materials, particularly their inadequate electronic conductivity, limited active sites, and pronounced structural degradation during cycling. To overcome these limitations, we propose a novel redox engineering approach to [...] Read more.
The widespread adoption of sodium-ion batteries (SIBs) remains constrained by the inherent limitations of conventional anode materials, particularly their inadequate electronic conductivity, limited active sites, and pronounced structural degradation during cycling. To overcome these limitations, we propose a novel redox engineering approach to fabricate oxygen-vacancy-rich SnO2 dots anchored on reduced graphene oxide (rGO), which are encapsulated within N-doped carbon nanofibers (denoted as ov-SnO2/rGO@N-CNFs) through electrospinning and subsequent carbonization. The introduction of rich oxygen vacancies establishes additional sodium intercalation sites and enhances Na+ diffusion kinetics, while the conductive N-doped carbon network effectively facilitates charge transport and mitigates SnO2 aggregation. Benefiting from the well-designed architecture, the hierarchical ov-SnO2/rGO@N-CNFs electrode achieves remarkable reversible specific capacities of 351 mAh g−1 after 100 cycles at 0.1 A g−1 and 257.3 mAh g−1 after 2000 cycles at 1.0 A g−1 and maintains 177 mAh g−1 even after 8000 cycles at 5.0 A g−1, demonstrating exceptional long-term cycling stability and rate capability. This work offers a versatile design strategy for developing high-performance anode materials through synergistic interface engineering for SIBs. Full article
Show Figures

Graphical abstract

18 pages, 3269 KiB  
Article
Long-Term Traffic Prediction Using Deep Learning Long Short-Term Memory
by Ange-Lionel Toba, Sameer Kulkarni, Wael Khallouli and Timothy Pennington
Smart Cities 2025, 8(4), 126; https://doi.org/10.3390/smartcities8040126 - 29 Jul 2025
Viewed by 496
Abstract
Traffic conditions are a key factor in our society, contributing to quality of life and the economy, as well as access to professional, educational, and health resources. This emphasizes the need for a reliable road network to facilitate traffic fluidity across the nation [...] Read more.
Traffic conditions are a key factor in our society, contributing to quality of life and the economy, as well as access to professional, educational, and health resources. This emphasizes the need for a reliable road network to facilitate traffic fluidity across the nation and improve mobility. Reaching these characteristics demands good traffic volume prediction methods, not only in the short term but also in the long term, which helps design transportation strategies and road planning. However, most of the research has focused on short-term prediction, applied mostly to short-trip distances, while effective long-term forecasting, which has become a challenging issue in recent years, is lacking. The team proposes a traffic prediction method that leverages K-means clustering, long short-term memory (LSTM) neural network, and Fourier transform (FT) for long-term traffic prediction. The proposed method was evaluated on a real-world dataset from the U.S. Travel Monitoring Analysis System (TMAS) database, which enhances practical relevance and potential impact on transportation planning and management. The forecasting performance is evaluated with real-world traffic flow data in the state of California, in the western USA. Results show good forecasting accuracy on traffic trends and counts over a one-year period, capturing periodicity and variation. Full article
(This article belongs to the Collection Smart Governance and Policy)
Show Figures

Figure 1

28 pages, 2959 KiB  
Article
Trajectory Prediction and Decision Optimization for UAV-Assisted VEC Networks: An Integrated LSTM-TD3 Framework
by Jiahao Xie and Hao Hao
Information 2025, 16(8), 646; https://doi.org/10.3390/info16080646 - 29 Jul 2025
Viewed by 144
Abstract
With the rapid development of intelligent transportation systems (ITSs) and Internet of Things (IoT), vehicle-mounted edge computing (VEC) networks are facing the challenge of handling increasingly growing computation-intensive and latency-sensitive tasks. In the UAV-assisted VEC network, by introducing mobile edge servers, the coverage [...] Read more.
With the rapid development of intelligent transportation systems (ITSs) and Internet of Things (IoT), vehicle-mounted edge computing (VEC) networks are facing the challenge of handling increasingly growing computation-intensive and latency-sensitive tasks. In the UAV-assisted VEC network, by introducing mobile edge servers, the coverage of ground infrastructure is effectively supplemented. However, there is still the problem of decision-making lag in a highly dynamic environment. This paper proposes a deep reinforcement learning framework based on the long short-term memory (LSTM) network for trajectory prediction to optimize resource allocation in UAV-assisted VEC networks. Uniquely integrating vehicle trajectory prediction with the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, this framework enables proactive computation offloading and UAV trajectory planning. Specifically, we design an LSTM network with an attention mechanism to predict the future trajectory of vehicles and integrate the prediction results into the optimization decision-making process. We propose state smoothing and data augmentation techniques to improve training stability and design a multi-objective optimization model that incorporates the Age of Information (AoI), energy consumption, and resource leasing costs. The simulation results show that compared with existing methods, the method proposed in this paper significantly reduces the total system cost, improves the information freshness, and exhibits better environmental adaptability and convergence performance under various network conditions. Full article
Show Figures

Figure 1

27 pages, 4786 KiB  
Article
Whole RNA-Seq Analysis Reveals Longitudinal Proteostasis Network Responses to Photoreceptor Outer Segment Trafficking and Degradation in RPE Cells
by Rebecca D. Miller, Isaac Mondon, Charles Ellis, Anna-Marie Muir, Stephanie Turner, Eloise Keeling, Htoo A. Wai, David S. Chatelet, David A. Johnson, David A. Tumbarello, Andrew J. Lotery, Diana Baralle and J. Arjuna Ratnayaka
Cells 2025, 14(15), 1166; https://doi.org/10.3390/cells14151166 - 29 Jul 2025
Viewed by 439
Abstract
RNA-seq analysis of the highly differentiated human retinal pigment epithelial (RPE) cell-line ARPE-19, cultured on transwells for ≥4 months, yielded 44,909 genes showing 83.35% alignment with the human reference genome. These included mRNA transcripts of RPE-specific genes and those involved in retinopathies. Monolayers [...] Read more.
RNA-seq analysis of the highly differentiated human retinal pigment epithelial (RPE) cell-line ARPE-19, cultured on transwells for ≥4 months, yielded 44,909 genes showing 83.35% alignment with the human reference genome. These included mRNA transcripts of RPE-specific genes and those involved in retinopathies. Monolayers were fed photoreceptor outer segments (POS), designed to be synchronously internalised, mimicking homeostatic RPE activity. Cells were subsequently fixed at 4, 6, 24 and 48 h when POS were previously shown to maximally co-localise with Rab5, Rab7, LAMP/lysosomes and LC3b/autophagic compartments. A comprehensive analysis of differentially expressed genes involved in proteolysis revealed a pattern of gene orchestration consistent with POS breakdown in the autophagy-lysosomal pathway. At 4 h, these included elevated upstream signalling events promoting early stages of cargo transport and endosome maturation compared to RPE without POS exposure. This transcriptional landscape altered from 6 h, transitioning to promoting cargo degradation in autolysosomes by 24–48 h. Longitudinal scrutiny of mRNA transcripts revealed nuanced differences even within linked gene networks. POS exposure also initiated transcriptional upregulation in ubiquitin proteasome and chaperone-mediated systems within 4–6 h, providing evidence of cross-talk with other proteolytic processes. These findings show detailed evidence of transcriptome-level responses to cargo trafficking and processing in RPE cells. Full article
(This article belongs to the Special Issue Retinal Pigment Epithelium in Degenerative Retinal Diseases)
Show Figures

Graphical abstract

18 pages, 5309 KiB  
Article
LGM-YOLO: A Context-Aware Multi-Scale YOLO-Based Network for Automated Structural Defect Detection
by Chuanqi Liu, Yi Huang, Zaiyou Zhao, Wenjing Geng and Tianhong Luo
Processes 2025, 13(8), 2411; https://doi.org/10.3390/pr13082411 - 29 Jul 2025
Viewed by 209
Abstract
Ensuring the structural safety of steel trusses in escalators is critical for the reliable operation of vertical transportation systems. While manual inspection remains widely used, its dependence on human judgment leads to extended cycle times and variable defect-recognition rates, making it less reliable [...] Read more.
Ensuring the structural safety of steel trusses in escalators is critical for the reliable operation of vertical transportation systems. While manual inspection remains widely used, its dependence on human judgment leads to extended cycle times and variable defect-recognition rates, making it less reliable for identifying subtle surface imperfections. To address these limitations, a novel context-aware, multi-scale deep learning framework based on the YOLOv5 architecture is proposed, which is specifically designed for automated structural defect detection in escalator steel trusses. Firstly, a method called GIES is proposed to synthesize pseudo-multi-channel representations from single-channel grayscale images, which enhances the network’s channel-wise representation and mitigates issues arising from image noise and defocused blur. To further improve detection performance, a context enhancement pipeline is developed, consisting of a local feature module (LFM) for capturing fine-grained surface details and a global context module (GCM) for modeling large-scale structural deformations. In addition, a multi-scale feature fusion module (MSFM) is employed to effectively integrate spatial features across various resolutions, enabling the detection of defects with diverse sizes and complexities. Comprehensive testing on the NEU-DET and GC10-DET datasets reveals that the proposed method achieves 79.8% mAP on NEU-DET and 68.1% mAP on GC10-DET, outperforming the baseline YOLOv5s by 8.0% and 2.7%, respectively. Although challenges remain in identifying extremely fine defects such as crazing, the proposed approach offers improved accuracy while maintaining real-time inference speed. These results indicate the potential of the method for intelligent visual inspection in structural health monitoring and industrial safety applications. Full article
Show Figures

Figure 1

12 pages, 759 KiB  
Article
Privacy-Preserving Byzantine-Tolerant Federated Learning Scheme in Vehicular Networks
by Shaohua Liu, Jiahui Hou and Gang Shen
Electronics 2025, 14(15), 3005; https://doi.org/10.3390/electronics14153005 - 28 Jul 2025
Viewed by 215
Abstract
With the rapid development of vehicular network technology, data sharing and collaborative training among vehicles have become key to enhancing the efficiency of intelligent transportation systems. However, the heterogeneity of data and potential Byzantine attacks cause the model to update in different directions [...] Read more.
With the rapid development of vehicular network technology, data sharing and collaborative training among vehicles have become key to enhancing the efficiency of intelligent transportation systems. However, the heterogeneity of data and potential Byzantine attacks cause the model to update in different directions during the iterative process, causing the boundary between benign and malicious gradients to shift continuously. To address these issues, this paper proposes a privacy-preserving Byzantine-tolerant federated learning scheme. Specifically, we design a gradient detection method based on median absolute deviation (MAD), which calculates MAD in each round to set a gradient anomaly detection threshold, thereby achieving precise identification and dynamic filtering of malicious gradients. Additionally, to protect vehicle privacy, we obfuscate uploaded parameters to prevent leakage during transmission. Finally, during the aggregation phase, malicious gradients are eliminated, and only benign gradients are selected to participate in the global model update, which improves the model accuracy. Experimental results on three datasets demonstrate that the proposed scheme effectively mitigates the impact of non-independent and identically distributed (non-IID) heterogeneity and Byzantine behaviors while maintaining low computational cost. Full article
(This article belongs to the Special Issue Cryptography in Internet of Things)
Show Figures

Figure 1

21 pages, 454 KiB  
Article
Modelling Cascading Failure in Complex CPSS to Inform Resilient Mission Assurance: An Intelligent Transport System Case Study
by Theresa Sobb and Benjamin Turnbull
Entropy 2025, 27(8), 793; https://doi.org/10.3390/e27080793 - 25 Jul 2025
Viewed by 327
Abstract
Intelligent transport systems are revolutionising all aspects of modern life, increasing the efficiency of commerce, modern living, and international travel. Intelligent transport systems are systems of systems comprised of cyber, physical, and social nodes. They represent unique opportunities but also have potential threats [...] Read more.
Intelligent transport systems are revolutionising all aspects of modern life, increasing the efficiency of commerce, modern living, and international travel. Intelligent transport systems are systems of systems comprised of cyber, physical, and social nodes. They represent unique opportunities but also have potential threats to system operation and correctness. The emergent behaviour in Complex Cyber–Physical–Social Systems (C-CPSSs), caused by events such as cyber-attacks and network outages, have the potential to have devastating effects to critical services across society. It is therefore imperative that the risk of cascading failure is minimised through the fortifying of these systems of systems to achieve resilient mission assurance. This work designs and implements a programmatic model to validate the value of cascading failure simulation and analysis, which is then tested against a C-CPSS intelligent transport system scenario. Results from the model and its implementations highlight the value in identifying both critical nodes and percolation of consequences during a cyber failure, in addition to the importance of including social nodes in models for accurate simulation results. Understanding the relationships between cyber, physical, and social nodes is key to understanding systems’ failures that occur because of or that involve cyber systems, in order to achieve cyber and system resilience. Full article
Show Figures

Figure 1

31 pages, 2271 KiB  
Article
Research on the Design of a Priority-Based Multi-Stage Emergency Material Scheduling System for Drone Coordination
by Shuoshuo Gong, Gang Chen and Zhiwei Yang
Drones 2025, 9(8), 524; https://doi.org/10.3390/drones9080524 - 25 Jul 2025
Viewed by 324
Abstract
Emergency material scheduling (EMS) is a core component of post-disaster emergency response, with its efficiency directly impacting rescue effectiveness and the satisfaction of affected populations. However, due to severe road damage, limited availability of resources, and logistical challenges after disasters, current EMS practices [...] Read more.
Emergency material scheduling (EMS) is a core component of post-disaster emergency response, with its efficiency directly impacting rescue effectiveness and the satisfaction of affected populations. However, due to severe road damage, limited availability of resources, and logistical challenges after disasters, current EMS practices often suffer from uneven resource distribution. To address these issues, this paper proposes a priority-based, multi-stage EMS approach with drone coordination. First, we construct a three-level EMS network “storage warehouses–transit centers–disaster areas” by integrating the advantages of large-scale transportation via trains and the flexible delivery capabilities of drones. Second, considering multiple constraints, such as the priority level of disaster areas, drone flight range, transport capacity, and inventory capacities at each node, we formulate a bilevel mixed-integer nonlinear programming model. Third, given the NP-hard nature of the problem, we design a hybrid algorithm—the Tabu Genetic Algorithm combined with Branch and Bound (TGA-BB), which integrates the global search capability of genetic algorithms, the precise solution mechanism of branch and bound, and the local search avoidance features of Tabu search. A stage-adjustment operator is also introduced to better adapt the algorithm to multi-stage scheduling requirements. Finally, we designed eight instances of varying scales to systematically evaluate the performance of the stage-adjustment operator and the Tabu search mechanism within TGA-BB. Comparative experiments were conducted against several traditional heuristic algorithms. The experimental results show that TGA-BB outperformed the other algorithms across all eight test cases, in terms of both average response time and average runtime. Specifically, in Instance 7, TGA-BB reduced the average response time by approximately 52.37% compared to TGA-Particle Swarm Optimization (TGA-PSO), and in Instance 2, it shortened the average runtime by about 97.95% compared to TGA-Simulated Annealing (TGA-SA).These results fully validate the superior solution accuracy and computational efficiency of TGA-BB in drone-coordinated, multi-stage EMS. Full article
Show Figures

Figure 1

20 pages, 695 KiB  
Article
Deep Hybrid Model for Fault Diagnosis of Ship’s Main Engine
by Se-Ha Kim, Tae-Gyeong Kim, Junseok Lee, Hyoung-Kyu Song, Hyeonjoon Moon and Chang-Jae Chun
J. Mar. Sci. Eng. 2025, 13(8), 1398; https://doi.org/10.3390/jmse13081398 - 23 Jul 2025
Viewed by 197
Abstract
Ships play a crucial role in modern society, serving purposes such as marine transportation, tourism, and exploration. Malfunctions or defects in the main engine, which is a core component of ship operations, can disrupt normal functionality and result in substantial financial losses. Consequently, [...] Read more.
Ships play a crucial role in modern society, serving purposes such as marine transportation, tourism, and exploration. Malfunctions or defects in the main engine, which is a core component of ship operations, can disrupt normal functionality and result in substantial financial losses. Consequently, early fault diagnosis of abnormal engine conditions is critical for effective maintenance. In this paper, we propose a deep hybrid model for fault diagnosis of ship main engines, utilizing exhaust gas temperature data. The proposed model utilizes both time-domain features (TDFs) and time-series raw data. In order to effectively extract features from each type of data, two distinct feature extraction networks and an attention module-based classifier are designed. The model performance is evaluated using real-world cylinder exhaust gas temperature data collected from the large ship low-speed two-stroke main engine. The experimental results demonstrate that the proposed method outperforms conventional methods in fault diagnosis accuracy. The experimental results demonstrate that the proposed method improves fault diagnosis accuracy by 6.146% compared to the best conventional method. Furthermore, the proposed method maintains superior performanceeven in noisy environments under realistic industrial conditions. This study demonstrates the potential of using exhaust gas temperature using a single sensor signal for data-driven fault detection and provides a scalable foundation for future multi-sensor diagnostic systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

13 pages, 2020 KiB  
Article
Micro-Gas Flow Sensor Utilizing Surface Network Density Regulation for Humidity-Modulated Ion Transport
by Chuanjie Liu and Zhihong Liu
Gels 2025, 11(8), 570; https://doi.org/10.3390/gels11080570 - 23 Jul 2025
Viewed by 258
Abstract
As a bridge for human–machine interaction, the performance improvement of sensors relies on the in-depth understanding of ion transport mechanisms. This study focuses on the surface effect of resistive gel sensors and designs a polyacrylic acid/ferric ion hydrogel (PAA/Fe3+) gas flow [...] Read more.
As a bridge for human–machine interaction, the performance improvement of sensors relies on the in-depth understanding of ion transport mechanisms. This study focuses on the surface effect of resistive gel sensors and designs a polyacrylic acid/ferric ion hydrogel (PAA/Fe3+) gas flow sensor. Prepared by one-pot polymerization, PAA/Fe3+ forms a three-dimensional network through the entanglement of crosslinked and uncrosslinked PAA chains, where the coordination between Fe3+ and carboxyl groups endows the material with excellent mechanical properties (tensile strength of 80 kPa and elongation at break of 1100%). Experiments show that when a gas flow acts on the hydrogel surface, changes in surface humidity alter the density of the network structure, thereby regulating ion migration rates: the network loosens to promote ion transport during water absorption, while it tightens to hinder transport during water loss. This mechanism enables the sensor to exhibit significant resistance responses (ΔR/R0 up to 0.55) to gentle breezes (0–13 m/s), with a response time of approximately 166 ms and a sensitivity 40 times higher than that of bulk deformation. The surface ion transport model proposed in this study provides a new strategy for ultrasensitive gas flow sensing, showing potential application values in intelligent robotics, electronic skin, and other fields. Full article
(This article belongs to the Special Issue Polymer Gels for Sensor Applications)
Show Figures

Graphical abstract

12 pages, 1001 KiB  
Proceeding Paper
The Hub Location Problem in Air Transportation: A Review
by Mohamed Anas Khalfi, Jamila El Alami and Mustapha Hlyal
Eng. Proc. 2025, 97(1), 49; https://doi.org/10.3390/engproc2025097049 - 21 Jul 2025
Viewed by 284
Abstract
The hub location problem is constantly examined in the field of air transportation, especially when designing networks for passenger airlines or express cargo providers. The competition that characterizes these businesses combined with the small benefit margins of the industry puts more pressure on [...] Read more.
The hub location problem is constantly examined in the field of air transportation, especially when designing networks for passenger airlines or express cargo providers. The competition that characterizes these businesses combined with the small benefit margins of the industry puts more pressure on finding innovative optimization tools when designing networks, locating hubs, and opening new routes with the minimum cost, usually under strict capacity constraints. This review covers the hub location problem in air transportation and its different mathematical models in preparation for a detailed SLR. Full article
Show Figures

Figure 1

27 pages, 15898 KiB  
Article
Modeling Multivariable Associations and Inter-Eddy Interactions: A Dual-Graph Learning Framework for Mesoscale Eddy Trajectory Forecasting
by Yanling Du, Bin Zhang, Jian Wang, Zhenli Qian and Wei Song
Remote Sens. 2025, 17(14), 2524; https://doi.org/10.3390/rs17142524 - 20 Jul 2025
Viewed by 260
Abstract
The precise forecasting of mesoscale eddy trajectories holds significant importance for understanding their mechanisms in driving global oceanic mass and heat transport. However, mesoscale eddies are influenced by numerous stochastic and uncertain factors, leading to substantial fluctuations in their attribute variables. Additionally, the [...] Read more.
The precise forecasting of mesoscale eddy trajectories holds significant importance for understanding their mechanisms in driving global oceanic mass and heat transport. However, mesoscale eddies are influenced by numerous stochastic and uncertain factors, leading to substantial fluctuations in their attribute variables. Additionally, the trajectories of eddies are related to historical trends and interact with surrounding eddies. These render the accurate forecasting of mesoscale eddy trajectories a formidable challenge. This study proposes a novel dynamic forecasting framework for eddies’ trajectories, termed EddyGnet, a dual graph neural network framework that synergistically models the complex multivariable association and the spatiotemporal eddy association. In this framework, the dynamic association among eddy attribute variables is first explored by a multivariable association graph (MAG) learning module. Subsequently, the spatial and temporal association among eddies are concurrently analyzed using a spatiotemporal eddy association graph (STEAG) learning module. Finally, a decayed volatility loss function is designed to properly handle the complex and variable data features and improve the forecasting performance. The experimental results on the eddy dataset verify the effectiveness of our proposed EddyGnet, demonstrating superior predictive accuracy and stability compared with existing classical methods. The findings advance the mechanistic understanding of eddy dynamics and provide a transferable paradigm for geoscientific spatiotemporal modeling. Full article
(This article belongs to the Special Issue Artificial Intelligence and Big Data for Oceanography (2nd Edition))
Show Figures

Graphical abstract

Back to TopTop