Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = transparent welding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5580 KiB  
Article
Burst Ultrafast Laser Welding of Quartz Glass
by Xianshi Jia, Yinzhi Fu, Kai Li, Chengaonan Wang, Zhou Li, Cong Wang and Ji’an Duan
Materials 2025, 18(5), 1169; https://doi.org/10.3390/ma18051169 - 6 Mar 2025
Cited by 2 | Viewed by 1108
Abstract
Ultrafast laser welding of transparent materials has been widely used in sensors, microfluidics, optics, etc. However, the existing ultrafast laser welding depths are limited by the short laser Rayleigh length, which makes it difficult to realize the joining of transparent materials in the [...] Read more.
Ultrafast laser welding of transparent materials has been widely used in sensors, microfluidics, optics, etc. However, the existing ultrafast laser welding depths are limited by the short laser Rayleigh length, which makes it difficult to realize the joining of transparent materials in the millimeter depth range and becomes a new challenge. Based on temporal shaping, we realized Burst mode ultrafast laser output with different sub-pulse numbers and explored the effect of different Burst modes on the welding performance using high-speed shadow in situ imaging. The experimental results show that the Burst mode femtosecond laser (twelve sub-pulses with a total energy of 28.9 μJ) of 238 fs, 1035 nm and 1000 kHz can form a molten structure with a maximum depth of 5 mm inside the quartz, and the welding strength can be higher than 18.18 MPa. In this context, we analyzed the transient process of forming teardrop molten structures inside transparent materials using high-speed shadow in situ imaging detection and systematically analyzed the fracture behavior of the samples. In addition, we further reveal the Burst femtosecond laser welding mechanism of transparent materials comprehensively by exploring the difference in welding performance under the effect of Burst modes with different sub-pulse numbers. This paper is the first to realize molten structures in the range of up to 5 mm, which is expected to provide a new welding method for curved surfaces and large-size transparent materials, helping to improve the packaging strength of photoelectric devices and the window strength of aerospace materials. Full article
(This article belongs to the Special Issue Advancements in Ultrasonic Testing for Metallurgical Materials)
Show Figures

Figure 1

14 pages, 10638 KiB  
Article
Fluorescence Output Enhancement of Ce3+:YAG Transparent Ceramics by Eutectic Soldering Packaging
by Xuezhuan Yi, Qinglin Sai, Yanna Tian, Renjie Jiang and Mingqin Li
Materials 2025, 18(5), 1081; https://doi.org/10.3390/ma18051081 - 28 Feb 2025
Viewed by 670
Abstract
This paper demonstrates the application of eutectic welding to Ce3+:YAG transparent ceramics for reliable detection and imaging of UV emission, particularly focusing on demanding conditions, such as high repetition rate, high energy, and high vacuum. A series of Ce3+:YAG [...] Read more.
This paper demonstrates the application of eutectic welding to Ce3+:YAG transparent ceramics for reliable detection and imaging of UV emission, particularly focusing on demanding conditions, such as high repetition rate, high energy, and high vacuum. A series of Ce3+:YAG transparent ceramics with different Ce3+ doping concentrations (0.1 at%, 0.3 at%, 0.5 at%, and 1.0 at%) were prepared via vacuum sintering. Their crystal microstructure, luminescence properties, transmittance, and fluorescence lifetime were studied. It was found that the optimal Ce3+ doping concentration is 0.3 at%. The measured ultraviolet-to-visible energy conversion efficiency of the 0.3 at% Ce3+:YAG transparent ceramics with a thickness of 1.0 mm is 3.9%. Compared with silicone encapsulated Ce3+:YAG transparent ceramic samples, the eutectic-soldered samples exhibited excellent resistance to temperature quenching of the luminescence, which indicates that eutectic welding can effectively improve the fluorescence performance of Ce3+:YAG transparent ceramics for the application of deep ultraviolet light detection. Full article
Show Figures

Figure 1

16 pages, 15835 KiB  
Article
Research on Laser Direct Transmission Welding of Transparent Polystyrene and Polycarbonate Based on Laser Surface Modification
by Kehui Zhai, Fuhao Yang, Qiyan Gu, Yu Lin, Minqiu Liu, Deqin Ouyang, Yewang Chen, Ying Zhang, Qitao Lue and Shuangchen Ruan
Polymers 2025, 17(3), 409; https://doi.org/10.3390/polym17030409 - 4 Feb 2025
Viewed by 1074
Abstract
The conventional near-infrared laser transmission welding (LTW) process for joining dissimilar transparent polymers is limited by the need to incorporate optical absorbents, which compromises joint performance and raises biocompatibility concerns. To address these issues, this study proposed a surface modification technique using femtosecond [...] Read more.
The conventional near-infrared laser transmission welding (LTW) process for joining dissimilar transparent polymers is limited by the need to incorporate optical absorbents, which compromises joint performance and raises biocompatibility concerns. To address these issues, this study proposed a surface modification technique using femtosecond laser ablation prior to the welding process. Experiments involved 520 nm femtosecond laser ablation of transparent polymers, followed by LTW of dissimilar transparent polymers using an 808 nm laser, with subsequent characterization and mechanical property evaluations. A maximum joint strength of 13.65 MPa was achieved. A comprehensive investigation was conducted into the physical and chemical mechanisms through which laser ablation improved the welding performance of dissimilar transparent polymers. The results demonstrated that laser ablation generated microstructures that serve as substitutes for optical absorbents while also facilitating the formation of numerous oxygen-containing functional groups. These enhancements improve miscibility and bonding performance between dissimilar polymers, enabling absorbent-free welding between ablated polycarbonate (PC) and polystyrene (PS). This work confirms both the feasibility and potential application of this process for direct LTW of dissimilar transparent polymers. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

12 pages, 3591 KiB  
Article
Multilayer Graphene Stacked with Silver Nanowire Networks for Transparent Conductor
by Jinsung Kwak
Materials 2025, 18(1), 208; https://doi.org/10.3390/ma18010208 - 6 Jan 2025
Cited by 1 | Viewed by 979
Abstract
A mechanically robust flexible transparent conductor with high thermal and chemical stability was fabricated from welded silver nanowire networks (w-Ag-NWs) sandwiched between multilayer graphene (MLG) and polyimide (PI) films. By modifying the gas flow dynamics and surface chemistry of the Cu surface during [...] Read more.
A mechanically robust flexible transparent conductor with high thermal and chemical stability was fabricated from welded silver nanowire networks (w-Ag-NWs) sandwiched between multilayer graphene (MLG) and polyimide (PI) films. By modifying the gas flow dynamics and surface chemistry of the Cu surface during graphene growth, a highly crystalline and uniform MLG film was obtained on the Cu foil, which was then directly coated on the Ag-NW networks to serve as a barrier material. It was found that the highly crystalline layers in the MLG film compensate for structural defects, thus forming a perfect barrier film to shield Ag NWs from oxidation and sulfurization. MLG/w-Ag-NW composites were then embedded into the surface of a transparent and colorless PI thin film by spin-coating. This allowed the MLG/w-Ag-NW/PI composite to retain its original structural integrity due to the intrinsic physical and chemical properties of PI, which also served effectively as a binder. In view of its unique sandwich structure and the chemical welding of the Ag NWs, the flexible substrate-cum-electrode had an average sheet resistance of ≈34 Ω/sq and a transmittance of ≈91% in the visible range, and also showed excellent stability against high-temperature annealing and sulfurization. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

14 pages, 6163 KiB  
Article
In-Volume Glass Modification Using a Femtosecond Laser: Comparison Between Repetitive Single-Pulse, MHz Burst, and GHz Burst Regimes
by Manon Lafargue, Théo Guilberteau, Pierre Balage, Bastien Gavory, John Lopez and Inka Manek-Hönninger
Materials 2025, 18(1), 78; https://doi.org/10.3390/ma18010078 - 27 Dec 2024
Viewed by 1088
Abstract
In this study, we report, for the first time, to the best of our knowledge, on in-volume glass modifications produced by GHz bursts of femtosecond pulses. We compare three distinct methods of energy deposition in glass, i.e., the single-pulse, MHz burst, and GHz [...] Read more.
In this study, we report, for the first time, to the best of our knowledge, on in-volume glass modifications produced by GHz bursts of femtosecond pulses. We compare three distinct methods of energy deposition in glass, i.e., the single-pulse, MHz burst, and GHz burst regimes, and evaluate the resulting modifications. Specifically, we investigate in-volume modifications produced by each regime under varying parameters such as the pulse/burst energy, the scanning velocity, and the number of pulses in the burst, with the aim of establishing welding process windows for both sodalime and fused silica. Full article
(This article belongs to the Special Issue Fabrication of Advanced Materials)
Show Figures

Figure 1

16 pages, 3604 KiB  
Article
High-Strength Welding of Silica Glass Using Double-Pulse Femtosecond Laser under Non-Optical Contact Conditions
by Zheng Gao, Jiahua He, Xianshi Jia, Zhaoxi Yi, Cheng Li, Shifu Zhang, Cong Wang and Ji’an Duan
Photonics 2024, 11(10), 945; https://doi.org/10.3390/photonics11100945 - 8 Oct 2024
Cited by 4 | Viewed by 1803
Abstract
Ultrafast laser welding technology for transparent materials has developed rapidly in recent years; however, high-strength non-optical contact transparent material welding has been a challenge. This work presents a welding method for silica glass using a double-pulse femtosecond (fs) laser and optimizes the laser [...] Read more.
Ultrafast laser welding technology for transparent materials has developed rapidly in recent years; however, high-strength non-optical contact transparent material welding has been a challenge. This work presents a welding method for silica glass using a double-pulse femtosecond (fs) laser and optimizes the laser processing parameters to enhance the welding performance. The welding characteristics of silica glass are analyzed under different time delays by controlling the pulse delay of double pulses. In addition to comprehensively study the influence of various experimental conditions on double-pulse fs laser welding, multi-level tests are designed for five factors, including average laser power, pulse delay, scanning interval, scanning speed, and repetition rate. Finally, by optimizing the parameters, a welding strength of 57.15 MPa is achieved at an average power of 3500 mW, repetition rate of 615 kHz, pulse delay of 66.7 ps, scanning interval of 10 µm, and scanning speed of 1000 µm/s. This work introduces a new approach to glass welding and presents optimal parameters for achieving higher welding strength, which can be widely used in aerospace, microelectronic packaging, microfluidics, and other fields. Full article
Show Figures

Figure 1

25 pages, 12866 KiB  
Review
Advances in and Future Perspectives on High-Power Ceramic Lasers
by Vinay Rastogi and Shivanand Chaurasia
Photonics 2024, 11(10), 942; https://doi.org/10.3390/photonics11100942 - 7 Oct 2024
Cited by 1 | Viewed by 2125
Abstract
Advancements in laser glass compositions and manufacturing techniques has allowed the development of a new category of high-energy and high-power laser systems which are being used in various applications, such as for fundamental research, material processing and inertial confinement fusion (ICF) technologies research. [...] Read more.
Advancements in laser glass compositions and manufacturing techniques has allowed the development of a new category of high-energy and high-power laser systems which are being used in various applications, such as for fundamental research, material processing and inertial confinement fusion (ICF) technologies research. A ceramic laser is a remarkable revolution in solid state lasers. It exhibits crystalline properties, high yields, better thermal conductivity, a uniformly broadened emission cross-section, and a higher mechanical constant. Polycrystalline ceramic lasers combine the properties of glasses and crystals, which offer the unique advantages of high thermal stability, excellent optical transparency, and the ability to incorporate active laser ions homogeneously. They are less expensive and have a similar fabrication process to glass lasers. Recent developments in these classes of lasers have led to improvements in their efficiency, beam quality, and wavelength versatility, making them suitable for a broad range of applications, such as scientific research requiring ultra-fast laser pulses, medical procedures like laser surgery and high-precision cutting and welding in industrial manufacturing. The future of ceramic lasers looks promising, with ongoing research focused on enhancing their performance, developing new doping materials and expanding their functional wavelengths. The ongoing progress in high-power ceramic lasers is continuously expanding the limits of laser technology, therefore allowing the development of more powerful and efficient systems for a wide range of advanced and complex applications. In this paper, we review the advances, limitations and future perspectives of ceramic lasers. Full article
(This article belongs to the Special Issue Recent Advances and Future Perspectives in Solid-State Lasers)
Show Figures

Figure 1

15 pages, 24803 KiB  
Article
Quality of Zinc Coating Formed on Structural Steel by Hot-Dip Galvanizing after Surface Contamination
by Jiřina Vontorová, Petr Mohyla and Kateřina Kreislová
Coatings 2024, 14(4), 493; https://doi.org/10.3390/coatings14040493 - 17 Apr 2024
Cited by 5 | Viewed by 2872
Abstract
This paper deals with the evaluation of the surface of structural steel whose samples were deliberately contaminated with transparent spray primer, adhesive label glue, and welding sprays prior to hot-dip galvanizing. The galvanized samples were studied by optical microscopy, GDOES, adhesion tests, and [...] Read more.
This paper deals with the evaluation of the surface of structural steel whose samples were deliberately contaminated with transparent spray primer, adhesive label glue, and welding sprays prior to hot-dip galvanizing. The galvanized samples were studied by optical microscopy, GDOES, adhesion tests, and condensation humidity tests. The effect of surface contamination on the quality of the zinc coating was found to be significant. In some cases, the zinc coating is damaged (after contamination with welding sprays), in others, it is completely absent (after contamination with spray primer or adhesive label glue). Full article
(This article belongs to the Special Issue Modern Methods of Shaping the Structure and Properties of Coatings)
Show Figures

Figure 1

29 pages, 835 KiB  
Article
Physically Based Thermal Infrared Snow/Ice Surface Emissivity for Fast Radiative Transfer Models
by Nicholas R. Nalli, Cheng Dang, James A. Jung, Robert O. Knuteson, E. Eva Borbas, Benjamin T. Johnson, Ken Pryor and Lihang Zhou
Remote Sens. 2023, 15(23), 5509; https://doi.org/10.3390/rs15235509 - 27 Nov 2023
Cited by 2 | Viewed by 2511
Abstract
Accurate thermal infrared (TIR) fast-forward models are critical for weather forecasting via numerical weather prediction (NWP) satellite radiance assimilation and operational environmental data record (EDR) retrieval algorithms. The thermodynamic and compositional data about the surface and lower troposphere are derived from semi-transparent TIR [...] Read more.
Accurate thermal infrared (TIR) fast-forward models are critical for weather forecasting via numerical weather prediction (NWP) satellite radiance assimilation and operational environmental data record (EDR) retrieval algorithms. The thermodynamic and compositional data about the surface and lower troposphere are derived from semi-transparent TIR window bands (i.e., surface-sensitive channels) that can span into the far-infrared (FIR) region under dry polar conditions. To model the satellite observed radiance within these bands, an accurate a priori emissivity is necessary for the surface in question, usually provided in the form of a physical or empirical model. To address the needs of hyperspectral TIR satellite radiance assimilation, this paper discusses the research, development, and preliminary validation of a physically based snow/ice emissivity model designed for practical implementation within operational fast-forward models such as the U.S. National Oceanic and Atmospheric Administration (NOAA) Community Radiative Transfer Model (CRTM). To accommodate the range of snow grain sizes, a hybrid modeling approach is adopted, combining a layer scattering model based on the Mie theory (viz., the Wiscombe–Warren 1980 snow albedo model, its complete derivation provided in the Appendices) with a specular facet model. The Mie-scattering model is valid for the smallest snow grain sizes typical of fresh snow and frost, whereas the specular facet model is better suited for the larger sizes and welded snow surfaces typical of aged snow. Comparisons of the model against the previously published spectral emissivity measurements show reasonable agreement across zenith observing angles and snow grain sizes, and preliminary observing system experiments (OSEs) have revealed notable improvements in snow/ice surface window channel calculations versus hyperspectral TIR satellite observations within the NOAA NWP radiance assimilation system. Full article
(This article belongs to the Special Issue Advances in Thermal Infrared Remote Sensing II)
Show Figures

Graphical abstract

43 pages, 29178 KiB  
Review
Ultrafast Laser Additive Manufacturing: A Review
by Jacob Saunders, Mohammad Elbestawi and Qiyin Fang
J. Manuf. Mater. Process. 2023, 7(3), 89; https://doi.org/10.3390/jmmp7030089 - 5 May 2023
Cited by 21 | Viewed by 9004
Abstract
Ultrafast lasers are proven and continually evolving manufacturing tools. Concurrently, additive manufacturing (AM) has emerged as a key area of interest for 3D fabrication of objects with arbitrary geometries. Use of ultrafast lasers for AM presents possibilities for next generation manufacturing techniques for [...] Read more.
Ultrafast lasers are proven and continually evolving manufacturing tools. Concurrently, additive manufacturing (AM) has emerged as a key area of interest for 3D fabrication of objects with arbitrary geometries. Use of ultrafast lasers for AM presents possibilities for next generation manufacturing techniques for hard-to-process materials, transparent materials, and micro- and nano-manufacturing. Of particular interest are selective laser melting/sintering (SLM/SLS), multiphoton lithography (MPL), laser-induced forward transfer (LIFT), pulsed laser deposition (PLD), and welding. The development, applications, and recent advancements of these technologies are described in this review as an overview and delineation of the burgeoning ultrafast laser AM field. As they mature, their adoption by industry and incorporation into commercial systems will be facilitated by process advancements such as: process monitoring and control, increased throughput, and their integration into hybrid manufacturing systems. Recent progress regarding these aspects is also reviewed. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Additive Manufacturing)
Show Figures

Figure 1

32 pages, 13176 KiB  
Review
A Review on Ultrafast Laser Microwelding of Transparent Materials and Transparent Material–Metals
by Jiayi Xu, Qing Jiang, Jin Yang, Jiangmei Cui, Yixuan Zhao, Min Zheng, J. P. Oliveira, Zhi Zeng, Rui Pan and Shujun Chen
Metals 2023, 13(5), 876; https://doi.org/10.3390/met13050876 - 1 May 2023
Cited by 20 | Viewed by 4468
Abstract
Transparent hard and brittle (THB) materials have generated significant interest due to their excellent properties, such as wide spectral transmittance, heat resistance, chemical inactivity and high mechanical strength. To further explore the application of THB materials, it is inevitable to be confronted with [...] Read more.
Transparent hard and brittle (THB) materials have generated significant interest due to their excellent properties, such as wide spectral transmittance, heat resistance, chemical inactivity and high mechanical strength. To further explore the application of THB materials, it is inevitable to be confronted with a range of joining THB materials and THB material–metals. Ultrafast (UF) laser microwelding enables a new means of joining THB materials and THB material–metals, due to a localized energy deposition method, which is dominated by nonlinear absorption. This process can realize high-quality micro-zone direct joining of THB materials or THB material–metals without the assistance of a light-absorbing intermediate layer. In this paper, we review the advances in UF laser microwelding of THB materials and THB material–metals considering the last two decades, from the analysis of the interaction mechanism between UF laser and matter to the key influencing factors and practical applications of this technology. Finally, the existing problems and the future research focus of UF laser microwelding technology of THB materials and THB material–metals are discussed. Full article
(This article belongs to the Special Issue Advanced Welding Technology in Metals II)
Show Figures

Figure 1

12 pages, 3141 KiB  
Article
Comparative Study on Preparation Methods for Transparent Conductive Films Based on Silver Nanowires
by Jizhe Zhang, Xingzhong Zhu, Juan Xu, Ruixing Xu, Hao Yang and Caixia Kan
Molecules 2022, 27(24), 8907; https://doi.org/10.3390/molecules27248907 - 14 Dec 2022
Cited by 7 | Viewed by 2832
Abstract
Silver nanowires, which have high optoelectronic properties, have the potential to supersede indium tin oxide in the field of electrocatalysis, stretchable electronic, and solar cells. Herein, four mainstream experimental methods, including Mayer–rod coating, spin coating, spray coating, and vacuum filtration methods, are employed [...] Read more.
Silver nanowires, which have high optoelectronic properties, have the potential to supersede indium tin oxide in the field of electrocatalysis, stretchable electronic, and solar cells. Herein, four mainstream experimental methods, including Mayer–rod coating, spin coating, spray coating, and vacuum filtration methods, are employed to fabricate transparent conductive films based on the same silver nanowires to clarify the significance of preparation methods on the performance of the films. The surface morphology, conductive property, uniformity, and flexible stability of these four Ag NW-based films, are analyzed and compared to explore the advantages of these methods. The transparent conductive films produced by the vacuum filtration method have the most outstanding performance in terms of surface roughness and uniformity, benefitting from the stronger welding of NW-NW junctions after the press procedure. However, limited by the size of the membrane and the vacuum degree of the equipment, the small-size Ag films used in precious devices are appropriate to obtain through this method. Similarly, the spin coating method is suited to prepare Ag NWs films with small sizes, which shows excellent stability after the bending test. In comparison, much larger-size films could be obtained through Mayer-rod coating and spray coating methods. The pull-down speed and force among the Mayer-rod coating process, as well as the spray distance and traveling speed among the spray coating process, are essential to the uniformity of Ag NW films. After being treated with NaBH4 and polymethyl methacrylate (PMMA), the obtained Ag NW/PMMA films show great potential in the field of film defogging due to the Joule heating effect. Taken together, based on the advantages of each preparation method, the Ag NW-based films with desired size and performances are easier to prepare, meeting the requirements of different application fields. Full article
Show Figures

Figure 1

10 pages, 2151 KiB  
Article
Performance Enhancement of Silver Nanowire-Based Transparent Electrodes by Ultraviolet Irradiation
by Shengyong Wang, Huan Liu, Yongqiang Pan, Fei Xie, Yan Zhang, Jijie Zhao, Shuai Wen and Fei Gao
Nanomaterials 2022, 12(17), 2956; https://doi.org/10.3390/nano12172956 - 26 Aug 2022
Cited by 9 | Viewed by 2133
Abstract
Silver nanowires (AgNWs) are used as transparent electrodes (TE) in many devices. However, the contact mode between the nanowires is the biggest reason why the sheet resistance of silver nanowires is limited. Here, simple and effective ultraviolet (UV) irradiation welding is chosen to [...] Read more.
Silver nanowires (AgNWs) are used as transparent electrodes (TE) in many devices. However, the contact mode between the nanowires is the biggest reason why the sheet resistance of silver nanowires is limited. Here, simple and effective ultraviolet (UV) irradiation welding is chosen to solve this problem. The influence of the power density of the UV irradiation on welding of the silver nanowires is studied and the fixed irradiation time is chosen as one minute. The range of the UV (380 nm) irradiation power is chosen from 30 mW/cm2 to 150 mW/cm2. First of all, the transmittance of the silver nanowire film is not found to be affected by the UV welding (400–11,000 nm). The sheet resistance of the silver nanowires decreases to 73.9% at 60 mW/cm2 and increases to 127.6% at 120 mW/cm2. The investigations on the UV irradiation time reveal that the sheet resistance of the AgNWs decreases continuously when the UV irradiation time is varied from 0 to 3 min, and drops to 57.3% of the initial value at 3 min. From 3–6 min of the continuous irradiation time, the change of the sheet resistance is not obvious, which reflects the self-limiting and self-termination of AgNWs welding. By changing the wavelength of the UV irradiation from 350–400 nm, it is found that the welding effect is best when the UV wavelength is 380 nm. The average transmittance, square resistance, and the figure of merit of the welded AgNWs at 400–780 nm are 95.98%, 56.5 Ω/sq, and 117.42 × 10−4 Ω−1, respectively. The UV-welded AgNWs are also used in silicon-based photodetectors, and the quantum efficiency of the device is improved obviously. Full article
Show Figures

Figure 1

14 pages, 2780 KiB  
Article
Electrochemical Redox In-Situ Welding of Silver Nanowire Films with High Transparency and Conductivity
by Wang Zhang, Jiashuan Bao, Chenhui Xu, Pengfeng Zhu, Xiangliang Pan and Rui Li
Inorganics 2022, 10(7), 92; https://doi.org/10.3390/inorganics10070092 - 30 Jun 2022
Cited by 2 | Viewed by 2906
Abstract
Silver nanowire (AgNW) networks with high transparency and conductivity are crucial to developing transparent conductive films (TCFs) for flexible optoelectronic devices. However, AgNW-based TCFs still suffer from the high contact resistance of AgNW junctions with both the in-plane and out-of-plane charge transport barrier. [...] Read more.
Silver nanowire (AgNW) networks with high transparency and conductivity are crucial to developing transparent conductive films (TCFs) for flexible optoelectronic devices. However, AgNW-based TCFs still suffer from the high contact resistance of AgNW junctions with both the in-plane and out-of-plane charge transport barrier. Herein, we report a rapid and green electrochemical redox strategy to in-situ weld AgNW networks for the enhanced conductivity and mechanical durability of TCFs with constant transparency. The welded TCFs show a marked decrease of the sheet resistance (reduced to 45.5% of initial values on average) with high transmittance of 97.02% at 550 nm (deducting the background of substrates). The electrochemical welding treatment enables the removal of the residual polyvinylpyrrolidone layer and the in-situ formation of Ag solder in the oxidation and reduction processes, respectively. Furthermore, local conductivity studies confirm the improvement of both the in-plane and the out-of-plane charge transport by conductive atomic force microscopy. This proposed electrochemical redox method provides new insights on the welding of AgNW-based TCFs with high transparency and low resistance for the development of next-generation flexible optoelectronic devices. Furthermore, such conductive films based on the interconnected AgNW networks can be acted as an ideal supporter to construct heterogeneous structures with other functional materials for wide applications in photocatalysis and electrocatalysis. Full article
(This article belongs to the Special Issue Metal Nanomaterials as Efficient Electrocatalysts)
Show Figures

Figure 1

11 pages, 2312 KiB  
Article
Optical Coherence Tomography for 3D Weld Seam Localization in Absorber-Free Laser Transmission Welding
by Frederik Maiwald, Clemens Roider, Michael Schmidt and Stefan Hierl
Appl. Sci. 2022, 12(5), 2718; https://doi.org/10.3390/app12052718 - 5 Mar 2022
Cited by 4 | Viewed by 3720
Abstract
Quality and reliability are of the utmost importance for manufacturing in the optical and medical industries. Absorber-free laser transmission welding enables the precise joining of identical polymers without additives or adhesives and is well-suited to meet the demands of the aforementioned industries. To [...] Read more.
Quality and reliability are of the utmost importance for manufacturing in the optical and medical industries. Absorber-free laser transmission welding enables the precise joining of identical polymers without additives or adhesives and is well-suited to meet the demands of the aforementioned industries. To attain sufficient absorption of laser energy without absorbent additives, thulium fiber lasers, which emit in the polymers’ intrinsic absorption spectrum, are used. Focusing the laser beam with a high numerical aperture provides significant intensity gradients inside the workpiece and enables selective fusing of the internal joining zone without affecting the surface of the device. Because seam size and position are crucial, the high-quality requirements demand internal weld seam monitoring. In this work, we propose a novel method to determine weld seam location and size using optical coherence tomography. Changes in optical material properties because of melting and re-solidification during welding allow for weld seam differentiation from the injection-molded base material. Automatic processing of the optical coherence tomography data enables the identification and measurement of the weld seam geometry. The results from our technique are consistent with microscopic images of microtome sections and demonstrate that weld seam localization in polyamide 6 is possible with an accuracy better than a tenth of a millimeter. Full article
(This article belongs to the Special Issue State-of-the-Art of Optical Micro/Nano-Metrology and Instrumentation)
Show Figures

Figure 1

Back to TopTop