Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = transparent rocks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5055 KiB  
Article
Assessing the Impact of Concurrent Tunnel Excavations on Rock Mass Deformation Around Existing Structures
by Maoyi Liu, Qiang Ou, Xuanxuan Ren and Xuanming Ding
Appl. Sci. 2025, 15(12), 6875; https://doi.org/10.3390/app15126875 - 18 Jun 2025
Viewed by 239
Abstract
Due to the complexity of planning and constructing underground lines, construction challenges—such as close proximity and multi-line interactions—are increasingly being recognized, along with their associated safety hazards. The visual observation of tunnel deformation and changes in the surrounding strata is difficult. In this [...] Read more.
Due to the complexity of planning and constructing underground lines, construction challenges—such as close proximity and multi-line interactions—are increasingly being recognized, along with their associated safety hazards. The visual observation of tunnel deformation and changes in the surrounding strata is difficult. In this study, laboratory model experiments were conducted using a mixture of liquid paraffin, n-tridecane, and silica gel powder, combined in specific proportions to create a transparent material that simulates natural soft rock. The new tunnel was designed to simultaneously cross over and under two existing tunnels. The impact of the new tunnel on the existing tunnels was examined, with excavation length and soil layer thickness considered as the primary influencing factors. The results indicate that excavating the new tunnel causes settlement deformation in the tunnels above and heave deformation in the tunnels below. The magnitude of deformation increases as excavation progresses but decreases with the greater thickness of the soil interlayer. For an existing tunnel, variations in the thickness of the soil interlayer not only affect its own deformation but also disturb the tunnel on the opposite side. Therefore, to ensure safer and orderly urban tunnel construction and to address the “black box” effect, it is essential to study the deformation characteristics of existing tunnels and their surrounding rock during the construction of new tunnels. Full article
Show Figures

Figure 1

22 pages, 140947 KiB  
Article
Monitoring of Temporal Changes in the Gravity Field as an Element of the Geophysical Safety System for Mine Barrier Pillars
by Łukasz Kortas
Geosciences 2025, 15(6), 225; https://doi.org/10.3390/geosciences15060225 - 13 Jun 2025
Viewed by 354
Abstract
Underground longwall mining conducted in the vicinity of the barrier pillars in the KWK ROW Ruch Marcel mine has led to volume changes in the rock mass. As the longwalls progressed, a gradual increase in stress occurred in the goaf overburden, as a [...] Read more.
Underground longwall mining conducted in the vicinity of the barrier pillars in the KWK ROW Ruch Marcel mine has led to volume changes in the rock mass. As the longwalls progressed, a gradual increase in stress occurred in the goaf overburden, as a result of which this part of the rock mass increased in density in relation to the surrounding strata. Seismic events occurring during mining as a result of elastic energy accumulation led to the relaxation of the medium and local decreases in its bulk density. The microgravimetric method is sensitive to variations in this physical parameter of rock. The most transparent effects of the differences in rock mass density can be observed by performing periodic local gravity field surveys and analysing their spatial and temporal variability. This paper analyses the relationship between ground deformations and the spatial and temporal gravity field distribution changes observed on the surface in the context of the safety of barrier pillars F1 and F2 in Marklowice (the GSB-GFO testing ground of project EPOS-PL+). Relative gravimetric surveys, referenced to the determined absolute values of g, were performed in 7 series over the period of 2021–2023. The collected data made it possible to chart differential maps of gravity field changes and anomalies with Bouguer reduction. The differential anomaly distributions between successive survey series and the reference series were analysed. This served as the basis for assessing the safety of the barrier pillars maintained by the mine and the possibility of ground deformation occurrence on the surface. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

19 pages, 6106 KiB  
Article
Experimental Research on the Propagation Mode of 3D Hollow Cracks and Material Strength Characteristics Under Hydro-Mechanical Coupling
by Bangxiang Li, Guanhua Wang, Dongyang Xu and Hongbo Zhao
J. Mar. Sci. Eng. 2025, 13(2), 259; https://doi.org/10.3390/jmse13020259 - 30 Jan 2025
Viewed by 663
Abstract
The fracture evolution and the strength characteristics of a jointed rock mass under hydro-mechanical coupling are key issues that affect the safety and stability of underground engineering. In this study, a kind of transparent rock-like resin was adopted to investigate the crack initiation [...] Read more.
The fracture evolution and the strength characteristics of a jointed rock mass under hydro-mechanical coupling are key issues that affect the safety and stability of underground engineering. In this study, a kind of transparent rock-like resin was adopted to investigate the crack initiation and propagation modes of the 3D flaw under hydro-mechanical coupling. The influences of the water pressure and the flaw dip angle on the fracture modes of the 3D flaw and the strength properties of the specimen were analyzed. The experiment results indicated that under the initiation and propagation modes, the 3D flaw presented two types of modes: the low-water-pressure type and the high-water-pressure type. The increase in the water pressure had a significant promoting effect on the crack initiation and propagation, which changed the overall failure mode of the specimen. With the increase in the flaw dip angle, the critical growth length of the wing crack decreased and the initiation moment of the fin-like crack showed a hysteretic tendency. The influences of the water pressure on the crack initiation stress and failure strength had thresholds. When lower than the threshold, the crack initiation stress increased slightly and the failure strength decreased gradually with the increase in the water pressure. Once the threshold was exceeded, both the crack initiation stress and the failure strength decreased significantly with the increase in the water pressure. With the increase in the flaw dip angle, both the crack initiation stress and the failure strength showed a first decreasing and then increasing tendency. The lowest crack initiation stress and the failure strength were found for the specimen containing the 45° flaw, while the highest were found for the specimen containing the 75° flaw. This study helps to deepen the understanding of the fracture mechanism of the engineering rock mass under hydro-mechanical coupling and has certain theoretical and applied value in engineering design and construction safety. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 14672 KiB  
Article
Visualization Experiment on the Influence of the Lost Circulation Material Injection Method on Fracture Plugging
by Yi Feng, Guolin Xin, Wantong Sun, Gao Li, Rui Li and Huibin Liu
Processes 2025, 13(1), 236; https://doi.org/10.3390/pr13010236 - 15 Jan 2025
Viewed by 892
Abstract
The drilling fluid loss or lost circulation via near-wellbore fractures is one of the most critical problems in the drilling of deep oil and gas resources, which causes other problems such as difficulty in achieving wellbore pressure control and reservoir damage. The conventional [...] Read more.
The drilling fluid loss or lost circulation via near-wellbore fractures is one of the most critical problems in the drilling of deep oil and gas resources, which causes other problems such as difficulty in achieving wellbore pressure control and reservoir damage. The conventional treatment is to introduce granular lost circulation material (LCM) into the drilling fluid to plug the fractures. As the migration mechanism of the LCM in irregular fractures has not been completely figured out as of yet, the low success rate of fracture plugging and repeated drilling fluid loss still obstruct the exploitation of deep oil and gas resources. In this paper, the spatial data of actual rock fracture surfaces were obtained through structured light scanning, and an irregular surface identical to the rock was machined on a transparent polymethyl methacrylate plate. On this basis, a visualization experimental apparatus for fracture plugging was established, and the fracture flow space of this device was consistent with that of the actual rock fracture. Employing cylindrical nylon particles as LCM, a visualization experiment study was carried out to investigate the process of LCM bridging and fracture plugging and the influence of LCM injection methods. The experimental results show that the process of fracture plugging includes the sporadic bridging, plugging zone extension and merging, thickening of the plugging zone and complete plugging of the fracture. It was observed in the visualization experiment that a large number of small particles flow deep into the fracture in the traditional fracture plugging method, where all types and sizes of LCM are injected at one time. After changing the injection sequence, which injects the large particles first and the small particles subsequently, it is found that the large particles will form single-particle bridging at a specific depth of the fracture, intercepting subsequently injected particles and thickening the plugging zone, which finally increases the area of the plugging zone by 19%. The visualization experiment results demonstrate that modifying the LCM injection method significantly enhances both the LCM utilization rate and the fracture plugging effect, thereby reducing reservoir damage. This is conducive to reducing the drilling cost of fractured formation. Additionally, the visualized experimental approach introduced in this study can also benefit other research areas, including proppant placement and solute transport in rock fractures. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 6205 KiB  
Article
Spatio-Temporal Distribution and Population Dynamics of Two Sympatric Species: The Rock Shrimps Sicyonia dorsalis Kingsley, 1878 and Sicyonia typica (Boeck, 1864) (Penaeoidea: Sicyoniidae) on the Coast of Ilhéus, Bahia, Northeastern Brazil
by Renzo Gonçalves Tavares, Lucas Rezende Penido Paschoal, Fernanda Jordão Guimarães, Simone Nunes Brandão and Erminda da Conceição Guerreiro Couto
Arthropoda 2025, 3(1), 1; https://doi.org/10.3390/arthropoda3010001 - 13 Jan 2025
Viewed by 923
Abstract
Rock shrimps (Sicyonia dorsalis and Sicyonia typica) are commonly caught as bycatch during shrimp trawling along the Brazilian coast, but are not commercially exploited due to their small size and hard carapace. This study evaluated their spatio-temporal distribution, size classes, and [...] Read more.
Rock shrimps (Sicyonia dorsalis and Sicyonia typica) are commonly caught as bycatch during shrimp trawling along the Brazilian coast, but are not commercially exploited due to their small size and hard carapace. This study evaluated their spatio-temporal distribution, size classes, and sex ratio near the Almada River Estuary, Ilhéus, Bahia, Northeastern Brazil, and tested correlations between environmental factors and species abundance. Samples were collected monthly using double-rig trawl nets in the estuary and along transects at depths of 5–35 m. Bottom water and sediment samples were obtained for analyses of environmental factors. In total, 5336 individuals of S. dorsalis and 303 individuals of S. typica were collected. No individuals were recorded in the estuary. Both species were significantly more abundant between 25 and 35 m, where fine sediment with high levels of organic matter occurred. Considering the temporal variation, their abundance decreased during the rainy season, coinciding with increased river flow. Organic matter content, salinity, and water transparency were the primary environmental factors influencing abundance. Females were generally larger and predominant compared to males, likely due to life cycle dynamics. Despite being congeneric and sympatric, the species exhibited distinct population patterns, possibly to avoid niche overlap and competition. Full article
Show Figures

Figure 1

21 pages, 8040 KiB  
Article
Improving Hard Rock Materials Cuttability by Hydraulic Fracturing at Mining Working Face
by Haojie Li, Benben Liu, Qingyuan He, Yanan Gao, Dan Ma, Haiyan Yang, Jingyi Cheng, Jiqing Ye and Guoqiang Liu
Appl. Sci. 2024, 14(24), 11908; https://doi.org/10.3390/app142411908 - 19 Dec 2024
Cited by 1 | Viewed by 972
Abstract
During advancing the working face at Guojiawan Coal Mine, hard rock faults are encountered, which hinder the normal cutting of the shearer. Hydraulic fracturing is applied to pretreat the hard rock materials. Un-directional hydraulic fracturing experiments in transparent gelatin samples are carried out. [...] Read more.
During advancing the working face at Guojiawan Coal Mine, hard rock faults are encountered, which hinder the normal cutting of the shearer. Hydraulic fracturing is applied to pretreat the hard rock materials. Un-directional hydraulic fracturing experiments in transparent gelatin samples are carried out. The influence of the differential stress, the borehole dip angle on the initiation and propagation of un-directional hydraulic fractures (HFs) are investigated. Three field test schemes of hydraulic fracturing are proposed and implemented at the 51207 working face of Guojiawan Coal Mine. Compared with the results of different test schemes, the cutting current ratio of the shearer is reduced by 51.70% and the cutting efficiency is increased by 89.93%. Therefore, the feasibility of hydraulic fracturing to improve the cuttability of the hard rock materials is verified, which provides a theoretical basis and field guidance for hydraulic fracturing pretreatment of the hard rock materials at a coal mining working face. Full article
(This article belongs to the Special Issue Rock Mechanics in Geotechnical and Tunnel Engineering)
Show Figures

Figure 1

18 pages, 10387 KiB  
Article
Boosting Model Interpretability for Transparent ML in TBM Tunneling
by Konstantinos N. Sioutas and Andreas Benardos
Appl. Sci. 2024, 14(23), 11394; https://doi.org/10.3390/app142311394 - 6 Dec 2024
Cited by 2 | Viewed by 911
Abstract
Tunnel boring machines (TBMs) are essential for excavating metro tunnels, reducing disruptions to surrounding rock, and ensuring efficient progress. This study examines how machine learning (ML) models can predict key tunneling outcomes, focusing on making these predictions clearer. Specifically, the models aim to [...] Read more.
Tunnel boring machines (TBMs) are essential for excavating metro tunnels, reducing disruptions to surrounding rock, and ensuring efficient progress. This study examines how machine learning (ML) models can predict key tunneling outcomes, focusing on making these predictions clearer. Specifically, the models aim to predict surface settlements (ground sinking) and the TBM’s penetration rate (PR) during the Athens Metro Line 2 extension to Hellinikon. For surface settlements, four artificial neural networks (ANNs) were developed, achieving an accuracy of over 79%, on average. For the TBM’s PR, both an XGBoost Regressor (XGBR) and ANNs performed consistently well, offering reliable predictions. This study emphasizes model transparency mostly. Using the SHapley Additive exPlanations (SHAP) library, it is possible to explain how models make decisions, highlighting key factors like geological conditions and TBM operating data. With SHAP’s Tree Explainer and Deep Explainer techniques, the study reveals which parameters matter most, making ML models less of a “black box” and more practical for real-world metro tunnel projects. By showing how decisions are made, these tools give decision-makers confidence to rely on ML in complex tunneling operations. Full article
(This article belongs to the Special Issue Machine Learning and Numerical Modelling in Geotechnical Engineering)
Show Figures

Figure 1

17 pages, 9727 KiB  
Article
Towards Mineralogy 4.0? Atlas of 3D Rocks and Minerals: Digitally Archiving Interactive and Immersive 3D Data of Rocks and Minerals
by Andrei Ionuţ Apopei
Minerals 2024, 14(12), 1196; https://doi.org/10.3390/min14121196 - 24 Nov 2024
Cited by 1 | Viewed by 1511
Abstract
Mineralogy 4.0 can play a significant role in the future of geological research, education, and exploration by providing a more comprehensive and interactive understanding of rocks and minerals. This paper explores the application of digital photogrammetry and augmented reality (AR) technologies as part [...] Read more.
Mineralogy 4.0 can play a significant role in the future of geological research, education, and exploration by providing a more comprehensive and interactive understanding of rocks and minerals. This paper explores the application of digital photogrammetry and augmented reality (AR) technologies as part of Mineralogy 4.0. An atlas of 3D rocks and minerals with 915 high-quality models was created to showcase the potential of photogrammetry in the mineral sciences. The repository contains a wide range of sample types, featuring transparency, metallic luster, fluorescence, or millimetric-scale crystals. The three-dimensional rocks and minerals can also be accessed on-the-go through a mobile application that was developed for Android devices. Additionally, web applications have been developed with specific three-dimensional collections as well as three-dimensional storytelling. AR technology was also integrated into the 3D repository, allowing users to superimpose virtual 3D models of rocks and minerals onto real-world surfaces through their device’s camera. Also, a digital solution with 3D holograms of rocks and minerals was effectively implemented to provide an interactive and immersive experience. The 3D datasets of rocks and minerals can play a significant role in the geoscience community’s research, developing not only in-depth knowledge of specimens but also opening new frontiers in mineral sciences, leading towards a more advanced era of mineralogy. Full article
(This article belongs to the Special Issue Geomaterials and Cultural Heritage)
Show Figures

Graphical abstract

20 pages, 4567 KiB  
Article
Holocene and Reworked Pleistocene Sediments in Mud Depocenters of the Inner Continental Shelf of Sao Paulo Bight (Southeast Brazil)
by Antonio Scardua Neto and Javier Alcántara-Carrió
J. Mar. Sci. Eng. 2024, 12(11), 2098; https://doi.org/10.3390/jmse12112098 - 19 Nov 2024
Cited by 1 | Viewed by 842
Abstract
Mud depocenters are found across most siliciclastic continental shelves, occurring in various bathymetric ranges and typically dating to the Holocene. This study analyzes the sedimentary characteristics and formation processes of mud depocenters in the central sector of the inner continental shelf of the [...] Read more.
Mud depocenters are found across most siliciclastic continental shelves, occurring in various bathymetric ranges and typically dating to the Holocene. This study analyzes the sedimentary characteristics and formation processes of mud depocenters in the central sector of the inner continental shelf of the São Paulo Bight. A total of 1700 km of high-resolution seismic profiles, four gravity cores, and 1346 surface sediment samples were analyzed. The sedimentary analysis involved determining grain size parameters, organic matter content, carbonates content, and radiocarbon dating. Seafloor sedimentary mapping shows the predominance of very fine siliciclastic sand, together with three mud depocenters located shallower than the 30-m isobath. The northern depocenter comprises one sedimentary unit (SU-NZ-01), while the central depocenter consists of two sedimentary units (SU-CZ-01 and SU-CZ-02) and the southern depocenter is made up of two other sedimentary units (SU-SZ-01 and SU-SZ-02). Units SU-SZ-02, SU-CZ-02, and SU-NZ-01 were deposited on Precambrian rock surfaces during the Holocene transgression and include reworked sediments from nearby Upper Pleistocene coastal plains, characterized by a transparent seismic pattern. Above these, units SU-SZ-01 and SU-CZ-01 developed following the Holocene Transgression Maximum, associated with local mud input from the Peruíbe River mouth and the Santos Estuary, respectively. The paleorelief of Precambrian rocks favored the formation of these depocenters by creating wave shadow zones and trapping mud within the paleovalleys. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

18 pages, 3399 KiB  
Article
A New Mineral Calcioveatchite, SrCaB11O16(OH)5·H2O, and the Veatchite–Calcioveatchite Isomorphous Series
by Igor V. Pekov, Natalia V. Zubkova, Vladimir N. Apollonov, Vasiliy O. Yapaskupt, Sergey N. Britvin and Dmitry Yu. Pushcharovsky
Minerals 2024, 14(9), 901; https://doi.org/10.3390/min14090901 - 2 Sep 2024
Cited by 2 | Viewed by 990
Abstract
The new mineral calcioveatchite, ideally SrCaB11O16(OH)5·H2O, is a Ca-Sr-ordered analogue of veatchite. It was found at the Nepskoe potassium salt deposit, Irkutsk Oblast, Siberia, Russia in halite-sylvite and sylvite-carnallite rocks, with boracite, hilgardite, kurgantaite, hydroboracite, [...] Read more.
The new mineral calcioveatchite, ideally SrCaB11O16(OH)5·H2O, is a Ca-Sr-ordered analogue of veatchite. It was found at the Nepskoe potassium salt deposit, Irkutsk Oblast, Siberia, Russia in halite-sylvite and sylvite-carnallite rocks, with boracite, hilgardite, kurgantaite, hydroboracite, volkovskite, veatchite, anhydrite, magnesite, and quartz. Calcioveatchite forms prismatic or tabular crystals up to 1 × 1.5 × 3 mm3 and crystal clusters up to 3 mm across. It is transparent and colourless with vitreous lustre. Calcioveatchite is brittle, cleavage is perfect on {010}, the Mohs’ hardness is ca 2, Dmeas is 2.58(1), and Dcalc is 2.567 g cm−3. Calcioveatchite is optically biaxial (+), α = 1.543(2), β = 1.550(5), γ = 1.626(2), 2Vmeas = 30(10)°, and 2Vcalc = 35°. The average chemical composition (wt.%, electron microprobe, H2O calculated by stoichiometry) is: CaO 7.05, SrO 20.70, B2O3 61.96, H2O 10.22, and total 99.93. The empirical formula, calculated based on 22 O apfu = O16(OH)5(H2O) pfu, is Sr1.23Ca0.78B10.99O16(OH)5·H2O. Calcioveatchite is monoclinic, space group P21, a = 6.7030(3), b = 20.6438(9), c = 6.6056(3) Å, β = 119.153(7)°, V = 798.26(8) Å3, and Z = 2. Polytype: 1M. The strongest reflections of the powder XRD pattern [d,Å(I,%)(hkl)] are: 10.35(100)(020), 5.633(12)(110), 5.092(10)(120), 3.447(14)(060), 3.362(13)(101, 051), 3.309(38)(–102), 2.862(10)(012), and 2.585(19)(080). The crystal structure was solved based on single-crystal XRD data, R1 = 0.0420. Calcioveatchite (calcioveatchite-1M) is an isostructural analogue of veatchite-1M with the 11-fold cation polyhedron occupied mainly by Sr [Sr0.902(8)Ca0.098(8)] whereas the 10-fold polyhedron is Ca dominant [Ca0.686(7)Sr0.314(7)]. The chemical composition of veatchite from five localities in Russia (Nepskoe), Kazakhstan (Shoktybay and Chelkar in the North Caspian Region), and the USA (Tick Canyon and Billie Mine in California) was studied, and it is shown to exist in nature as a continuous, almost complete isomorphous series which extends from Ca-free veatchite, Sr2B11O16(OH)5·H2O, to calcioveatchite with the composition Sr1.14Ca0.87B10.99O16(OH)5·H2O. Full article
Show Figures

Figure 1

8 pages, 1201 KiB  
Article
Slit in a Nest Site Influences the Nest Site Selection in Cavity Nesting Ant Colonies
by Anna Gruszka, Mateusz Rolski, Mariia Marczak and Sławomir Mitrus
Insects 2024, 15(9), 638; https://doi.org/10.3390/insects15090638 - 26 Aug 2024
Viewed by 1447
Abstract
For ants, nests provide a refuge against predators and protection from environmental factors. Thus, choosing a good nest site is important for an ant colony, but nest sites are limited resources. Ants of the genus Temnothorax inhabit small cavities in, e.g., acorns, twigs [...] Read more.
For ants, nests provide a refuge against predators and protection from environmental factors. Thus, choosing a good nest site is important for an ant colony, but nest sites are limited resources. Ants of the genus Temnothorax inhabit small cavities in, e.g., acorns, twigs and under rocks. Earlier, it was shown that the ants are able to choose a superior site. In this study, using binary choice tests, we studied the nest site selection by Temnothorax crassispinus ant colonies that typically inhabit empty acorns. For this purpose, we used artificial nest sites without and with an additional slit in the nest wall, mimicking the cracks in potential nest sites under natural conditions. We found that the ant colonies preferred artificial nest sites without these slits. However, no difference in the number of colonies inhabited nest sites with a slit vs. those without a slit was found when the slits were closed using transparent food foil, which prevented the air flow while keeping an inflow of light. What is more, additional light through the hole in the red filter covering the artificial nest sites had no influence on the nest site selection. The results of this study suggest that the air flow through a slit in the nest site wall, rather than additional light, influences the nest site selection. The absence of cracks, e.g., in acorns, could be an indication of the durability of potential nest sites. Thus, choosing a cavity without such damage could be beneficial for the ant colonies. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

18 pages, 19561 KiB  
Article
Effectiveness of Sampling Techniques in Collecting the Polyp Stage of the Invasive Freshwater Hydrozoan Craspedacusta sowerbii
by Jonathan A. Zhu and Nadine C. Folino-Rorem
Biology 2024, 13(8), 645; https://doi.org/10.3390/biology13080645 - 22 Aug 2024
Viewed by 1608
Abstract
Current sampling methods for detecting the presence of the invasive freshwater hydrozoan Craspedacusta sowerbii rely mainly on visual confirmation of the medusa stage. Confirming the presence of the polyp stage is equally important for observing medusae since typical late summer/early fall occurrences or [...] Read more.
Current sampling methods for detecting the presence of the invasive freshwater hydrozoan Craspedacusta sowerbii rely mainly on visual confirmation of the medusa stage. Confirming the presence of the polyp stage is equally important for observing medusae since typical late summer/early fall occurrences or observations of medusae are sporadic though are becoming more frequent. The polyp stage is important as it is the organism’s primary stage and is present throughout the year depending on water temperatures. Therefore, sampling methods for the polyp stage are, commonly, the collection of substrates such as rocks, plants, or pieces of wood in a given body of water, and these can be cumbersome to examine. Polyps are also small, transparent, and difficult to see on natural substrates. Based on a preliminary culturing of the polyp stage on glass and plastic microscope slides in the laboratory, we designed a sampling methodology based on submerging four substrate types (glass and plastic microscope slides, Hester-Dendy discs, and small glass Petri dishes) to confirm the presence of C. sowerbii polyps in the field. We tested this method in three lakes in the Illinois–Indiana region (USA). Two of the lakes have recorded sightings of medusae but the third has no record of polyps or medusae. The sampling method we designed was effective in that C. sowerbii polyps were found on both plastic and glass slides. While this method can be sufficient for detection of the polyp stage, it also shows potential for improvement; we highlight abiotic and biotic ecological parameters as significant factors influencing the collection of C. sowerbii polyps to be considered for future methodologies. Full article
Show Figures

Figure 1

11 pages, 4947 KiB  
Article
Growth of Hg0.7Cd0.3Te on Van Der Waals Mica Substrates via Molecular Beam Epitaxy
by Shuo Ma, Wenwu Pan, Xiao Sun, Zekai Zhang, Renjie Gu, Lorenzo Faraone and Wen Lei
Molecules 2024, 29(16), 3947; https://doi.org/10.3390/molecules29163947 - 21 Aug 2024
Viewed by 4114
Abstract
In this paper, we present a study on the direct growth of Hg0.7Cd0.3Te thin films on layered transparent van der Waals mica (001) substrates through weak interface interaction through molecular beam epitaxy. The preferred orientation for [...] Read more.
In this paper, we present a study on the direct growth of Hg0.7Cd0.3Te thin films on layered transparent van der Waals mica (001) substrates through weak interface interaction through molecular beam epitaxy. The preferred orientation for growing Hg0.7Cd0.3Te on mica (001) substrates is found to be the (111) orientation due to a better lattice match between the Hg0.7Cd0.3Te layer and the underlying mica substrate. The influence of growth parameters (mainly temperature and Hg flux) on the material quality of epitaxial Hg0.7Cd0.3Te thin films is studied, and the optimal growth temperature and Hg flux are found to be approximately 190 °C and 4.5 × 104 Torr as evidenced by higher crystalline quality and better surface morphology. Hg0.7Cd0.3Te thin films (3.5 µm thick) grown under these optimal growth conditions present a full width at half maximum of 345.6 arc sec for the X-ray diffraction rocking curve and a root-mean-square surface roughness of 6 nm. However, a significant number of microtwin defects are observed using cross-sectional transmission electron microscopy, which leads to a relatively high etch pit density (mid-107 cm2) in the Hg0.7Cd0.3Te thin films. These findings not only facilitate the growth of HgCdTe on mica substrates for fabricating curved IR sensors but also contribute to a better understanding of growth of traditional zinc-blende semiconductors on layered substrates. Full article
(This article belongs to the Special Issue Recent Advances in Epitaxial Growth: Materials and Methods)
Show Figures

Figure 1

21 pages, 5761 KiB  
Article
Mineralogy and Selenium Speciation Analysis of Early Cambrian Selenium-Rich Black Shale in Southern Shaanxi Province, China
by Caixia Feng, Shen Liu, Wenlei Song, Chenhui Hou and Yanhong Yang
Minerals 2024, 14(6), 612; https://doi.org/10.3390/min14060612 - 15 Jun 2024
Viewed by 1245
Abstract
Selenium (Se) is an essential trace element for humans and animals, and an excess of or deficiency in Se is harmful to health. Research on the selenium enrichment zone began in the late 1970s in Shuang’an, Ziyang, southern Shaanxi Province. Naore village is [...] Read more.
Selenium (Se) is an essential trace element for humans and animals, and an excess of or deficiency in Se is harmful to health. Research on the selenium enrichment zone began in the late 1970s in Shuang’an, Ziyang, southern Shaanxi Province. Naore village is only one selenosis area in Shuang’an, Ziyang, China. Different scholars have conducted systematic studies on the occurrence of selenium, its organic geochemistry and biomarkers, and its content and enrichment patterns in this area. This study applied the TIMA (TESCAN integrated mineral analyzer) for the first time to conduct detailed mineralogical work. The minerals included quartz, carbonate minerals (calcite and dolomite), feldspar (plagioclase, albite, and orthoclase), biotite and muscovite, clay minerals (chlorite and kaolinite), hematite, pyrite, and accessory minerals (almandine, olivine, zircon, and apatite) in Naore village, Ziyang, Shaanxi Province. The ATi index (100 × apatite/(apatite + tourmaline)) is used to determine the source of heavy minerals and the degree of heavy minerals’ weathering. The content POS (100 × (pyroxene + olivine + spinel)/transparent heavy mineral) of olivine, pyroxene, and spinel in heavy minerals can reflect the contribution of basic and ultrabasic rocks in the source area. The ATi and POS indexes for the heavy minerals in the research area were 91.83~99.96 and 0.01~18.75, respectively, reflecting the abundance of volcanic rock material in their source. In addition, the migration, transformation, bioavailability, and toxicity of selenium in the environment are closely related to its species. The species of selenium in various selenium-rich areas (Naore, Wamiao, and Guanquan) mainly include unusable residues and organic forms, followed by humic-acid-bound selenium. The proportions of water-soluble, exchangeable, and carbonate-bound selenium are relatively small, and the proportion of Fe-Mn oxide-bound selenium is the lowest. Full article
(This article belongs to the Special Issue Selenium, Tellurium and Precious Metal Mineralogy)
Show Figures

Figure 1

19 pages, 12450 KiB  
Article
Study on the Application of Finite Difference in Geological Mine Fault Groups: A Case Study
by Jianbo Yuan, Chao Wang, Zhigang Liu, Jingchao Lyu, Yajun Lu, Wuchao You and Jiazheng Yan
Processes 2024, 12(6), 1162; https://doi.org/10.3390/pr12061162 - 5 Jun 2024
Cited by 1 | Viewed by 1260
Abstract
Fault structures can cause a bad mining environment and increase the stress of surrounding coal pillar faults. The study investigates the stress evolution characteristics within fault structure groups and their surrounding coal pillars and explores the extent to which these fault structure groups [...] Read more.
Fault structures can cause a bad mining environment and increase the stress of surrounding coal pillar faults. The study investigates the stress evolution characteristics within fault structure groups and their surrounding coal pillars and explores the extent to which these fault structure groups influence the stress distribution in coal pillars. Based on three-dimensional modeling technology, a transparent geological model of the geological environment of fault structure groups was constructed and finite difference software was used to generate a numerical simulation model. Two survey lines and four survey points were arranged to analyze the stress distribution of a coal pillar fault. The results show that the fault structure groups have obvious stress barrier effects. There is a 35 m stress reduction zone in the hanging wall of the fault and a 30 m stress increase zone in the footwall of the fault. Both FL-1 and FL-3 faults have a stress barrier effect in the hanging wall. The obvious stress increases in the footwall of the fault are 37.7 MPa and 33.5 MPa, respectively. The stress of the FL-2 fault as a whole appears to be a more obvious superposition at the end of mining, and the peak stress reaches 41.5 MPa. Full article
Show Figures

Figure 1

Back to TopTop