Effectiveness of Sampling Techniques in Collecting the Polyp Stage of the Invasive Freshwater Hydrozoan Craspedacusta sowerbii
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Pilot Laboratory Substrate Study
2.2. Construction of Sampling Apparatus
2.3. Field-Site Descriptions
2.4. Setup Deployments and Counting
2.5. Follow-Up Laboratory Experiment
2.6. Statistical Methods
3. Results
3.1. Pilot Laboratory Substrates
3.2. Field Results
3.3. Follow-Up Experiment Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Location | Site | Setup | Glass Slides | Plastic Slides | Hester-Dendy Discs | Petri Dishes |
---|---|---|---|---|---|---|
Inverness | 1 | A | 5 | 5 | 3 | 8 |
B | 4 | 6 | 3 | 8 | ||
2 | C | 4 | 6 | 3 | 8 | |
D | 6 | 6 | 3 | 8 | ||
Coal City | 1 | A | 6 | 6 | 3 | 8 |
B | 6 | 6 | 3 | 8 | ||
2 | C | 6 | 6 | 3 | 8 | |
D | 6 | 6 | 3 | 8 | ||
Hammond | 1 (Vandalized) | (A) | (6) | (6) | (3) | (8) |
(B) | (6) | (6) | (3) | (8) | ||
2 | C | 6 | 6 | 3 | 8 | |
D | 6 | 6 | 3 | 8 | ||
Total Sampled | 55 | 59 | 30 | 80 |
Substrate | Polyps per Slide | Frustules per Slide |
---|---|---|
Glass | , | , |
Plastic | , | , |
Feature | Group | Polyps/cm | Frustules/cm | Total Invertebrates/cm |
---|---|---|---|---|
Substrate | Hester-Dendy Discs () | N/A | N/A | , |
Petri Dishes () | N/A | N/A | , | |
Glass Slides () | , | , | , | |
Plastic Slides () | , | , | , | |
Location | Inverness () | , | , | , |
Coal City () | N/A | N/A | , | |
Hammond () | , | N/A | , |
Hester-Dendy Discs | Glass Slides | Plastic Slides | |
---|---|---|---|
Glass Slides | , | ||
Plastic Slides | , | , | |
Petri Dishes | , | , | , |
Hester-Dendy Discs | Glass Slides | Plastic Slides | |
---|---|---|---|
Glass Slides | , | ||
Plastic Slides | , | , | |
Petri Dishes | , | , | , |
Inverness | Coal City | |
---|---|---|
Coal City | , | |
Hammond | , | , |
Hester-Dendy Discs | Glass Slides | Plastic Slides | |
---|---|---|---|
Glass Slides | , | ||
Plastic Slides | , | , | |
Petri Dishes | , | , | , |
References
- Marchessaux, G.; Lüskow, F.; Bejean, M.; Pakhomov, E.A. Increasing temperature facilitates polyp spreading and medusa appearance of the invasive hydrozoan Craspedacusta sowerbii. Biology 2022, 11, 1100. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, J.A.; Westerman, E.L.; Harris, L.G. Elevated seasonal temperatures eliminate thermal barriers of reproduction of a dominant invasive species: A community state change for northern communities? Divers. Distrib. 2017, 23, 1182–1192. [Google Scholar] [CrossRef]
- Walsh, J.R.; Hansen, G.J.; Read, J.S.; Vander Zanden, M.J. Comparing models using air and water temperature to forecast an aquatic invasive species response to climate change. Ecosphere 2020, 11, e03137. [Google Scholar] [CrossRef]
- Beric, B.; MacIsaac, H.J. Determinants of rapid response success for alien invasive species in aquatic ecosystems. Biol. Invasions 2015, 17, 3327–3335. [Google Scholar] [CrossRef]
- Coughlan, N.E.; Lyne, L.; Cuthbert, R.N.; Cunningham, E.M.; Lucy, F.E.; Davis, E.; Caffrey, J.M.; Dick, J.T. In the black: Information harmonisation and educational potential amongst international databases for invasive alien species designated as of union concern. Glob. Ecol. Conserv. 2020, 24, e01332. [Google Scholar] [CrossRef]
- Simberloff, D. Maintenance management and eradication of established aquatic invaders. Hydrobiologia 2021, 848, 2399–2420. [Google Scholar] [CrossRef] [PubMed]
- Soto, I.; Cuthbert, R.N.; Ahmed, D.A.; Kouba, A.; Domisch, S.; Marquez, J.R.; Beidas, A.; Amatulli, G.; Kiesel, J.; Shen, L.Q.; et al. Tracking a killer shrimp: Dikerogammarus villosus invasion dynamics across Europe. Divers. Distrib. 2023, 29, 157–172. [Google Scholar] [CrossRef]
- Linders, T.E.W.; Schaffner, U.; Eschen, R.; Abebe, A.; Choge, S.K.; Nigatu, L.; Mbaabu, P.R.; Shiferaw, H.; Allan, E. Direct and indirect effects of invasive species: Biodiversity loss is a major mechanism by which an invasive tree affects ecosystem functioning. J. Ecol. 2019, 107, 2660–2672. [Google Scholar] [CrossRef]
- Britton, J.R.; Lynch, A.J.; Bardal, H.; Bradbeer, S.J.; Coetzee, J.A.; Coughlan, N.E.; Dalu, T.; Tricarico, E.; Gallardo, B.; Lintermans, M.; et al. Preventing and controlling nonnative species invasions to bend the curve of global freshwater biodiversity loss. Environ. Rev. 2023, 31, 310–326. [Google Scholar] [CrossRef]
- Scalici, M.; Chiesa, S.; Mancinelli, G.; Rontani, P.M.; Voccia, A.; Nonnis Marzano, F. Euryhaline aliens invading Italian inland waters: The case of the Atlantic blue crab Callinectes sapidus Rathbun, 1896. Appl. Sci. 2022, 12, 4666. [Google Scholar] [CrossRef]
- Lord, J.P. Impact of seawater temperature on growth and recruitment of invasive fouling species at the global scale. Mar. Ecol. 2017, 38, e12404. [Google Scholar] [CrossRef]
- Emery-Butcher, H.E.; Beatty, S.J.; Robson, B.J. The impacts of invasive ecosystem engineers in freshwaters: A review. Freshwater Biol. 2020, 65, 999–1015. [Google Scholar] [CrossRef]
- Ricciardi, A.; Iacarella, J.C.; Aldridge, D.C.; Blackburn, T.M.; Carlton, J.T.; Catford, J.A.; Dick, J.T.; Hulme, P.E.; Jeschke, J.M.; Liebhold, A.M.; et al. Four priority areas to advance invasion science in the face of rapid environmental change. Environ. Rev. 2021, 29, 119–141. [Google Scholar] [CrossRef]
- Angel, D.L.; Edelist, D.; Freeman, S. Local perspectives on regional challenges: Jellyfish proliferation and fish stock management along the Israeli Mediterranean coast. Reg. Environ. Chang. 2016, 16, 315–323. [Google Scholar] [CrossRef]
- González-Duarte, M.M.; Megina, C.; López-González, P.J.; Galil, B. Cnidarian alien species in expansion. In The Cnidaria, Past, Present and Future: The World of Medusa and Her Sisters; Springer: Cham, Switzerland, 2016; pp. 139–160. [Google Scholar]
- Purcell, J.E. Successes and challenges in jellyfish ecology: Examples from Aequorea spp. Mar. Ecol. Prog. Ser. 2018, 591, 7–27. [Google Scholar] [CrossRef]
- Rodrigues, T.; Domínguez-Pérez, D.; Almeida, D.; Matos, A.; Antunes, A. Medusozoans reported in Portugal and its ecological and economical relevance. Reg. Stud. Mar. Sci. 2020, 35, 101230. [Google Scholar] [CrossRef]
- Smith, A.S.; Alexander, J.E., Jr. Potential effects of the freshwater jellyfish Craspedacusta sowerbii on zooplankton community abundance. J. Plankton Res. 2008, 30, 1323–1327. [Google Scholar] [CrossRef]
- Minchin, D.; Caffrey, J.M.; Haberlin, D.; Germaine, D.; Walsh, C.; Boelens, R.; Doyle, T.K. First observations of the freshwater jellyfish Craspedacusta sowerbii Lankester, 1880 in Ireland coincides with unusually high water temperatures. Bioinvasions Rec. 2016, 5, 67–74. [Google Scholar] [CrossRef]
- Kramp, P.L. Freshwater medusae in China. Proc. Zool. Soc. Lond. 1950, 120, 165–184. [Google Scholar] [CrossRef]
- Dumont, H.J. The distribution and ecology of the fresh-and brackish-water medusae of the world. In Studies on the Ecology of Tropical Zooplankton; Developments in Hydrobiology; Springer: Berlin/Heidelberg, Germany, 1994; pp. 1–12. [Google Scholar]
- Jankowski, T.; Collins, A.G.; Campbell, R. Global diversity of inland water cnidarians. In Freshwater Animal Diversity Assessment; Springer: Dordrecht, The Netherlands, 2008; Volume 595, pp. 35–40. [Google Scholar]
- Oualid, J.A.; Iazza, B.; Tamsouri, N.M.; El Aamri, F.; Moukrim, A.; López-González, P.J. Hidden diversity under morphology–based identifications of widespread invasive species: The case of the ‘well–known’ hydromedusa Craspedacusta sowerbii Lankester 1880. Anim. Biodivers. Conserv. 2019, 42, 301–316. [Google Scholar] [CrossRef]
- Lewis, C.; Migita, M.; Hashimoto, H.; Collins, A.G. On the occurrence of freshwater jellyfish in Japan 1928–2011: Eighty-three years of records of mamizu kurage (Limnomedusae, Olindiidae). Proc. Biol. Soc. Wash. 2012, 125, 165–179. [Google Scholar] [CrossRef]
- Caputo, L.; Fuentes, R.; Woelfl, S.; Castañeda, L.E.; Cárdenas, L. Phenotypic plasticity of clonal populations of the freshwater jellyfish Craspedacusta sowerbii (Lankester, 1880) in Southern Hemisphere lakes (Chile) and the potential role of the zooplankton diet. Austral Ecol. 2021, 46, 1192–1197. [Google Scholar] [CrossRef]
- Pérez-Bote, J.L.; Muñoz, A.; Morán, R.; Roso, R.; Romero, A.J. First record of Craspedacusta sowerbyi Lankester, 1880 (Cnidaria: Limnomedusae: Olindiidae) in the Proserpina Reservoir (Extremadura, SW Spain) with notes on their feeding habits. Belg. J. Zool. 2006, 136, 163. [Google Scholar]
- Fish, G.R. Craspedacusta sowerbyi Lankester (Coelenterata: Limnomedusae) in New Zealand lakes. N. Z. J. Mar. Freshwater Res. 1971, 5, 66–69. [Google Scholar] [CrossRef]
- Rayner, N.A. First record of Craspedacusta sowerbyi Lankester (Cnidaria: Limnomedusae) from Africa. Hydrobiologia 1988, 162, 73–77. [Google Scholar] [CrossRef]
- Marchessaux, G.; Bejean, M. From frustules to medusae: A new culture system for the study of the invasive hydrozoan Craspedacusta sowerbii in the laboratory. Invertebr. Biol. 2020, 139, e12308. [Google Scholar] [CrossRef]
- Folino-Rorem, N.C.; Reid, M.; Peard, T. Culturing the freshwater hydromedusa, Craspedacusta sowerbii under controlled laboratory conditions. Invertebr. Reprod. Dev. 2016, 60, 17–27. [Google Scholar] [CrossRef]
- Acker, T.S.; Muscat, A.M. The ecology of Craspedacusta sowerbii Lankester, a freshwater hydrozoan. Am. Midl. Nat. 1976, 95, 323–336. [Google Scholar] [CrossRef]
- Payne, F. Further studies on the life history of Craspedacusta ryderi, a fresh-water hydromedusan. Biol. Bull. 1926, 50, 433–443. [Google Scholar] [CrossRef]
- Duggan, I.C.; Eastwood, K.R. Detection and distribution of Craspedacusta sowerbii: Observations of medusae are not enough. Aquat. Invasions 2012, 7, 271–275. [Google Scholar] [CrossRef]
- Matthews, D.C. A comparative study of Craspedacusta sowerbyi and Calpasoma dactyloptera life cycles. BioStor 1966, 20, 246–259. [Google Scholar]
- Payne, F. A study of the fresh-water medusa, Craspedacusta ryderi. J. Morphol. 1924, 38, 387–429. [Google Scholar] [CrossRef]
- Lüskow, F.; López-González, P.J.; Pakhomov, E.A. Freshwater jellyfish in northern temperate lakes: Craspedacusta sowerbii in British Columbia, Canada. Aquat. Biol. 2021, 30, 69–84. [Google Scholar] [CrossRef]
- Davis, C.C. Notes on the food of Craspedacusta sowerbii in Crystal Lake, Ravenna, Ohio. Ecology 1955, 36, 364–366. [Google Scholar] [CrossRef]
- Lucas, K.; Colin, S.P.; Costello, J.H.; Katija, K.; Klos, E. Fluid interactions that enable stealth predation by the upstream-foraging hydromedusa Craspedacusta sowerbyi. Biol. Bull. 2013, 225, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Dodson, S.I.; Cooper, S.D. Trophic relationships of the freshwater jellyfish Craspedacusta sowerbyi Lankester 1880. Limnol. Oceanogr. 1983, 28, 345–351. [Google Scholar] [CrossRef]
- Stefani, F.; Leoni, B.; Marieni, A.; Garibaldi, L. A new record of Craspedacusta sowerbii, Lankester 1880 (Cnidaria, Limnomedusae) in northern Italy. J. Limnol. 2010, 69, 189. [Google Scholar] [CrossRef]
- DeVries, D.R. The freshwater jellyfish Craspedacusta sowerbyi: A summary of its life history, ecology, and distribution. J. Freshwater Ecol. 1992, 7, 7–16. [Google Scholar] [CrossRef]
- Gophen, M.; Shealtiel, L. Record of the alien species Craspedacusta sowerbyi Lankester, 1880 (Cnidaria: Limnomedusae) in Lake Kinneret catchment area. BioInvasions Rec. 2012, 1, 29–31. [Google Scholar] [CrossRef]
- Akçaalan, R.; Isinibilir, M.; Gürevin, C.; Sümer, A. A new contribution of biodiversity of Sapanca lake: Craspedacusta sowerbyi Lankester, 1880 (Cnidaria: Hydrozoa). J. Fish. Sci. 2011, 5, 43. [Google Scholar] [CrossRef]
- Jakovčev-Todorović, D.; Đikanović, V.; Skorić, S.; Cakić, P. Freshwater jellyfish Craspedacusta sowerbyi Lankester, 1880 (Hydrozoa, Olindiidae): 50 years’ observations in Serbia. Arch. Biol. Sci. 2010, 62, 123–127. [Google Scholar] [CrossRef]
- Jankowski, T.; Strauss, T.; Ratte, H.T. Trophic interactions of the freshwater jellyfish Craspedacusta sowerbii. J. Plankton Res. 2005, 27, 811–823. [Google Scholar] [CrossRef]
- Cumming, R.; Coal City Area Club, Coal City, IL, USA. Personal communication, 2024.
- Faith, G.; Mermet Springs Cuba Dive, Belknap, IL, USA. Personal communication, 2022.
- Trostrud, P.; Resident of Inverness, Inverness, IL, USA. Personal communication, 2024.
- Klotz, R.U. Hidden Neozoans in Macrozoobenthos: The Polyp Stage of the Freshwater Jellyfish Craspedacusta sowerbii. Ph.D. Thesis, Ludwig Maximilian University of Munich, Munich, Germany, 2022. [Google Scholar]
- McClary, A. The effect of temperature on growth and reproduction in Craspedacusta sowerbii. Ecology 1959, 40, 158–162. [Google Scholar] [CrossRef]
- Siquier, M.F.; Alanis, W.S.; Debat, C.M. First record of Craspedacusta sowerbii Lankester, 1880 (Hydrozoa, Limnomedusae) in a natural freshwater lagoon of Uruguay, with notes on polyp stage in captivity. Braz. J. Biol. 2017, 77, 665–672. [Google Scholar] [CrossRef]
- Kim, K.; Cho, H.; Kim, J.H.; Yang, Y.m.; Ju, H.; Jeong, H.G. Detection of Freshwater Jellyfish (Craspedacusta sowerbii Lankester, 1880) by Biofilm eDNA in Miho River Watershed. Korean J. Ecol. Environ. 2023, 56, 250–258. [Google Scholar] [CrossRef]
- Moore, J.P.; Stewart, D.J. Presence and Trophic Level of the Freshwater Jellyfish (Craspedacusta sowerbii), a Cryptic Invader in the Hudson River Basin, NY: A Final Report of the Tibor T. Polgar Fellowship Program; Department of Environmental and Forest Biology SUNY College of Environmental Science and Forestry: Syracuse, NY, USA, 2021. [Google Scholar]
- Smart, A.S.; Weeks, A.R.; van Rooyen, A.R.; Moore, A.; McCarthy, M.A.; Tingley, R. Assessing the cost-efficiency of environmental DNA sampling. Methods Ecol. Evol. 2016, 7, 1291–1298. [Google Scholar] [CrossRef]
- Goldberg, C.S.; Turner, C.R.; Deiner, K.; Klymus, K.E.; Thomsen, P.F.; Murphy, M.A.; Spear, S.F.; McKee, A.; Oyler-McCance, S.J.; Cornman, R.S.; et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 2016, 7, 1299–1307. [Google Scholar] [CrossRef]
- Jeunen, G.J.; Lipinskaya, T.; Gajduchenko, H.; Golovenchik, V.; Moroz, M.; Rizevsky, V.; Semenchenko, V.; Gemmell, N.J. Environmental DNA (eDNA) metabarcoding surveys show evidence of non-indigenous freshwater species invasion to new parts of Eastern Europe. Metabarcoding Metagenom. 2022, 6, e68575. [Google Scholar] [CrossRef]
- Blackman, R.C.; Carraro, L.; Keck, F.; Altermatt, F. Measuring the state of aquatic environments using eDNA—Upscaling spatial resolution of biotic indices. Philos. Trans. R. Soc. B 2024, 379, 20230121. [Google Scholar] [CrossRef]
- Darling, J.; United States Environmental Protection Agency, Research Triangle Park, NC, USA. Personal communication, 2024.
- Wang, Y. Genetic Population Structure and Environmental Impact on Craspedacusta at the Medusa and Polyp Stages. Ph.D. Thesis, Ludwig Maximilian University of Munich, Munich, Germany, 2022. [Google Scholar]
- Folino-Rorem, N.C.; Renken, C.J. Effects of salinity on the growth and morphology of the invasive, euryhaline hydroid Cordylophora (Phylum Cnidaria, Class Hydrozoa). Invertebr. Biol. 2018, 137, 78–90. [Google Scholar] [CrossRef]
- Wood, T.S.; Wright State University, Dayton, OH, USA. Personal communication, 2024.
- Peard, T.; Department of Biology, Indiana University of Pennsylvania, Indiana, PA, USA. Personal communication, 2018.
- Dinno, A.; Dinno, M.A. Package ‘dunn. test’. CRAN Repos 2017, 10, 1–7. [Google Scholar]
- Jankowski, T. The freshwater medusae of the world–a taxonomic and systematic literature study with some remarks on other inland water jellyfish. Hydrobiologia 2001, 462, 91–113. [Google Scholar] [CrossRef]
- Tamburini, M.; Keppel, E.; Marchini, A.; Repetto, M.F.; Ruiz, G.M.; Ferrario, J.; Occhipinti-Ambrogi, A. Monitoring non-indigenous species in port habitats: First application of a standardized North American protocol in the Mediterranean Sea. Front. Mar. Sci. 2021, 8, 700730. [Google Scholar] [CrossRef]
- Calder, D.R.; Carlton, J.T.; Keith, I.; Ashton, G.V.; Larson, K.; Ruiz, G.M.; Herrera, E.; Golfin, G. Biofouling hydroids (Cnidaria: Hydrozoa) from a Tropical Eastern Pacific island, with remarks on their biogeography. J. Nat. Hist. 2022, 56, 565–606. [Google Scholar] [CrossRef]
- Outinen, O.; Forsström, T.; Yli-Rosti, J.; Vesakoski, O.; Lehtiniemi, M. Monitoring of sessile and mobile epifauna–Considerations for non-indigenous species. Mar. Pollut. Bull. 2019, 141, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Ciaralli, L.; Rotini, A.; Scalici, M.; Battisti, C.; Chiesa, S.; Christoforou, E.; Libralato, G.; Manfra, L. The under-investigated plastic threat on seagrasses worldwide: A comprehensive review. Environ. Sci. Pollut. Res. 2024, 31, 8341–8353. [Google Scholar] [CrossRef]
- Gallitelli, L.; Scalici, M. Riverine macroplastic gradient along watercourses: A global overview. Front. Environ. Sci. 2022, 10, 937944. [Google Scholar] [CrossRef]
- Feng, S.; Lin, J.; Sun, S.; Zhang, F. Artificial substrates preference for proliferation and immigration in Aurelia aurita (s.l.) polyps. Chin. J. Oceanol. Limnol. 2017, 35, 153–162. [Google Scholar] [CrossRef]
- Holst, S.; Jarms, G. Substrate choice and settlement preferences of planula larvae of five Scyphozoa (Cnidaria) from German Bight, North Sea. Mar. Biol. 2007, 151, 863–871. [Google Scholar] [CrossRef]
- Kannan, G.; Mghili, B.; Di Martino, E.; Sanchez-Vidal, A.; Figuerola, B. Increasing risk of invasions by organisms on marine debris in the Southeast coast of India. Mar. Pollut. Bull. 2023, 195, 115469. [Google Scholar] [CrossRef]
- Póvoa, A.A.; Skinner, L.F.; de Araújo, F.V. Fouling organisms in marine litter (rafting on abiogenic substrates): A global review of literature. Mar. Pollut. Bull. 2021, 166, 112189. [Google Scholar] [CrossRef] [PubMed]
- Mghili, B.; De-la Torre, G.E.; Aksissou, M. Assessing the potential for the introduction and spread of alien species with marine litter. Mar. Pollut. Bull. 2023, 191, 114913. [Google Scholar] [CrossRef]
- Cesarini, G.; Crosti, R.; Secco, S.; Gallitelli, L.; Scalici, M. From city to sea: Spatiotemporal dynamics of floating macrolitter in the Tiber River. Sci. Total Environ. 2023, 857, 159713. [Google Scholar] [CrossRef]
- Gallitelli, L.; Cesarini, G.; Sodo, A.; Cera, A.; Scalici, M. Life on bottles: Colonisation of macroplastics by freshwater biota. Sci. Total Environ. 2023, 873, 162349. [Google Scholar] [CrossRef]
- Liro, M.; Zielonka, A.; van Emmerik, T.H. Macroplastic fragmentation in rivers. Environ. Int. 2023, 180, 108186. [Google Scholar] [CrossRef] [PubMed]
- Amemiya, I. Fresh-water Medusa found in the Tank of my Laboratory. Jpn. J. Zool. 1929, 3, 3. [Google Scholar]
- Gasith, A.; Gafny, S.; Hershkovitz, Y.; Goldstein, H.; Galil, B.S. The invasive freshwater medusa Craspedacusta sowerbii Lankester, 1880 (Hydrozoa: Olindiidae) in Israel. Aquat. Invasions 2011, 6, S147–S152. [Google Scholar] [CrossRef]
- Bushnell, J.H., Jr.; Porter, T.W. The occurrence, habitat, and prey of Craspedacusta sowerbyi (particularly polyp stage) in Michigan. Trans. Am. Microsc. Soc. 1967, 86, 22–27. [Google Scholar] [CrossRef]
- Zang, W.; Zhang, F.; Sun, Y.; Xu, Z.; Sun, S. Benthic ecosystem determines jellyfish blooms by controlling the polyp colony development. Mar. Pollut. Bull. 2023, 193, 115232. [Google Scholar] [CrossRef]
- Stanković, I.; Ternjej, I. New ecological insight on two invasive species: Craspedacusta sowerbii (Coelenterata: Limnomedusae) and Dreissenia polymorpha (Bivalvia: Dreissenidae). J. Nat. Hist. 2010, 44, 2707–2713. [Google Scholar] [CrossRef]
- Van Walraven, L.; van Bleijswijk, J.; van der Veer, H.W. Here are the polyps: In situ observations of jellyfish polyps and podocysts on bivalve shells. PeerJ 2020, 8, e9260. [Google Scholar] [CrossRef] [PubMed]
- Valenty, J.; Fisher, S.J. Effect of previous use and processing technique on performance of multiplate Hester–Dendy samplers. Freshwater Sci. 2012, 31, 78–82. [Google Scholar] [CrossRef]
- Gießler, S.; Strauss, T.; Schachtl, K.; Jankowski, T.; Klotz, R.; Stibor, H. Trophic Positions of Polyp and Medusa Stages of the Freshwater Jellyfish Craspedacusta sowerbii Based on Stable Isotope Analysis. Biology 2023, 12, 814. [Google Scholar] [CrossRef] [PubMed]
Location | Setup Site | Latitude | Longitude | Depth (m) | Date of Deployment | Secchi Depth (m) | Conductivity (S/cm) | Temperature | pH |
---|---|---|---|---|---|---|---|---|---|
Inverness (IL) | 1 | 42.116540 N | 88.122080 W | 2 | 5 June 2023 | 0.75 | 1055.0 | 25.80 C | 8.26 |
2 | 42.116680 N | 88.122060 W | 3 | ||||||
Coal City (IL) | 1 | 41.316213 N | 88.271704 W | 3 | 22 June 2023 | 2 | 228.6 | 28.3 C | 7.93 |
2 | 41.316053 N | 88.271673 W | 4.5 | ||||||
Hammond (IN) | 1 | 41.671930 N | 87.511810 W | 3 | 18 July 2023 | 1 | 927.0 | 25.2 C | 8.6 |
2 | 41.672540 N | 87.512360 W | 3 |
Substrate | Coal City | Inverness | Hammond | Total |
---|---|---|---|---|
Glass Slides | 24 | 19 | 12 | 55 |
Plastic Slides | 24 | 23 | 12 | 59 |
Hester-Dendy Discs | 12 | 12 | 6 | 30 |
Petri Dishes | 32 | 32 | 16 | 80 |
Total | 92 | 85 | 46 | 223 |
Substrate | Polyps | Frustules | Sample Size |
---|---|---|---|
Glass | |||
Plastic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.A.; Folino-Rorem, N.C. Effectiveness of Sampling Techniques in Collecting the Polyp Stage of the Invasive Freshwater Hydrozoan Craspedacusta sowerbii. Biology 2024, 13, 645. https://doi.org/10.3390/biology13080645
Zhu JA, Folino-Rorem NC. Effectiveness of Sampling Techniques in Collecting the Polyp Stage of the Invasive Freshwater Hydrozoan Craspedacusta sowerbii. Biology. 2024; 13(8):645. https://doi.org/10.3390/biology13080645
Chicago/Turabian StyleZhu, Jonathan A., and Nadine C. Folino-Rorem. 2024. "Effectiveness of Sampling Techniques in Collecting the Polyp Stage of the Invasive Freshwater Hydrozoan Craspedacusta sowerbii" Biology 13, no. 8: 645. https://doi.org/10.3390/biology13080645
APA StyleZhu, J. A., & Folino-Rorem, N. C. (2024). Effectiveness of Sampling Techniques in Collecting the Polyp Stage of the Invasive Freshwater Hydrozoan Craspedacusta sowerbii. Biology, 13(8), 645. https://doi.org/10.3390/biology13080645