Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = transparent photodetector

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2259 KiB  
Article
Dynamical Characteristics of Isolated Donors, Acceptors, and Complex Defect Centers in Novel ZnO
by Devki N. Talwar and Piotr Becla
Nanomaterials 2025, 15(10), 749; https://doi.org/10.3390/nano15100749 - 16 May 2025
Cited by 1 | Viewed by 353
Abstract
Novel wide-bandgap ZnO, BeO, and ZnBeO materials have recently gained considerable interest due to their stellar optoelectronic properties. These semiconductors are being used in developing high-resolution, flexible, transparent nanoelectronics/photonics and achieving high-power radio frequency modules for sensors/biosensors, photodetectors/solar cells, and resistive random-access memory [...] Read more.
Novel wide-bandgap ZnO, BeO, and ZnBeO materials have recently gained considerable interest due to their stellar optoelectronic properties. These semiconductors are being used in developing high-resolution, flexible, transparent nanoelectronics/photonics and achieving high-power radio frequency modules for sensors/biosensors, photodetectors/solar cells, and resistive random-access memory applications. Despite earlier evidence of attaining p-type wz ZnO with N doping, the problem persists in achieving reproducible p-type conductivity. This issue is linked to charging compensation by intrinsic donors and/or background impurities. In ZnO: Al (Li), the vibrational features by infrared and Raman spectroscopy have been ascribed to the presence of isolated AlZn(LiZn) defects, nearest-neighbor (NN) [AlZnNO] pairs, and second NN [AlZnOLiZn;VZnOLiZn] complexes. However, no firm identification has been established. By integrating accurate perturbation models in a realistic Green’s function method, we have meticulously simulated the impurity vibrational modes of AlZn(LiZn) and their bonding to form complexes with dopants as well as intrinsic defects. We strongly feel that these phonon features in doped ZnO will encourage spectroscopists to perform similar measurements to check our theoretical conjectures. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Figure 1

36 pages, 5120 KiB  
Review
Enhancing Optoelectronic Performance Through Rare-Earth-Doped ZnO: Insights and Applications
by Shagun Sood, Pawan Kumar, Isha Raina, Mrinmoy Misra, Sandeep Kaushal, Jyoti Gaur, Sanjeev Kumar and Gurjinder Singh
Photonics 2025, 12(5), 454; https://doi.org/10.3390/photonics12050454 - 8 May 2025
Viewed by 1699
Abstract
Rare-earth (RE) doping has been found to be a potent method to improve the structural, optical, electronic, and magnetic properties of ZnO, positioning it as a versatile material for future optoelectronic devices. This review herein thoroughly discusses the latest developments in RE-doped ZnO [...] Read more.
Rare-earth (RE) doping has been found to be a potent method to improve the structural, optical, electronic, and magnetic properties of ZnO, positioning it as a versatile material for future optoelectronic devices. This review herein thoroughly discusses the latest developments in RE-doped ZnO based on the role of the dopant type, concentration, synthesis method, and consequences of property modifications. The 4f electronic states of rare-earth elements create strong visible emissions, control charge carriers, and design defects. These structural changes lead to tunable bandgap energies and increased light absorption. Also, RE doping considerably enhances ZnO’s performance in electronic devices, like UV photodetectors, LEDs, TCOs, and gas sensors. Though, challenges like solubility constraints and lattice distortions at higher doping concentrations are still key challenges. Co-doping methodologies and new synthesis techniques to further optimize the incorporation of RE into ZnO matrices are also reviewed in this article. By showing a systematic comparison of different RE-doped ZnO systems, this paper sheds light on their future optoelectronic applications. The results are useful for the design of advanced ZnO-based materials with customized functionalities, which will lead to enhanced device efficiency and new photonic applications. Full article
Show Figures

Figure 1

25 pages, 10446 KiB  
Article
Designing an Adaptive Underwater Visible Light Communication System
by Sana Rehman, Yue Rong and Peng Chen
Sensors 2025, 25(6), 1801; https://doi.org/10.3390/s25061801 - 14 Mar 2025
Cited by 2 | Viewed by 1255
Abstract
The Internet of Underwater Things (IoUT) has attracted significant attention from researchers due to the fact that seventy percent of the Earth’s surface is covered by water. Reliable underwater communication is the enabler of IoUT. Different carriers, such as electromagnetic waves, sound, and [...] Read more.
The Internet of Underwater Things (IoUT) has attracted significant attention from researchers due to the fact that seventy percent of the Earth’s surface is covered by water. Reliable underwater communication is the enabler of IoUT. Different carriers, such as electromagnetic waves, sound, and light, are used to transmit data through the water. Among these, optical waves are considered promising due to their high data rates and relatively good bandwidth efficiency, as water becomes transparent to light in the visible spectrum (400–700 nm). However, limitations such as link range, path loss, and turbulence lead to low power and, consequently, a low signal-to-noise ratio (SNR) at the receiver. In this article, we present the design of a smart transceiver for bidirectional communication. The system adapts the divergence angle of the optical beam from the transmitter based on the power of the signal received. This paper details the real-time data transmission process, where the transmitting station consists of a light fidelity (Li-Fi) transmitter with a 470 nm blue-light-emitting diode (LED) and a software-defined radio (SDR) for underwater optical communication. The receiving station is equipped with a Li-Fi receiver, which includes a photodetector with a wide field of view and an SDR. Furthermore, we use pulse position modulation (PPM), which demonstrates promising results for real-time transmission. A key innovation of this paper is the integration of the Li-Fi system with the SDR, while the system adapts dynamically using a servo motor and an Arduino microcontroller assembly. The experimental results show that this approach not only increases throughput but also enhances the robustness and efficiency of the system. Full article
(This article belongs to the Special Issue Wireless Sensor Networks: Signal Processing and Communications)
Show Figures

Figure 1

22 pages, 1378 KiB  
Article
Microhardness, Young’s and Shear Modulus in Tetrahedrally Bonded Novel II-Oxides and III-Nitrides
by Devki N. Talwar and Piotr Becla
Materials 2025, 18(3), 494; https://doi.org/10.3390/ma18030494 - 22 Jan 2025
Cited by 5 | Viewed by 1050
Abstract
Direct wide-bandgap III-Ns and II-Os have recently gained considerable attention due to their unique electrical and chemical properties. These novel semiconductors are being explored to design short-wavelength light-emitting diodes, sensors/biosensors, photodetectors for integration into flexible transparent nanoelectronics/photonics to achieve high-power radio-frequency modules, and [...] Read more.
Direct wide-bandgap III-Ns and II-Os have recently gained considerable attention due to their unique electrical and chemical properties. These novel semiconductors are being explored to design short-wavelength light-emitting diodes, sensors/biosensors, photodetectors for integration into flexible transparent nanoelectronics/photonics to achieve high-power radio-frequency modules, and heat-resistant optical switches for communication networks. Knowledge of the elastic constants structural and mechanical properties has played crucial roles both in the basic understanding and assessing materials’ use in thermal management applications. In the absence of experimental structural, elastic constants, and mechanical traits, many theoretical simulations have yielded inconsistent results. This work aims to investigate the basic characteristics of tetrahedrally coordinated, partially ionic BeO, MgO, ZnO, and CdO, and partially covalent BN, AlN, GaN, and InN materials. By incorporating a bond-orbital and a valance force field model, we have reported comparative results of our systematic calculations for the bond length d, bond polarity αP, covalency αC, bulk modulus B, elastic stiffness C(=c11c122), bond-stretching α and bond-bending β force constants, Kleinmann’s internal displacement ζ, and Born’s transverse effective charge eT*. Correlations between C/B, β/α, c12c11, ζ, and αC revealed valuable trends of structural, elastic, and bonding characteristics. The study noticed AlN and GaN (MgO and ZnO) showing nearly comparable features, while BN (BeO) is much harder compared to InN (CdO) material, with drastically softer bonding. Calculations of microhardness H, shear modulus G, and Young’s modulus Y have predicted BN (BeO) satisfying a criterion of super hardness. III-Ns (II-Os) could be vital in electronics, aerospace, defense, nuclear reactors, and automotive industries, providing integrity and performance at high temperature in high-power applications, ranging from heat sinks to electronic substrates to insulators in high-power devices. Full article
Show Figures

Figure 1

19 pages, 6617 KiB  
Article
Bandgap-Tunable Aluminum Gallium Oxide Deep-UV Photodetector Prepared by RF Sputter and Thermal Interdiffusion Alloying Method
by Che-Hao Liao, Jing-Yun Huang, Chien-Sheng Huang, Chih-Chiang Yang, Jui-En Kuo, Walter Water, Wan-Shao Tsai, Patsy A Miranda Cortez, Xiao Tang and Shih-Hung Lin
Processes 2025, 13(1), 68; https://doi.org/10.3390/pr13010068 - 31 Dec 2024
Viewed by 1027
Abstract
Gallium oxide (Ga2O3) has gained considerable attention due to its wide bandgap, the availability of native substrates, and its excellent properties for solar-blind photodetectors, transparent electronics, and next-generation power devices. However, the expensive Ga2O3 native substrates [...] Read more.
Gallium oxide (Ga2O3) has gained considerable attention due to its wide bandgap, the availability of native substrates, and its excellent properties for solar-blind photodetectors, transparent electronics, and next-generation power devices. However, the expensive Ga2O3 native substrates have restricted its widespread adoption. To reduce costs and further the development of β-Ga2O3-based devices, there is a need for bandgap-tunable oxide films with high crystal quality for deep-ultraviolet (DUV) photodetectors and high-breakdown-field power devices. This study introduces a Thermal Interdiffusion Alloying method to address these requirements. It focuses on developing deep ultraviolet (DUV) photodetectors using β-Ga2O3 thin films on sapphire substrates by promoting the diffusion of aluminum (Al) atoms from the substrate into the film, resulting in the formation of aluminum gallium oxide (β-(AlxGa1−x)2O3). The aluminum content is controlled by adjusting the process temperature, allowing for tunable detection wavelengths and enhanced DUV sensing capabilities. Radio frequency (RF) sputtering optimizes the film’s quality by adjusting the sputtering power and the argon/oxygen (Ar/O2) flow ratio. Material analysis indicates that this method expands the optical bandgap and shifts the response wavelength to 210 nm, significantly boosting the performance of the fabricated photodetectors. This research presents considerable potential for advancing DUV photodetectors across various disinfection applications. Full article
Show Figures

Figure 1

14 pages, 8516 KiB  
Article
A Flexible Multifunctional Sensor Based on an AgNW@ZnONR Composite Material
by Hao Lv, Xue Qi, Yuxin Wang, Yang Ye, Peike Wang, Ao Yin, Jingjing Luo, Zhongqi Ren, Haipeng Liu, Suzhu Yu and Jun Wei
Materials 2024, 17(19), 4788; https://doi.org/10.3390/ma17194788 - 29 Sep 2024
Cited by 1 | Viewed by 884
Abstract
A multifunctional sensor comprising flexible and transparent ultraviolet (UV) photodetectors (PDs) with strain gauges based on Ag nanowire (AgNW)@ZnO nanorods (ZnONRs) was fabricated using a cost-effective, simple, and efficient method. High-aspect ratio silver nanowires were synthesized using the polyol method. An AgNW@ZnONR composite [...] Read more.
A multifunctional sensor comprising flexible and transparent ultraviolet (UV) photodetectors (PDs) with strain gauges based on Ag nanowire (AgNW)@ZnO nanorods (ZnONRs) was fabricated using a cost-effective, simple, and efficient method. High-aspect ratio silver nanowires were synthesized using the polyol method. An AgNW@ZnONR composite was formed via the hydrothermal method to ensure the multifunctional capability of the flexible sensors. After refining the process parameters, the size of the ZnO nanorods was decreased to fabricate pliable multifunctional sensors using AgNW@ZnONRs. At a deposition of 0.207 g of AgNW@ZnONRs, the sensor achieves its maximum switching ratio and fastest response time under conditions of 2000 μW/cm2 UV optical power density. With a ton (rise time) of 2.7 s and a toff (fall time) of 2.3 s, the ratio of Ion to Ioff current is 1151. Additionally, the sensor’s maximum optical current value correlates linearly with UV light’s power density. The maximum response current increased from 222.5 pA to 588.1 pA, an increase of 164.3%, when the bending angle was increased from 15° to 90° for the sensor with a deposition of 0.276 g of AgNW@ZnONRs. There was no degradation in the response of the sensors after 10,000 bending cycles, as they have excellent stability and repeatability, which means they can meet the requirements of wearable sensor applications. Therefore, there is great potential for the practical application of multifunctional AgNW@ZnONRs in flexible sensors. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

26 pages, 11394 KiB  
Review
Germanium Single Crystals for Photonics
by Grigory Kropotov, Vladimir Rogalin and Ivan Kaplunov
Crystals 2024, 14(9), 796; https://doi.org/10.3390/cryst14090796 - 9 Sep 2024
Cited by 1 | Viewed by 1665
Abstract
Germanium (Ge) is a system-forming material of IR photonics for the atmospheric transparency window of 8–14 µm. For optics of the 3–5 µm range, more widespread silicon (Si), which has phonon absorption bands in the long-wave region, is predominantly used. A technology for [...] Read more.
Germanium (Ge) is a system-forming material of IR photonics for the atmospheric transparency window of 8–14 µm. For optics of the 3–5 µm range, more widespread silicon (Si), which has phonon absorption bands in the long-wave region, is predominantly used. A technology for growing Ge single crystals has been developed, allowing the production of precision optical parts up to 500 mm in diameter. Ge is used primarily for the production of transparent optical parts for thermal imaging devices in the 8–14 µm range. In addition, germanium components are widely used in a large number of optical devices where such properties as mechanical strength, good thermal properties, and climatic resistance are required. A very important area of application of germanium is nonlinear optics, primarily acousto-optics. The influence of doping impurities and temperature on the absorption of IR radiation in germanium is considered in detail. The properties of germanium photodetectors are reported, primarily on the effect of photon drag of holes. Optical properties in the THz range are considered. The features of optical properties for all five stable isotopes of germanium are studied. The isotopic shift of absorption bands in the IR region, caused by phonon phenomena, which was discovered by the authors for the first time, is considered. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

18 pages, 4323 KiB  
Article
One-Dimensional ZnO Nanorod Array Grown on Ag Nanowire Mesh/ZnO Composite Seed Layer for H2 Gas Sensing and UV Detection Applications
by Fang-Hsing Wang, An-Jhe Li, Han-Wen Liu and Tsung-Kuei Kang
Sensors 2024, 24(17), 5852; https://doi.org/10.3390/s24175852 - 9 Sep 2024
Cited by 3 | Viewed by 1438
Abstract
Photodetectors and gas sensors are vital in modern technology, spanning from environmental monitoring to biomedical diagnostics. This paper explores the UV detection and gas sensing properties of a zinc oxide (ZnO) nanorod array (ZNA) grown on silver nanowire mesh (AgNM) using a hydrothermal [...] Read more.
Photodetectors and gas sensors are vital in modern technology, spanning from environmental monitoring to biomedical diagnostics. This paper explores the UV detection and gas sensing properties of a zinc oxide (ZnO) nanorod array (ZNA) grown on silver nanowire mesh (AgNM) using a hydrothermal method. We examined the impact of different zinc acetate precursor concentrations on their properties. Results show the AgNM forms a network with high transparency (79%) and low sheet resistance (7.23 Ω/□). A sol–gel ZnO thin film was coated on this mesh, providing a seed layer with a hexagonal wurtzite structure. Increasing the precursor concentration alters the diameter, length, and area density of ZNAs, affecting their performance. The ZNA-AgNM-based photodetector shows enhanced dark current and photocurrent with increasing precursor concentration, achieving a maximum photoresponsivity of 114 A/W at 374 nm and a detectivity of 6.37 × 1014 Jones at 0.05 M zinc acetate. For gas sensing, the resistance of ZNA-AgNM-based sensors decreases with temperature, with the best hydrogen response (2.71) at 300 °C and 0.04 M precursor concentration. These findings highlight the potential of ZNA-AgNM for high-performance UV photodetectors and hydrogen gas sensors, offering an alternative way for the development of future sensing devices with enhanced performance and functionality. Full article
Show Figures

Figure 1

11 pages, 3048 KiB  
Article
Self-Powered Broadband Photodetector Based on NiO/Si Heterojunction Incorporating Graphene Transparent Conducting Layer
by Bhishma Pandit, Bhaskar Parida, Hyeon-Sik Jang and Keun Heo
Nanomaterials 2024, 14(6), 551; https://doi.org/10.3390/nano14060551 - 21 Mar 2024
Cited by 4 | Viewed by 2212
Abstract
In this study, a self-powered broadband photodetector based on graphene/NiO/n-Si was fabricated by the direct spin-coating of nanostructured NiO on the Si substrate. The current–voltage measurement of the NiO/Si heterostructure exhibited rectifying characteristics with enhanced photocurrent under light illumination. Photodetection capability was measured [...] Read more.
In this study, a self-powered broadband photodetector based on graphene/NiO/n-Si was fabricated by the direct spin-coating of nanostructured NiO on the Si substrate. The current–voltage measurement of the NiO/Si heterostructure exhibited rectifying characteristics with enhanced photocurrent under light illumination. Photodetection capability was measured in the range from 300 nm to 800 nm, and a higher photoresponse in the UV region was observed due to the wide bandgap of NiO. The presence of a top graphene transparent conducting electrode further enhanced the responsivity in the whole measured wavelength region from 350 to 800 nm. The photoresponse of the NiO/Si detector at 350 nm was found to increase from 0.0187 to 0.163 A/W at −1 V with the insertion of the graphene top layer. A high photo-to-dark current ratio (≃104) at the zero bias indicates that the device has advantageous application in energy-efficient high-performance broadband photodetectors. Full article
Show Figures

Figure 1

11 pages, 3016 KiB  
Article
Enhancement of the Visible Light Photodetection of Inorganic Photodiodes via Additional Quantum Dots Layers
by Seong Jae Kang, Jun Hyung Jeong, Jin Hyun Ma, Min Ho Park, Hyoun Ji Ha, Jung Min Yun, Yu Bin Kim and Seong Jun Kang
Micromachines 2024, 15(3), 318; https://doi.org/10.3390/mi15030318 - 25 Feb 2024
Viewed by 1742
Abstract
Visible light photodetectors are extensively researched with transparent metal oxide holes/electron layers for various applications. Among the metal oxide transporting layers, nickel oxide (NiO) and zinc oxide (ZnO) are commonly adopted due to their wide band gap and high transparency. The objective of [...] Read more.
Visible light photodetectors are extensively researched with transparent metal oxide holes/electron layers for various applications. Among the metal oxide transporting layers, nickel oxide (NiO) and zinc oxide (ZnO) are commonly adopted due to their wide band gap and high transparency. The objective of this study was to improve the visible light detection of NiO/ZnO photodiodes by introducing an additional quantum dot (QD) layer between the NiO and ZnO layers. Utilizing the unique property of QDs, we could select different sizes of QDs and responsive light wavelength ranges. The resulting red QDs utilized device that could detect light starting at 635 nm to UV (Ultra-violet) light wavelength and exhibited a photoresponsivity and external quantum efficiency (EQE) of 14.99 mA/W and 2.92% under 635 nm wavelength light illumination, respectively. Additionally, the green QDs, which utilized a device that could detect light starting at 520 nm, demonstrated photoresponsivity values of 8.34 mA/W and an EQE of 1.99% under 520 nm wavelength light illumination, respectively. In addition, we used X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) to investigate the origin of the photocurrents and the enhancement of the device’s performance. This study suggests that incorporating QDs with metal oxide semiconductors is an effective approach for detecting visible light wavelengths in transparent optoelectronic devices. Full article
(This article belongs to the Special Issue Fabrication and Application of Optoelectronics Based on Nanomaterials)
Show Figures

Figure 1

11 pages, 2100 KiB  
Article
Highly Responsive Gate-Controlled p-GaN/AlGaN/GaN Ultraviolet Photodetectors with a High-Transmittance Indium Tin Oxide Gate
by Zhanfei Han, Xiangdong Li, Hongyue Wang, Yuebo Liu, Weitao Yang, Zesheng Lv, Meng Wang, Shuzhen You, Jincheng Zhang and Yue Hao
Micromachines 2024, 15(1), 156; https://doi.org/10.3390/mi15010156 - 20 Jan 2024
Cited by 4 | Viewed by 2398
Abstract
This work presents highly responsive gate-controlled p-GaN/AlGaN/GaN ultraviolet photodetectors (UVPDs) on Si substrates with a high-transmittance ITO gate. The two-dimensional electron gas (2DEG) in the quantum well of the polarized AlGaN/GaN heterojunction was efficiently depleted by the p-GaN gate, leading to a high [...] Read more.
This work presents highly responsive gate-controlled p-GaN/AlGaN/GaN ultraviolet photodetectors (UVPDs) on Si substrates with a high-transmittance ITO gate. The two-dimensional electron gas (2DEG) in the quantum well of the polarized AlGaN/GaN heterojunction was efficiently depleted by the p-GaN gate, leading to a high photo-to-dark current ratio (PDCR) of 3.2 × 105. The quantum wells of the p-GaN/AlGaN and AlGaN/GaN heterojunctions can trap the holes and electrons excited by the UV illumination, thus efficiently triggering a photovoltaic effect and photoconductive effect, separately. Furthermore, the prepared photodetectors allow flexible adjustment of the static bias point, making it adaptable to different environments. Compared to traditional thin-film semi-transparent Ni/Au gates, indium tin oxide (ITO) exhibits higher transmittance. Under 355 nm illumination, the photodetector exhibited a super-high responsivity exceeding 3.5 × 104 A/W, and it could even exceed 106 A/W under 300 nm illumination. The well-designed UVPD combines both the advantages of the high-transmittance ITO gate and the structure of the commercialized p-GaN/AlGaN/GaN high-electron-mobility transistors (HEMTs), which opens a new possibility of fabricating large-scale, low-cost, and high-performance UVPDs in the future. Full article
(This article belongs to the Special Issue III-Nitride Materials in Electronic and Photonic Devices)
Show Figures

Figure 1

13 pages, 1985 KiB  
Article
Deep-Ultraviolet Transparent Electrode Design for High-Performance and Self-Powered Perovskite Photodetector
by Thi My Huyen Nguyen, Manh Hoang Tran and Chung Wung Bark
Nanomaterials 2023, 13(22), 2979; https://doi.org/10.3390/nano13222979 - 20 Nov 2023
Cited by 8 | Viewed by 1967
Abstract
In this study, a highly crystalline and transparent indium-tin-oxide (ITO) thin film was prepared on a quartz substrate via RF sputtering to fabricate an efficient bottom-to-top illuminated electrode for an ultraviolet C (UVC) photodetector. Accordingly, the 26.6 nm thick ITO thin film, which [...] Read more.
In this study, a highly crystalline and transparent indium-tin-oxide (ITO) thin film was prepared on a quartz substrate via RF sputtering to fabricate an efficient bottom-to-top illuminated electrode for an ultraviolet C (UVC) photodetector. Accordingly, the 26.6 nm thick ITO thin film, which was deposited using the sputtering method followed by post-annealing treatment, exhibited good transparency to deep-UV spectra (67% at a wavelength of 254 nm), along with high electrical conductivity (11.3 S/cm). Under 254 nm UVC illumination, the lead-halide-perovskite-based photodetector developed on the prepared ITO electrode in a vertical structure exhibited an excellent on/off ratio of 1.05 × 104, a superb responsivity of 250.98 mA/W, and a high specific detectivity of 4.71 × 1012 Jones without external energy consumption. This study indicates that post-annealed ITO ultrathin films can be used as electrodes that satisfy both the electrical conductivity and deep-UV transparency requirements for high-performance bottom-illuminated optoelectronic devices, particularly for use in UVC photodetectors. Full article
Show Figures

Figure 1

14 pages, 1732 KiB  
Article
Selective Laser-Assisted Direct Synthesis of MoS2 for Graphene/MoS2 Schottky Junction
by Min Ji Jeon, Seok-Ki Hyeong, Hee Yoon Jang, Jihun Mun, Tae-Wook Kim, Sukang Bae and Seoung-Ki Lee
Nanomaterials 2023, 13(22), 2937; https://doi.org/10.3390/nano13222937 - 13 Nov 2023
Cited by 4 | Viewed by 2888
Abstract
Implementing a heterostructure by vertically stacking two-dimensional semiconductors is necessary for responding to various requirements in the future of semiconductor technology. However, the chemical-vapor deposition method, which is an existing two-dimensional (2D) material-processing method, inevitably causes heat damage to surrounding materials essential for [...] Read more.
Implementing a heterostructure by vertically stacking two-dimensional semiconductors is necessary for responding to various requirements in the future of semiconductor technology. However, the chemical-vapor deposition method, which is an existing two-dimensional (2D) material-processing method, inevitably causes heat damage to surrounding materials essential for functionality because of its high synthesis temperature. Therefore, the heterojunction of a 2D material that directly synthesized MoS2 on graphene using a laser-based photothermal reaction at room temperature was studied. The key to the photothermal-reaction mechanism is the difference in the photothermal absorption coefficients of the materials. The device in which graphene and MoS2 were vertically stacked using a laser-based photothermal reaction demonstrated its potential application as a photodetector that responds to light and its stability against cycling. The laser-based photothermal-reaction method for 2D materials will be further applied to various fields, such as transparent display electrodes, photodetectors, and solar cells, in the future. Full article
(This article belongs to the Special Issue Functional Graphene-Based Nanodevices)
Show Figures

Figure 1

10 pages, 3050 KiB  
Article
A Highly Transparent β-Ga2O3 Thin Film-Based Photodetector for Solar-Blind Imaging
by Miao He, Qing Zeng and Lijuan Ye
Crystals 2023, 13(10), 1434; https://doi.org/10.3390/cryst13101434 - 27 Sep 2023
Cited by 11 | Viewed by 2737
Abstract
Ultra-wide bandgap Ga2O3-based optoelectronic devices have attracted considerable attention owing to their special significance in military and commercial applications. Using RF magnetron sputtering and post-annealing, monoclinic Ga2O3 films of various thicknesses were created on a c-plane [...] Read more.
Ultra-wide bandgap Ga2O3-based optoelectronic devices have attracted considerable attention owing to their special significance in military and commercial applications. Using RF magnetron sputtering and post-annealing, monoclinic Ga2O3 films of various thicknesses were created on a c-plane sapphire substrate (0001). The structural and optical properties of β-Ga2O3 films were then investigated. The results show that all β-Ga2O3 films have a single preferred orientation (2(_)01) and an average transmittance of more than 96% in the visible wavelength range (380–780 nm). Among them, the sample with a 90-minute sputtering time has the best crystal quality. This sample was subsequently used to construct a metal-semiconductor-metal (MSM), solar-blind, ultraviolet photodetector. The resulting photodetector not only exhibits excellent stability and sunblind characteristics but also has an ultra-high responsivity (46.3 A/W) and superb detectivity (1.83 × 1013 Jones). Finally, the application potential of the device in solar-blind ultraviolet imaging was verified. Full article
Show Figures

Figure 1

10 pages, 2313 KiB  
Article
Photodetection Properties of CdS/Si Heterojunction Prepared by Pulsed Laser Ablation in DMSO Solution for Optoelectronic Application
by Fatemah H. Alkallas, Shoug M. Alghamdi, Ameenah N. Al-Ahmadi, Amira Ben Gouider Trabelsi, Eman A. Mwafy, W. B. Elsharkawy, Emaan Alsubhe, Ayman M. Mostafa and Reham A. Rezk
Micromachines 2023, 14(8), 1546; https://doi.org/10.3390/mi14081546 - 31 Jul 2023
Cited by 13 | Viewed by 2324
Abstract
The high-quality n-type CdS on a p-type Si (111) photodetector device was prepared for the first time by a one-pot method based on an ns laser ablation method in a liquid medium. Cadmium target was ablated in DMSO solution, containing sulfur precursor, and [...] Read more.
The high-quality n-type CdS on a p-type Si (111) photodetector device was prepared for the first time by a one-pot method based on an ns laser ablation method in a liquid medium. Cadmium target was ablated in DMSO solution, containing sulfur precursor, and stirred, assisting in 1D-growth, to create the sulfide structure as CdS nano-ropes form, followed by depositing on the Si-substrate by spin coating. The morphological, structural, and optical characteristics of the CdS structure were examined using X-ray diffraction, transmission, and scanning electron microscopy, photoluminescence, and UV-VIS spectroscopy. From X-ray diffraction analysis, the growing CdS spheres have a good crystal nature, with a high purity and desired c-axis orientation along the (002) plane, and the crystallinity was around 30 nm. According to optical characterization, high transparency was found in the visible–near-infrared areas of the electromagnetic spectrum, and the CdS spheres have a direct optical energy band gap of 3.2 eV. After that, the CdS/Si hetero-structured device was found to be improved remarkably after adding CdS. It showed that the forward current is constantly linear, while the dark current is around 4.5 µA. Up to a bias voltage of 4 V, there was no breakdown, and the reverse current of the heterojunctions somewhat increased with reverse bias voltage, while the photocurrent reached up to 580 and 690 µA for using 15 and 30 W/cm2 light power, respectively. Additionally, the ideal factors for CdS/Si heterojunction were 3.1 and 3.3 for 15 and 30 W/cm2 light power, respectively. These results exhibited high performance compared to the same heterojunction produced by other techniques. In addition, this opens the route for obtaining more enhancements of these values based on the changing use of sulfide structures in the heterojunction formation. Full article
(This article belongs to the Special Issue Advanced Thin-Films: Design, Fabrication and Applications)
Show Figures

Figure 1

Back to TopTop