Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (201)

Search Parameters:
Keywords = transmission and distribution coordination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 5094 KiB  
Article
Analysis of Influencing Factors on Spatial Distribution Characteristics of Traditional Villages in the Liaoxi Corridor
by Han Cao and Eunyoung Kim
Land 2025, 14(8), 1572; https://doi.org/10.3390/land14081572 - 31 Jul 2025
Viewed by 81
Abstract
As a cultural corridor connecting the Central Plains and Northeast China, the Liaoxi Corridor has a special position in the transmission of traditional Chinese culture. Traditional villages in the region have preserved rich intangible cultural heritage and traditional architectural features, which highlight the [...] Read more.
As a cultural corridor connecting the Central Plains and Northeast China, the Liaoxi Corridor has a special position in the transmission of traditional Chinese culture. Traditional villages in the region have preserved rich intangible cultural heritage and traditional architectural features, which highlight the historical heritage of multicultural intermingling. This study fills the gap in the spatial distribution of traditional villages in the Liaoxi Corridor and reveals their spatial distribution pattern, which is of great theoretical significance. Using Geographic Information System (GIS) spatial analysis and quantitative geography, this study analyzes the spatial pattern of traditional villages and the influencing factors. The results show that traditional villages in the Liaoxi Corridor are clustered, forming high-density settlement areas in Chaoyang County and Beizhen City. Most villages are located in hilly and mountainous areas and river valleys and are affected by the natural geographic environment (topography and water sources) and historical and human factors (immigration and settlement, border defense, ethnic integration, etc.). In conclusion, this study provides a scientific basis and practical reference for rural revitalization, cultural heritage protection, and regional coordinated development, aiming at revealing the geographical and cultural mechanisms behind the spatial distribution of traditional villages. Full article
Show Figures

Figure 1

23 pages, 2443 KiB  
Article
Research on Coordinated Planning and Operational Strategies for Novel FACTS Devices Based on Interline Power Flow Control
by Yangqing Dan, Hui Zhong, Chenxuan Wang, Jun Wang, Yanan Fei and Le Yu
Electronics 2025, 14(15), 3002; https://doi.org/10.3390/electronics14153002 - 28 Jul 2025
Viewed by 261
Abstract
Under the “dual carbon” goals and rapid clean energy development, power grids face challenges including rapid load growth, uneven power flow distribution, and limited transmission capacity. This paper proposes a novel FACTS device with fault tolerance and switchable topology that maintains power flow [...] Read more.
Under the “dual carbon” goals and rapid clean energy development, power grids face challenges including rapid load growth, uneven power flow distribution, and limited transmission capacity. This paper proposes a novel FACTS device with fault tolerance and switchable topology that maintains power flow control over multiple lines during N-1 faults, enhancing grid safety and economy. The paper establishes a steady-state mathematical model based on additional virtual nodes and provides power flow calculation methods to accurately reflect the device’s control characteristics. An entropy-weighted TOPSIS method was employed to establish a quantitative evaluation system for assessing the grid performance improvement after FACTS device integration. To address interaction issues among multiple flexible devices, an optimization planning model considering th3e coordinated effects of UPFC and VSC-HVDC was constructed. Multi-objective particle swarm optimization obtained Pareto solution sets, combined with the evaluation system, to determine the optimal configuration schemes. Considering wind power uncertainty and fault risks, we propose a system-level coordinated operation strategy. This strategy constructs probabilistic risk indicators and introduces topology switching control constraints. Using particle swarm optimization, it achieves a balance between safety and economic objectives. Simulation results in the Jiangsu power grid scenarios demonstrated significant advantages in enhancing the transmission capacity, optimizing the power flow distribution, and ensuring system security. Full article
Show Figures

Figure 1

23 pages, 3210 KiB  
Article
Design and Optimization of Intelligent High-Altitude Operation Safety System Based on Sensor Fusion
by Bohan Liu, Tao Gong, Tianhua Lei, Yuxin Zhu, Yijun Huang, Kai Tang and Qingsong Zhou
Sensors 2025, 25(15), 4626; https://doi.org/10.3390/s25154626 - 25 Jul 2025
Viewed by 214
Abstract
In the field of high-altitude operations, the frequent occurrence of fall accidents is usually closely related to safety measures such as the incorrect use of safety locks and the wrong installation of safety belts. At present, the manual inspection method cannot achieve real-time [...] Read more.
In the field of high-altitude operations, the frequent occurrence of fall accidents is usually closely related to safety measures such as the incorrect use of safety locks and the wrong installation of safety belts. At present, the manual inspection method cannot achieve real-time monitoring of the safety status of the operators and is prone to serious consequences due to human negligence. This paper designs a new type of high-altitude operation safety device based on the STM32F103 microcontroller. This device integrates ultra-wideband (UWB) ranging technology, thin-film piezoresistive stress sensors, Beidou positioning, intelligent voice alarm, and intelligent safety lock. By fusing five modes, it realizes the functions of safety status detection and precise positioning. It can provide precise geographical coordinate positioning and vertical ground distance for the workers, ensuring the safety and standardization of the operation process. This safety device adopts multi-modal fusion high-altitude operation safety monitoring technology. The UWB module adopts a bidirectional ranging algorithm to achieve centimeter-level ranging accuracy. It can accurately determine dangerous heights of 2 m or more even in non-line-of-sight environments. The vertical ranging upper limit can reach 50 m, which can meet the maintenance height requirements of most transmission and distribution line towers. It uses a silicon carbide MEMS piezoresistive sensor innovatively, which is sensitive to stress detection and resistant to high temperatures and radiation. It builds a Beidou and Bluetooth cooperative positioning system, which can achieve centimeter-level positioning accuracy and an identification accuracy rate of over 99%. It can maintain meter-level positioning accuracy of geographical coordinates in complex environments. The development of this safety device can build a comprehensive and intelligent safety protection barrier for workers engaged in high-altitude operations. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

25 pages, 2908 KiB  
Article
Secure and Scalable File Encryption for Cloud Systems via Distributed Integration of Quantum and Classical Cryptography
by Changjong Kim, Seunghwan Kim, Kiwook Sohn, Yongseok Son, Manish Kumar and Sunggon Kim
Appl. Sci. 2025, 15(14), 7782; https://doi.org/10.3390/app15147782 - 11 Jul 2025
Viewed by 422
Abstract
We propose a secure and scalable file-encryption scheme for cloud systems by integrating Post-Quantum Cryptography (PQC), Quantum Key Distribution (QKD), and Advanced Encryption Standard (AES) within a distributed architecture. While prior studies have primarily focused on secure key exchange or authentication protocols (e.g., [...] Read more.
We propose a secure and scalable file-encryption scheme for cloud systems by integrating Post-Quantum Cryptography (PQC), Quantum Key Distribution (QKD), and Advanced Encryption Standard (AES) within a distributed architecture. While prior studies have primarily focused on secure key exchange or authentication protocols (e.g., layered PQC-QKD key distribution), our scheme extends beyond key management by implementing a distributed encryption architecture that protects large-scale files through integrated PQC, QKD, and AES. To support high-throughput encryption, our proposed scheme partitions the target file into fixed-size subsets and distributes them across slave nodes, each performing parallel AES encryption using a locally reconstructed key from a PQC ciphertext. Each slave node receives a PQC ciphertext that encapsulates the AES key, along with a PQC secret key masked using QKD based on the BB84 protocol, both of which are centrally generated and managed by the master node for secure coordination. In addition, an encryption and transmission pipeline is designed to overlap I/O, encryption, and communication, thereby reducing idle time and improving resource utilization. The master node performs centralized decryption by collecting encrypted subsets, recovering the AES key, and executing decryption in parallel. Our evaluation using a real-world medical dataset shows that the proposed scheme achieves up to 2.37× speedup in end-to-end runtime and up to 8.11× speedup in encryption time over AES (Original). In addition to performance gains, our proposed scheme maintains low communication cost, stable CPU utilization across distributed nodes, and negligible overhead from quantum key management. Full article
(This article belongs to the Special Issue AI-Enabled Next-Generation Computing and Its Applications)
Show Figures

Figure 1

15 pages, 1529 KiB  
Article
Peak Age of Information Optimization in Cell-Free Massive Random Access Networks
by Zhiru Zhao, Yuankang Huang and Wen Zhan
Electronics 2025, 14(13), 2714; https://doi.org/10.3390/electronics14132714 - 4 Jul 2025
Viewed by 290
Abstract
With the vigorous development of Internet of Things technologies, Cell-Free Radio Access Network (CF-RAN), leveraging its distributed coverage and single/multi-antenna Access Point (AP) coordination advantages, has become a key technology for supporting massive Machine-Type Communication (mMTC). However, under the grant-free random access mechanism, [...] Read more.
With the vigorous development of Internet of Things technologies, Cell-Free Radio Access Network (CF-RAN), leveraging its distributed coverage and single/multi-antenna Access Point (AP) coordination advantages, has become a key technology for supporting massive Machine-Type Communication (mMTC). However, under the grant-free random access mechanism, this network architecture faces the problem of information freshness degradation due to channel congestion. To address this issue, a joint decoding model based on logical grouping architecture is introduced to analyze the correlation between the successful packet transmission probability and the Peak Age of Information (PAoI) in both single-AP and multi-AP scenarios. On this basis, a global Particle Swarm Optimization (PSO) algorithm is designed to dynamically adjust the channel access probability to minimize the average PAoI across the network. To reduce signaling overhead, a PSO algorithm based on local topology information is further proposed to achieve collaborative optimization among neighboring APs. Simulation results demonstrate that the global PSO algorithm can achieve performance closely approximating the optimum, while the local PSO algorithm maintains similar performance without the need for global information. It is especially suitable for large-scale access scenarios with wide area coverage, providing an efficient solution for optimizing information freshness in CF-RAN. Full article
Show Figures

Figure 1

35 pages, 5841 KiB  
Article
A Network Analysis of the Real Estate Fluctuation Propagation Effect in the United States
by Wenwen Xiao, Xuemei Pei, Wenhao Song and Lili Wang
Buildings 2025, 15(12), 2013; https://doi.org/10.3390/buildings15122013 - 11 Jun 2025
Viewed by 279
Abstract
Under the background of intensified global economic fluctuations, to prevent the systemic risk of real estate (e.g., the U.S. subprime crisis), this study constructs a linkage network of the real estate industry in the U.S. based on the complex network method, reveals the [...] Read more.
Under the background of intensified global economic fluctuations, to prevent the systemic risk of real estate (e.g., the U.S. subprime crisis), this study constructs a linkage network of the real estate industry in the U.S. based on the complex network method, reveals the fluctuation diffusion mechanism, identifies the key pivotal industries through the network characteristic indicators, and analyses the characteristics of the fluctuation conduction paths by applying the industrial fundamental association trees. The study found that (1) the U.S. real estate industry is a ‘supply hub’ industry, with first-order and second-order weighted degrees of mean 6.78, 3.98, and significant asymmetry in the supply structure of the industrial network; (2) industries like architectural, engineering, and related services (541300), nonresidential maintenance and repair (230301), and electric power generation, transmission, and distribution (221100) show high degree centrality and betweenness centrality. Their strong propagation and control capabilities form real estate fluctuations’ core transmission mechanisms; (3) foundational association trees reveal long, broad propagation paths where financial investment and energy-supply sectors act as “traffic hubs,” decisively influencing risk diffusion depth and breadth. Targeted policy recommendations address four dimensions: optimizing industrial chain structures, strengthening financial risk isolation, improving housing supply systems, and enhancing policy coordination. This aims to help China avoid U.S.-style real-estate-bubble risks and achieve coordinated real estate macroeconomy development. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

31 pages, 3309 KiB  
Article
Optimal Placement and Sizing of Distributed PV-Storage in Distribution Networks Using Cluster-Based Partitioning
by Xiao Liu, Pu Zhao, Hanbing Qu, Ning Liu, Ke Zhao and Chuanliang Xiao
Processes 2025, 13(6), 1765; https://doi.org/10.3390/pr13061765 - 3 Jun 2025
Cited by 1 | Viewed by 465
Abstract
Conventional approaches for distributed generation (DG) planning often fall short in addressing operational demands and regional control requirements within distribution networks. To overcome these limitations, this paper introduces a cluster-oriented DG planning method. In terms of cluster partitioning, this study breaks through the [...] Read more.
Conventional approaches for distributed generation (DG) planning often fall short in addressing operational demands and regional control requirements within distribution networks. To overcome these limitations, this paper introduces a cluster-oriented DG planning method. In terms of cluster partitioning, this study breaks through the limitations of traditional methods that solely focus on electrical parameters or single functions. Innovatively, it partitions the distribution network by comprehensively considering multiple critical factors such as system grid structure, nodal load characteristics, electrical coupling strength, and power balance, thereby establishing a unique multi-level grid structure of **distribution network—cluster—node**. This partitioning approach not only effectively reduces inter-cluster reactive power transmission and enhances regional power self-balancing capabilities but also lays a solid foundation for the precise planning of subsequent distributed energy resources. It represents a functional expansion that existing cluster partitioning methods have not fully achieved. In the construction of the planning model, a two-layer coordinated siting and sizing planning model for distributed photovoltaics (DPV) and energy storage systems (ESS) is proposed based on cluster partitioning. In contrast to traditional models, this model for the first time considers the interaction between power source planning and system operation across different time scales. The upper layer aims to minimize the annual comprehensive cost by optimizing the capacity and power allocation of DPV and ESS in each cluster. The lower layer focuses on minimizing system network losses to precisely determine the PV connection capacity of each node within the cluster and the grid connection locations of ESS, achieving comprehensive optimization from macro to micro levels. For the solution algorithm, a two-layer iterative hybrid particle swarm algorithm (HPSO) embedded with power flow calculation is designed. Compared to traditional single particle swarm algorithms, HPSO integrates power flow calculations, allowing for a more accurate consideration of the actual operating conditions of the power grid and avoiding the issue in traditional methods where the current and voltage distribution are often neglected in the optimization process. Additionally, HPSO, through its two-layer iterative approach, is able to better balance global and local search, effectively improving the solution efficiency and accuracy. This algorithm integrates the advantages of the particle swarm optimization algorithm and the binary particle swarm optimization algorithm, achieving iterative solutions through efficient information exchange between the two layers of particle swarms. Compared with conventional particle swarm algorithms and other related algorithms, it represents a qualitative leap in computational efficiency and accuracy, enabling faster and more accurate handling of complex planning problems. Case studies on a real 10 kV distribution network validate the practicality of the proposed framework and the robustness of the solution technique. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

16 pages, 6177 KiB  
Article
Topology and Control Strategies for Offshore Wind Farms with DC Collection Systems Based on Parallel–Series Connected and Distributed Diodes
by Lijun Xie, Zhengang Lu, Ruixiang Hao, Bao Liu and Yingpei Wang
Appl. Sci. 2025, 15(11), 6166; https://doi.org/10.3390/app15116166 - 30 May 2025
Viewed by 399
Abstract
A diode-based rectifier (DR) is an attractive transmission technology for offshore wind farms, which reduces the volume of large bulk platforms. A novel parallel–series DC wind farm based on a distributed DR is proposed, which meets the requirements of high voltage and high [...] Read more.
A diode-based rectifier (DR) is an attractive transmission technology for offshore wind farms, which reduces the volume of large bulk platforms. A novel parallel–series DC wind farm based on a distributed DR is proposed, which meets the requirements of high voltage and high power with an isolation capability from other units. The coupling mechanism between a modular multilevel converter (MMC) and a DR has been built, and the coordinate control strategy for the whole system has been proposed based on the MMC triple control targets with intermediate variables. Under the proposed control strategy, the system automatically operates at maximum power point tracking (MPPT). The feasibility of topology and the effectiveness of the control strategy are verified under start-up, power fluctuation, onshore alternating current (AC) fault, and direct current (DC) fault based on the power systems computer-aided design (PSCAD)/electromagnetic transients including direct current (EMTDC) simulation. Full article
(This article belongs to the Special Issue Advanced Studies in Power Electronics for Renewable Energy Systems)
Show Figures

Figure 1

35 pages, 21941 KiB  
Article
Explore the Ultra-High Density Urban Waterfront Space Form: An Investigation of Macau Peninsula Pier District via Point of Interest (POI) and Space Syntax
by Yue Huang, Yile Chen, Junxin Song, Liang Zheng, Shuai Yang, Yike Gao, Rongyao Li and Lu Huang
Buildings 2025, 15(10), 1735; https://doi.org/10.3390/buildings15101735 - 20 May 2025
Viewed by 727
Abstract
High-density cities have obvious characteristics of compact urban spatial form and intensive land use in terms of spatial environment, and have always been a topic of academic focus. As a typical coastal historical district, the Macau Peninsula pier district (mainly the Macau Inner [...] Read more.
High-density cities have obvious characteristics of compact urban spatial form and intensive land use in terms of spatial environment, and have always been a topic of academic focus. As a typical coastal historical district, the Macau Peninsula pier district (mainly the Macau Inner Harbour) has a high building density and a low average street width, forming a vertical coastline development model that directly converses with the ocean. This area is adjacent to Macau’s World Heritage Site and directly related to the Marine trade functions. The distribution pattern of cultural heritage linked by the ocean has strengthened Macau’s unique positioning as a node city on the Maritime Silk Road. This text is based on the theory of urban development, integrates spatial syntax and POI analysis techniques, and combines the theories of waterfront regeneration, high-density urban form and post-industrial urbanism to integrate and deepen the theoretical framework, and conduct a systematic study on the urban spatial characteristics of the coastal area of the Macau Peninsula. This study found that (1) Catering and shopping facilities present a dual agglomeration mechanism of “tourism-driven + commercial core”, with Avenida de Almeida Ribeiro as the main axis and radiating to the Ruins of St. Paul’s and Praça de Ponte e Horta, respectively. Historical blocks and tourist hotspots clearly guide the spatial center of gravity. (2) Residential and life service facilities are highly coupled, reflecting the spatial logic of “work-residence integration-service coordination”. The distribution of life service facilities basically overlaps with the high-density residential area, forming an obvious “living circle + community unit” structure with clear spatial boundaries. (3) Commercial and transportation facilities form a “functional axis belt” organizational structure along the main road, with the Rua das Lorchas—Rua do Almirante Sérgio axis as the skeleton, constructing a “functional transmission chain”. (4) The spatial system of the Macau Peninsula pier district has transformed from a single center to a multi-node, network-linked structure. Its internal spatial differentiation is not only constrained by traditional land use functions but is also driven by complex factors such as tourism economy, residential migration, historical protection, and infrastructure accessibility. (5) Through the analysis of space syntax, it is found that the core integration of the Macau Peninsula pier district is concentrated near Pier 16 and the northern area. The two main roads have good accessibility for motor vehicle travel, and the northern area of the Macau Peninsula pier district has good accessibility for long and short-distance walking. Full article
(This article belongs to the Special Issue Digital Management in Architectural Projects and Urban Environment)
Show Figures

Figure 1

44 pages, 823 KiB  
Review
A Systematic Literature Review of DDS Middleware in Robotic Systems
by Muhammad Liman Gambo, Abubakar Danasabe, Basem Almadani, Farouq Aliyu, Abdulrahman Aliyu and Esam Al-Nahari
Robotics 2025, 14(5), 63; https://doi.org/10.3390/robotics14050063 - 14 May 2025
Cited by 1 | Viewed by 2890
Abstract
The increasing demand for automation has led to the complexity of the design and operation of robotic systems. This paper presents a systematic literature review (SLR) focused on the applications and challenges of Data Distribution Service (DDS)-based middleware in robotics from 2006 to [...] Read more.
The increasing demand for automation has led to the complexity of the design and operation of robotic systems. This paper presents a systematic literature review (SLR) focused on the applications and challenges of Data Distribution Service (DDS)-based middleware in robotics from 2006 to 2024. We explore the pivotal role of DDS in facilitating efficient communication across heterogeneous robotic systems, enabling seamless integration of actuators, sensors, and computational elements. Our review identifies key applications of DDS in various robotic domains, including multi-robot coordination, real-time data processing, and cloud–edge–end fusion architectures, which collectively enhance the performance and scalability of robotic operations. Furthermore, we identify several challenges associated with implementing DDS in robotic systems, such as security vulnerabilities, performance and scalability requirements, and the complexities of real-time data transmission. By analyzing recent advancements and case studies, we provide insights into the potential of DDS to overcome these challenges while ensuring robust and reliable communication in dynamic environments. This paper aims to contribute to the transformative impact of DDS-based middleware in robotics, offering a comprehensive overview of its benefits, applications, and security implications. Our findings underscore the necessity for continued research and development in this area, paving the way for more resilient and intelligent robotic systems that operate effectively in real-world scenarios. This review not only fills existing gaps in the literature but also serves as a foundational resource for researchers and practitioners seeking to leverage DDS in the design and implementation of next-generation robotic solutions. Full article
(This article belongs to the Special Issue Innovations in the Internet of Robotic Things (IoRT))
Show Figures

Figure 1

17 pages, 3432 KiB  
Article
Energy Efficiency Optimization for UAV-RIS-Assisted Wireless Powered Communication Networks
by Xianhao Shen, Ling Gu, Jiazhi Yang and Shuangqin Shen
Drones 2025, 9(5), 344; https://doi.org/10.3390/drones9050344 - 1 May 2025
Cited by 1 | Viewed by 903
Abstract
In urban environments, unmanned aerial vehicles (UAVs) can significantly enhance the performance of wireless powered communication networks (WPCNs), enabling reliable communication and efficient energy transfer for urban Internet of Things (IoTs) nodes. However, the complex urban landscape characterized by dense building structures and [...] Read more.
In urban environments, unmanned aerial vehicles (UAVs) can significantly enhance the performance of wireless powered communication networks (WPCNs), enabling reliable communication and efficient energy transfer for urban Internet of Things (IoTs) nodes. However, the complex urban landscape characterized by dense building structures and node distributions severely hampers the efficiency of wireless power transmission. To address this challenge, this paper presents a novel framework for urban WPCN systems assisted by UAVs equipped with reconfigurable intelligent surfaces (UAV-RISs). The framework adopts time division multiple access (TDMA) technology to coordinate the transmission process of information and energy. Considering two TDMA methods, the paper jointly optimizes the flight trajectory of the UAV, the energy harvesting scheduling of ground nodes, and the phase shift matrix of the RIS with the goal of improving the energy efficiency of the system. Furthermore, deep reinforcement learning (DRL) is introduced to effectively solve the formulated optimization problem. Simulation results demonstrate that the proposed optimized scheme outperforms benchmark schemes in terms of average throughput and energy efficiency. Experimental data also reveal the applicability of different TDMA strategies: dynamic TDMA exhibits superior performance in achieving higher average throughput at ground nodes in urban scenarios, while traditional TDMA is more advantageous for total energy harvesting efficiency. These findings provide critical theoretical insights and practical guidelines for UAV trajectory design and communication network optimization in urban environments. Full article
Show Figures

Figure 1

17 pages, 7423 KiB  
Article
Development of Polyphenol–Metal Film-Modified Colored Porous Microspheres for Enhanced Monkeypox Antigen Detection
by Wei-Zhi Zhang, Chen-Fei Zhang and Shou-Nian Ding
Chemosensors 2025, 13(4), 142; https://doi.org/10.3390/chemosensors13040142 - 12 Apr 2025
Viewed by 647
Abstract
The Monkeypox virus (MPXV), a DNA virus classified under the Orthpoxvirus genus alongside variola virus, has recently garnered significant global health attention due to its increasing transmission and emerging genomic mutations. Point-of-care testing is essential for effective clinical response and outbreak mitigation. In [...] Read more.
The Monkeypox virus (MPXV), a DNA virus classified under the Orthpoxvirus genus alongside variola virus, has recently garnered significant global health attention due to its increasing transmission and emerging genomic mutations. Point-of-care testing is essential for effective clinical response and outbreak mitigation. In this article, we developed a novel class of colored microspheres designed for application in a lateral flow immunoassay (LFIA) platform targeting MPXV-specific biomarkers. Polystyrene-maleic anhydride (SMA-MAA) microspheres were synthesized with a high-temperature soap-free emulsion polymerization optimized in our lab. Subsequent alkali and acid treatments were employed to introduce porosity into the microsphere matrix. Solvent Red 27 and Disperse Red 60 were incorporated via solvent-swelling and thermal-swelling methods, respectively, to generate high brightness (HB) carriers. A surface coating composed of a tannic acid–iron (TA–Fe3⁺) coordination complex was applied to form a stable metal–polyphenol film (MPF). This coating not only minimized dye leaching by establishing a robust shell but also improved dye distribution, thereby enhancing overall color intensity. The final HB-LFIA system, configured in a sandwich immunoassay format, demonstrated favorable sensitivity and linear detection range for Monkeypox antigen, indicating strong potential for clinical diagnostic use. Full article
(This article belongs to the Special Issue Application of Luminescent Materials for Sensing, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 895 KiB  
Article
A Study on the Electromagnetic Characteristics of Very-Low-Frequency Waves in the Ionosphere Based on FDTD
by Kui Huang, Qi Xiao, Juan Chen and Mian Dong
Electronics 2025, 14(8), 1545; https://doi.org/10.3390/electronics14081545 - 10 Apr 2025
Cited by 1 | Viewed by 445
Abstract
Very-low-frequency electromagnetic waves have low propagation loss, slow attenuation, a stable phase and amplitude in the Earth ionosphere waveguide cavity, and are widely used in VLF communication and navigation, ionospheric heating, global lightning distribution inversion, and other fields. Studying the transmission characteristics of [...] Read more.
Very-low-frequency electromagnetic waves have low propagation loss, slow attenuation, a stable phase and amplitude in the Earth ionosphere waveguide cavity, and are widely used in VLF communication and navigation, ionospheric heating, global lightning distribution inversion, and other fields. Studying the transmission characteristics of very-low-frequency (VLF) signals in the ionosphere is of great significance in spaceborne VLF communication technology. The existing research on ionospheric transmission characteristics using the finite-difference time domain (FDTD) algorithm is mostly based on high-frequency pulse signals, and the propagation model is relatively rough, resulting in certain calculation errors. To this end, a time-domain finite-difference algorithm model based on a uniaxial anisotropic perfectly matched layer (UPML) boundary in a spherical coordinate system was established, effectively solving the reflection problem existing in PEC boundary. The algorithm was used to numerically calculate the field-strength attenuation of VLF waves in the ionosphere. The simulation results showed that in the VLF frequency band, reducing the frequency is beneficial for electromagnetic waves to penetrate the ionosphere. Although the attenuation trend in the VLF waves is roughly the same during the day and night, the attenuation during the day is significantly greater than that at night, and this was compared and analyzed with traditional algorithms to verify the accuracy of the algorithm. Full article
Show Figures

Figure 1

23 pages, 1976 KiB  
Article
Joint Optimization Algorithm for UAV-Assisted Caching and Charging Based on Wireless Energy Harvesting
by Yumeng Zhu and Qi Zhu
Appl. Sci. 2025, 15(7), 3908; https://doi.org/10.3390/app15073908 - 2 Apr 2025
Viewed by 368
Abstract
The proliferation of mobile terminal applications and the increasing energy consumption of chips have raised concerns about insufficient power in mobile user terminals. In response to this issue, this paper proposes a joint optimization algorithm for UAV-assisted caching and charging based on non-orthogonal [...] Read more.
The proliferation of mobile terminal applications and the increasing energy consumption of chips have raised concerns about insufficient power in mobile user terminals. In response to this issue, this paper proposes a joint optimization algorithm for UAV-assisted caching and charging based on non-orthogonal multiple access (NOMA) within the context of mobile edge caching scenarios. The proposed algorithm considers the revenue generated from UAVs providing caching and charging services to users, as well as the cost associated with leasing cache files and the UAV energy consumption. The optimization problem aimed at maximizing UAV utility is established under constraints related to power and cache capacity. To address this mixed-integer programming problem, we divided it into two parts. The first part uses the Stackelberg–Bertrand game to optimize file pricing and the UAV cache strategy. In the second part, the block coordinate descent (BCD) method is used to optimize the UAV transmission power distribution, positioning, and user pairing. The joint optimization problem is divided into three subproblems, which use the Lagrange multiplier method, a simulated annealing algorithm, and a particle swarm optimization algorithm. Simulation results demonstrate that the proposed algorithm effectively reduces user transmission delay while also improving overall revenue generated by UAVs. Full article
(This article belongs to the Special Issue Wireless Networking: Application and Development)
Show Figures

Figure 1

8 pages, 1287 KiB  
Proceeding Paper
Modeling Electrical Potential in Multi-Dendritic Neurons Using Bessel Functions
by Kaouther Selmi, Souhaila Khalfallah and Kais Bouallegue
Med. Sci. Forum 2024, 28(1), 2; https://doi.org/10.3390/msf2024028002 - 20 Mar 2025
Cited by 1 | Viewed by 484
Abstract
Understanding the distribution of electrical potential within neurons is critical for advancing our comprehension of neuronal signaling and communication. Neurons, the fundamental units of the nervous system, rely on complex electrochemical processes to transmit information. The intricate structure of neurons, especially those with [...] Read more.
Understanding the distribution of electrical potential within neurons is critical for advancing our comprehension of neuronal signaling and communication. Neurons, the fundamental units of the nervous system, rely on complex electrochemical processes to transmit information. The intricate structure of neurons, especially those with multiple dendrites, plays a crucial role in how these electrical signals are generated, propagated, and integrated. Despite significant progress in neuroscience, accurately modeling the electrical potential within neurons with elaborate dendritic architectures remains a challenge. This article introduces a novel approach to modeling the electrical potential in multi-dendritic neurons using Bessel functions, which offers a more precise and detailed representation of these processes. The proposed method involves solving the electric potential diffusion equation in cylindrical coordinates, a mathematical framework that naturally aligns with the geometry of dendrites. The radial and axial components of the solution are expressed using Bessel functions and sinusoidal functions, respectively. Bessel functions are particularly well-suited for this purpose due to their ability to describe waveforms in cylindrical systems, making them ideal for capturing the spatial variations in electrical potential within the cylindrical shape of dendrites. By leveraging this mathematical approach, we obtain a complete representation of the potential distribution across the neuron, from the soma (cell body) through the dendrites to the synaptic terminals. This model accurately captures the spatial variations of electrical potential in different regions of the neuron, including areas with complex dendritic arborizations, which are branching structures that significantly influence the neuron’s electrical characteristics. Simulation results underscore the effectiveness of this approach in reproducing realistic neuronal behavior. The model successfully mimics the way electrical signals propagate and interact within dendritic structures, providing crucial insights into the underlying mechanisms of signal integration and transmission in neurons. Full article
(This article belongs to the Proceedings of The 2nd International Electronic Conference on Clinical Medicine)
Show Figures

Figure 1

Back to TopTop