Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = transition metal speciation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2538 KB  
Review
Advancements and Challenges of Cobalt–Zeolite Composite Catalysts in Heterogeneous Catalysis
by Wanying Liang and Guangyue Xu
Chemistry 2025, 7(3), 81; https://doi.org/10.3390/chemistry7030081 - 16 May 2025
Viewed by 1359
Abstract
Cobalt–zeolite composite catalysts (Co–zeolite) and their heterogeneous catalytic systems have garnered significant research attention owing to their superior catalytic activity and cost-effectiveness. The speciation of cobalt within these catalysts—either through impregnation onto the zeolite framework or structural incorporation within the aluminosilicate matrix—is critically [...] Read more.
Cobalt–zeolite composite catalysts (Co–zeolite) and their heterogeneous catalytic systems have garnered significant research attention owing to their superior catalytic activity and cost-effectiveness. The speciation of cobalt within these catalysts—either through impregnation onto the zeolite framework or structural incorporation within the aluminosilicate matrix—is critically governed by the employed synthesis methodology, which subsequently dictates their distinct catalytic advantages in targeted reaction systems. Compared to homogeneous catalytic systems, heterogeneous Co–zeolite configurations demonstrate enhanced structural integrity that effectively mitigates cobalt leaching, thereby improving catalyst recyclability while minimizing environmental contamination. This review systematically examines recent advancements in Co–zeolite fabrication techniques and their catalytic performance across diverse applications, including Fischer–Tropsch synthesis, nitrogen oxide abatement, hydrogenation processes, and oxidative transformations. Particular emphasis is placed on elucidating the metal-framework interactions, with analysis of synergistic effects arising from multi-valent cobalt speciation and bimetallic cooperativity between cobalt and secondary transition metals. This work critically evaluates current challenges in Co–zeolite catalyst design. Finally, we propose future research directions focusing on a precise identification of active species and mechanistic elucidation, innovative synthesis strategies for cobalt speciation control, machine learning-guided catalyst optimization, and the advancement of eco-friendly catalysts. Full article
Show Figures

Figure 1

24 pages, 4015 KB  
Review
Speciation of 3d Elements in Spinel Versus Corundum: Elucidating the Interplay Between Ligand Field, Structural Dissimilarities and Processing Conditions
by Adrian Goldstein and Alessio Zandonà
Ceramics 2025, 8(1), 16; https://doi.org/10.3390/ceramics8010016 - 19 Feb 2025
Cited by 3 | Viewed by 1082
Abstract
The simultaneous analysis of optical and electronic paramagnetic resonance spectra of all 3d metals, doped into transparent α-Al2O3 and MgAl2O4 spinel, was effectuated with a view of establishing the speciation pattern of the dopants. The examination of [...] Read more.
The simultaneous analysis of optical and electronic paramagnetic resonance spectra of all 3d metals, doped into transparent α-Al2O3 and MgAl2O4 spinel, was effectuated with a view of establishing the speciation pattern of the dopants. The examination of these patterns enabled the revelation of certain regularities (rules) affecting the correlation between the physical factors controlling the process and speciation patterns. It was observed that structural dissimilarities between the lattices significantly affected the correlation. Thus, the spinel lattice was found to impose the accommodation of the dopants as 2+ cations replacing native Mg2+ ions located in tetrahedral sites, with the process concerning only the late 3d elements. The difference in behavior between the early and late 3d elements is mostly caused by the increase in ionization potential along the series. In alumina, the dopants are accommodated as 3+ cations in octahedral sites; 6-coordinated 2+ cation stabilization is feasible but requires extremely reductive conditions for late 3d elements. Full article
(This article belongs to the Special Issue Transparent Ceramics—a Theme Issue in Honor of Dr. Adrian Goldstein)
Show Figures

Figure 1

25 pages, 11394 KB  
Article
Electroanalytical Studies on Codeposition of Cobalt with Ruthenium from Acid Chloride Baths
by Iwona Dobosz and Ewa Rudnik
Coatings 2024, 14(10), 1301; https://doi.org/10.3390/coatings14101301 - 11 Oct 2024
Viewed by 1654
Abstract
The aim of this study was to systematically analyze the influence of potential and the Co(II)–Ru(III) molar ratio on the electrochemical behavior of the Co–Ru system during codeposition from acidic chloride electrolytes. The equilibrium speciation of the baths was investigated spectrophotometrically and compared [...] Read more.
The aim of this study was to systematically analyze the influence of potential and the Co(II)–Ru(III) molar ratio on the electrochemical behavior of the Co–Ru system during codeposition from acidic chloride electrolytes. The equilibrium speciation of the baths was investigated spectrophotometrically and compared with theoretical calculations based on the stability constants of Co(II) and Ru(III) complexes. The codeposition of the metals was characterized using electroanalytical methods, including cyclic voltammetry, chronoamperometry, and anodic stripping linear voltammetry. The alloys obtained at different potentials were analyzed for their elemental composition (EDS, mapping), phase composition (XRD), and surface morphology (SEM). The morphology and composition of the alloys were mainly dependent on the deposition potential, which controlled the cobalt incorporation. Ruthenium–rich alloys were produced at potentials of −0.6 V and −0.7 V (vs. SCE). In these conditions, cobalt anomalously codeposited due to the formation of the CoOH+ intermediate, triggered by the intense hydrogen evolution on the ruthenium sublayer. Bulk cobalt electrodeposition began at a potential of around −0.8 V, resulting in the formation of cobalt-rich alloys. The early stages of the electrodeposition were investigated using different nucleation models. A transition from 2D progressive nucleation to 3D instantaneous nucleation at around −0.8 V was identified as being caused by cobalt incorporation. This was well correlated with electroanalytical data, partial polarization curves of alloy deposition, elemental mapping analysis, and the structure of the deposits. Full article
Show Figures

Figure 1

15 pages, 7124 KB  
Article
Characterization, Concentration, and Speciation of Metal Elements in Copper Slag: Implications for Secondary Metal Recovery
by Zirou Liu, Xinhang Xu, Li Guo, Qiusong Chen and Chongchong Qi
Crystals 2024, 14(5), 420; https://doi.org/10.3390/cryst14050420 - 29 Apr 2024
Cited by 1 | Viewed by 2426
Abstract
The treatment of large amounts of copper slag is an unavoidable issue resulting from the high demand for copper during the global transition to a sustainable development path. Metal-rich copper slag might serve as a potential source of metals through secondary recovery. In [...] Read more.
The treatment of large amounts of copper slag is an unavoidable issue resulting from the high demand for copper during the global transition to a sustainable development path. Metal-rich copper slag might serve as a potential source of metals through secondary recovery. In this study, two copper slags (CS1 and CS2) with different metallurgical properties were characterized, focusing on secondary metal recovery. The X-ray diffraction (XRD) results show that fayalite (Fe2SiO4) and magnetite (Fe3O4) were the main crystalline phases in both CS1 and CS2. In addition, CS2 exhibited a more stable amorphous silicate network than CS1, which was attributed to the differences in the content of Si-O-3NBO linkages. The sequential extraction of Zn, Cu, Fe, and Pb from the slags was also explored, with the Cu content in CS1 being substantially lower than that in CS2. All metals were distributed in the F5 residue fraction. Cu was the most mobile metal as a result of the large proportion of soluble fractions (F1–F3), followed by Zn and Fe. This study explored the chemical speciation of Zn, Cu, Fe, and Pb from copper slags, which has practical implications for secondary metal recovery from such materials. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Graphical abstract

25 pages, 5829 KB  
Article
Synthesis and Characterization of Bipyridyl-(Imidazole)n Mn(II) Compounds and Their Evaluation as Potential Precatalysts for Water Oxidation
by Ge Mu, Ryan B. Gaynor, Baylee N. McIntyre, Bruno Donnadieu and Sidney E. Creutz
Molecules 2023, 28(20), 7221; https://doi.org/10.3390/molecules28207221 - 23 Oct 2023
Viewed by 2791
Abstract
Metalloenzymes make extensive use of manganese centers for oxidative catalysis, including water oxidation; the need to develop improved synthetic catalysts for these processes has long motivated the development of bioinspired manganese complexes. Herein, we report a series of bpy-(imidazole)n (n = 1 [...] Read more.
Metalloenzymes make extensive use of manganese centers for oxidative catalysis, including water oxidation; the need to develop improved synthetic catalysts for these processes has long motivated the development of bioinspired manganese complexes. Herein, we report a series of bpy-(imidazole)n (n = 1 or 2) (bpy = 2,2′-bipyridyl) ligands and their Mn2+ complexes. Four Mn2+ complexes are structurally characterized using single-crystal X-ray diffraction, revealing different tridentate and tetradentate ligand coordination modes. Cyclic voltammetry of the complexes is consistent with ligand-centered reductions and metal-centered oxidations, and UV-vis spectroscopy complemented by TD-DFT calculations shows primarily ligand-centered transitions with minor contributions from charge-transfer type transitions at higher energies. In solution, ESI-MS studies provide evidence for ligand reorganization, suggesting complex speciation behavior. The oxidation of the complexes in the presence of water is probed using cyclic voltammetry, but the low stability of the complexes in aqueous solution leads to decomposition and precludes their ultimate application as aqueous electrocatalysts. Possible reasons for the low stability and suggestions for improvement are discussed. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Figure 1

13 pages, 2567 KB  
Article
Transition Metals Meet Scorpiand-like Ligands
by Salvador Blasco, Begoña Verdejo, María Paz Clares and Enrique García-España
Crystals 2023, 13(9), 1338; https://doi.org/10.3390/cryst13091338 - 1 Sep 2023
Cited by 1 | Viewed by 1505
Abstract
Scorpiand-like ligands combine the preorganization of the donor atoms of macrocycles and the degrees of freedom of the linear ligands. We prepared the complexes of several of these ligands with transition metal ions and made a crystallographic and water solution speciation studies. The [...] Read more.
Scorpiand-like ligands combine the preorganization of the donor atoms of macrocycles and the degrees of freedom of the linear ligands. We prepared the complexes of several of these ligands with transition metal ions and made a crystallographic and water solution speciation studies. The analysis of the resulting crystal structures show that the ligands have the ability to accommodate several metal ions and that the coordination geometry is mostly determined by the ligand. Ligand 6-[3,7-diazaheptyl]-3,6,9–triaza-1-(2,6)-pyridinacyclodecaphane (L3) is an hexadentate ligand that affords a family of isostructural crystals with Cu(II), Mn(II), Ni(II) and Zn(II). The attempts to obtain Co(II) crystals afforded the Co(III) structures instead. Ligand 6-[4-(2-pyridyl)-3-azabutyl]-3,6,9-triaza-1(2,6)-pyridinacyclodecaphane (L2) is very similar to L3 and yields structures similar to it, but its behavior in solution is very different due to the different interaction with protons. Ligand 6-(2-aminoethyl)-3,6,9–triaza-1-(2,6)-pyridinacyclodecaphane (L1) is pentadentate and its complexes allow the metal to be more accessible from the solvent. A Zn(II) structure with L1 shows the species [ZnBrHL1]2+, which exists in a narrow pH range. Full article
(This article belongs to the Special Issue The Polyhedral Face of Coordination Chemistry)
Show Figures

Figure 1

15 pages, 2181 KB  
Article
Phosphate Coordination in a Water-Oxidizing Cobalt Oxide Electrocatalyst Revealed by X-ray Absorption Spectroscopy at the Phosphorus K-Edge
by Si Liu, Shima Farhoosh, Paul Beyer, Stefan Mebs, Michael Haumann and Holger Dau
Catalysts 2023, 13(8), 1151; https://doi.org/10.3390/catal13081151 - 25 Jul 2023
Cited by 5 | Viewed by 2720
Abstract
In the research on water splitting at neutral pH, phosphorus-containing transition metal oxyhydroxides are often employed for catalyzing the oxygen evolution reaction (OER). We investigated a cobalt–phosphate catalyst (CoCat) representing this material class. We found that CoCat films prepared with potassium phosphate release [...] Read more.
In the research on water splitting at neutral pH, phosphorus-containing transition metal oxyhydroxides are often employed for catalyzing the oxygen evolution reaction (OER). We investigated a cobalt–phosphate catalyst (CoCat) representing this material class. We found that CoCat films prepared with potassium phosphate release phosphorus in phosphate-free electrolytes within hours, contrasting orders of magnitude’s faster K+ release. For P speciation and binding mode characterization, we performed technically challenging X-ray absorption spectroscopy experiments at the P K-edge and analyzed the resulting XANES and EXAFS spectra. The CoCat-internal phosphorus is present in the form of phosphate ions. Most phosphate species are likely linked to cobalt ions in Co–O–PO3 motifs, where the connecting oxygen could be a terminal or bridging ligand in Co-oxide fragments (P–Co distance, ~3.1 Å), with additional ionic bonds to K+ ions (P–K distance, ~3.3 Å). The phosphate coordination bond is stronger than the ionic K+-binding, explaining the strongly diverging ion release rates of phosphate and K+. Our results support a structural role of phosphate in the CoCat, with these ions binding at the margins of Co-oxide fragments, thereby limiting the long-range material ordering. The relations of catalyst-internal phosphate ions to cobalt’s redox-state changes, proton transfer, and catalytic activity are discussed. Full article
(This article belongs to the Special Issue Electrocatalytic Water Oxidation)
Show Figures

Graphical abstract

15 pages, 4782 KB  
Article
Development of High-Energy µ-X-ray Fluorescence and X-ray Absorption Fine Structure for the Distribution and Speciation of Rare Earth Elements in Natural Samples
by Makoto Nagasawa, Oki Sekizawa, Kiyofumi Nitta, Teruhiko Kashiwabara and Yoshio Takahashi
Minerals 2023, 13(6), 746; https://doi.org/10.3390/min13060746 - 30 May 2023
Cited by 5 | Viewed by 2712
Abstract
Micro-X-ray fluorescence and X-ray absorption fine structure (µ-XRF-XAFS) is one of the most powerful tools to identify the distribution and speciation of trace elements in natural samples with µm spatial resolution. However, conventional µ-XRF-XAFS studies applied to rare earth elements (REEs: lanthanide elements [...] Read more.
Micro-X-ray fluorescence and X-ray absorption fine structure (µ-XRF-XAFS) is one of the most powerful tools to identify the distribution and speciation of trace elements in natural samples with µm spatial resolution. However, conventional µ-XRF-XAFS studies applied to rare earth elements (REEs: lanthanide elements + Y in this study) are mainly limited to their L-edges and L lines (except for Y) that are subject to strong interferences from other elements (mainly transition metals). In this study, we extend µ-XRF-XAFS to the higher energy region (HE-µ-XRF-XAFS) by using an incident X-ray microbeam (size: ca. 1 × 1 µm2) between 38 and 54 keV to realize K-edge excitation lanthanide analysis without interferences from other elements at the BL37XU beamline, SPring-8 (Japan). This method enables us to simultaneously analyze (i) REE patterns (from La to Dy), (ii) XAFS spectra, and (iii) µm-scale distribution of each REE in the natural sample. The proposed method also realizes the simultaneous application of µ-XAFS at low (e.g., Fe K-edge) and high (lanthanide K-edges) energy at the same spot without changing the setup of the µ-XRF-XAFS system using the detuning technique. Full article
Show Figures

Figure 1

15 pages, 1760 KB  
Article
Geochemical Equilibrium Modelling of the Aqueous Speciation of Select Trace Elements in the Great Lakes
by John Fitzgerald, Colton Bentley and Bas Vriens
Water 2023, 15(8), 1483; https://doi.org/10.3390/w15081483 - 11 Apr 2023
Viewed by 2697
Abstract
The behaviour and fate of trace elements in surface waters are greatly affected by their chemical form in solution, but the aqueous speciation of dissolved trace elements in the North American Great Lakes has received relatively little attention. Here, we present results from [...] Read more.
The behaviour and fate of trace elements in surface waters are greatly affected by their chemical form in solution, but the aqueous speciation of dissolved trace elements in the North American Great Lakes has received relatively little attention. Here, we present results from geochemical equilibrium modelling with 2021 surface water quality data to examine the spatiotemporal dynamics of trace element speciation in the Great Lakes. The relative abundance of aqueous trace element species appeared consistent with variability in solution chemistry and followed basin-wide trends in pH, alkalinity, salinity, and nutrient levels. The speciation of alkali metals was dominated by free monovalent cations, and that of oxyanion-forming elements by oxoacids, whereas significant fractions (>1%) of other aqueous complexes were also evident for rare earth elements (e.g., Ce and Gd as carbonates), alkaline earth metals (e.g., Sr as sulfates), or transition metals (e.g., Zn as phosphates). Spatially, differences in the relative abundance of aqueous trace element species were <2 orders of magnitude, with the highest variation (~50-fold) occurring for select chloride-complexes, resulting from upstream-to-downstream salinity increases in the basin. Finally, simulations of various future water quality scenarios (e.g., decreasing P levels, increasing temperature and salinity) suggest that the speciation of most trace elements is robust temporally as well. This study demonstrates how considering aqueous speciation may help improve the understanding of trace element dynamics and support water quality management in the Great Lakes. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

20 pages, 9458 KB  
Article
One Scaffold, Two Conformations: The Ring-Flip of the Messenger InsP8 Occurs under Cytosolic Conditions
by Leonie Kurz, Peter Schmieder, Nicolás Veiga and Dorothea Fiedler
Biomolecules 2023, 13(4), 645; https://doi.org/10.3390/biom13040645 - 4 Apr 2023
Cited by 7 | Viewed by 3123
Abstract
Inositol poly- and pyrophosphates (InsPs and PP-InsPs) are central eukaryotic messengers. These very highly phosphorylated molecules can exist in two distinct conformations, a canonical one with five phosphoryl groups in equatorial positions, and a “flipped” conformation with five axial substituents. Using 13C-labeled [...] Read more.
Inositol poly- and pyrophosphates (InsPs and PP-InsPs) are central eukaryotic messengers. These very highly phosphorylated molecules can exist in two distinct conformations, a canonical one with five phosphoryl groups in equatorial positions, and a “flipped” conformation with five axial substituents. Using 13C-labeled InsPs/PP-InsPs, the behavior of these molecules was investigated by 2D-NMR under solution conditions reminiscent of a cytosolic environment. Remarkably, the most highly phosphorylated messenger 1,5(PP)2-InsP4 (also termed InsP8) readily adopts both conformations at physiological conditions. Environmental factors—such as pH, metal cation composition, and temperature—strongly influence the conformational equilibrium. Thermodynamic data revealed that the transition of InsP8 from the equatorial to the axial conformation is, in fact, an exothermic process. The speciation of InsPs and PP-InsPs also affects their interaction with protein binding partners; addition of Mg2+ decreased the binding constant Kd of InsP8 to an SPX protein domain. The results illustrate that PP-InsP speciation reacts very sensitively to solution conditions, suggesting it might act as an environment-responsive molecular switch. Full article
Show Figures

Graphical abstract

17 pages, 5372 KB  
Article
Assessment of Trace Metals Contamination, Species Distribution and Mobility in River Sediments Using EDTA Extraction
by Małgorzata Wojtkowska and Jan Bogacki
Int. J. Environ. Res. Public Health 2022, 19(12), 6978; https://doi.org/10.3390/ijerph19126978 - 7 Jun 2022
Cited by 9 | Viewed by 2626
Abstract
The impact of the ethylenediaminetetraacetic acid (EDTA) on speciation image of selected trace metals (Zn, Cd, Cu, Pb) in bottom sediments was determined. The influence on the effectiveness of metal removal of extraction multiplicity, type of metal, extraction time and concentration of EDTA [...] Read more.
The impact of the ethylenediaminetetraacetic acid (EDTA) on speciation image of selected trace metals (Zn, Cd, Cu, Pb) in bottom sediments was determined. The influence on the effectiveness of metal removal of extraction multiplicity, type of metal, extraction time and concentration of EDTA were analyzed. With the increase of extraction multiplicity, the concentration of EDTA and contact time, the efficiency of trace metals leaching increased. The speciation analysis revealed that EDTA not only leached metals from bioavailable fractions, but also caused the transition of the metals between the fractions. The biggest amounts of bioavailable forms were found for Cd, less for Zn. The amount of bioavailable fraction was the lowest for Cu and Pb. The two first-order kinetic models fitted well the kinetics of metals extraction with EDTA, allowing the metals fractionation into “labile” (Q1), “moderately labile” (Q2) and “not extractable” fractions (Q3). Full article
(This article belongs to the Special Issue Heavy Metals Remediation of Soil and Water)
Show Figures

Figure 1

11 pages, 2938 KB  
Article
Effects of Modified Biochar on the Mobility and Speciation Distribution of Cadmium in Contaminated Soil
by Liwen Zheng, Hongying Ji, Yongchao Gao, Zhongfeng Yang, Lei Ji, Qingqing Zhao, Yanju Liu and Xiangliang Pan
Processes 2022, 10(5), 818; https://doi.org/10.3390/pr10050818 - 21 Apr 2022
Cited by 11 | Viewed by 3017
Abstract
Cadmium-contaminated soil poses a threat to the environment and human health. Biochar materials have received widespread attention as an in situ immobilizer for the efficient remediation of heavy-metal-contaminated soils. In this study, a modified biochar material (E–CBC) was developed for the immobilization of [...] Read more.
Cadmium-contaminated soil poses a threat to the environment and human health. Biochar materials have received widespread attention as an in situ immobilizer for the efficient remediation of heavy-metal-contaminated soils. In this study, a modified biochar material (E–CBC) was developed for the immobilization of Cd in contaminated soil. E–CBC was characterized by XPS, SEM, BET, and FTIR. The effects of pristine biochar (BC) and E–CBC on soil physicochemical properties (pH and soil organic matter (SOM)), CaCl2-extractable Cd, total characteristics leaching procedure (TCLP) Cd, and speciation distribution of Cd were studied by incubation experiments. The results showed that the application of BC and E–CBC increased soil pH slightly and SOM significantly. A 2% dosage BC and E–CBC treatment reduced CaCl2-extractable Cd by 14.62% and 91.79%, and reduced TCLP Cd by 9.81% and 99.8%, respectively. E–CBC was shown to effectively induce the transition of Cd in the soil to a stable state. The application of a 0.25% dosage of E–CBC reduced the acid-extractable fraction of Cd from 58.06% to 10.66%. The functional groups increased after modification and may play an important role in the immobilization of Cd in the contaminated soil. In conclusion, E–CBC is a promising in situ immobilizer for the remediation of Cd-contaminated soil. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Graphical abstract

17 pages, 3538 KB  
Article
Automated SEM-EDS Analysis of Transition Metals and Other Metallic Compounds Emitted from Incinerating Agricultural Waste Plastic Film
by Tae-Han Kim, Boo-Hun Choi, Choong-Sik Yoon, Yong-Kyu Ko, Moon-Sung Kang and Joongjin Kook
Atmosphere 2022, 13(2), 260; https://doi.org/10.3390/atmos13020260 - 3 Feb 2022
Cited by 6 | Viewed by 4347
Abstract
Illegal open burning, which is criticized as a leading source of air pollutants among agricultural activities, currently requires constant effort and attention from countries around the world. A speciation analysis method is required to examine the harmful effects of particulate matter generated by [...] Read more.
Illegal open burning, which is criticized as a leading source of air pollutants among agricultural activities, currently requires constant effort and attention from countries around the world. A speciation analysis method is required to examine the harmful effects of particulate matter generated by incineration on the human body. In this study, to simulate open-air incineration, infrastructure for incineration tests complying with US EPA method 5G was built, and a large-area analysis was conducted on the particulate matter through automated SEM-EDS. For test specimens, waste mulching LDPE collected by Korea Environment Corporation Dangjin Office was used. To raise the identifiability of analyzed particles, the specimen was sampled on a plate made of Ag, which has a high atomic number, three times. Metal particulate matter showed a high reaction to C and C-O. The ratio of metal particulate matters that reacted to C and C-O was in the order of Cu (94.1%) > Fe (83.3%) > Al (79.7%). In this study, it was verified that waste mulching adsorbs metal chemicals originating from the soil due to its properties and deterioration, and that when it is incinerated, it emits particulate matter containing transition metals and other metals that contribute to excessive ROS production and reduction. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

19 pages, 1572 KB  
Review
The Future Is Bright for Polyoxometalates
by Manuel Aureliano
BioChem 2022, 2(1), 8-26; https://doi.org/10.3390/biochem2010002 - 6 Jan 2022
Cited by 48 | Viewed by 7259
Abstract
Polyoxometalates (POMs) are clusters of units of oxoanions of transition metals, such as Mo, W, V and Nb, that can be formed upon acidification of neutral solutions. Once formed, some POMs have shown to persist in solution, even in the neutral and basic [...] Read more.
Polyoxometalates (POMs) are clusters of units of oxoanions of transition metals, such as Mo, W, V and Nb, that can be formed upon acidification of neutral solutions. Once formed, some POMs have shown to persist in solution, even in the neutral and basic pH range. These inorganic clusters, amenable of a variety of structures, have been studied in environmental, chemical, and industrial fields, having applications in catalysis and macromolecular crystallography, as well as applications in biomedicine, such as cancer, bacterial and viral infections, among others. Herein, we connect recent POMs environmental applications in the decomposition of emergent pollutants with POMs’ biomedical activities and effects against cancer, bacteria, and viruses. With recent insights in POMs being pure, organic/inorganic hybrid materials, POM-based ionic liquid crystals and POM-ILs, and their applications in emergent pollutants degradation, including microplastics, are referred. It is perceived that the majority of the POMs studies against cancer, bacteria, and viruses were performed in the last ten years. POMs’ biological effects include apoptosis, cell cycle arrest, interference with the ions transport system, inhibition of mRNA synthesis, cell morphology changes, formation of reaction oxygen species, inhibition of virus binding to the host cell, and interaction with virus protein cages, among others. We additionally refer to POMs’ interactions with various proteins, including P-type ATPases, aquoporins, cinases, phosphatases, among others. Finally, POMs’ stability and speciation at physiological conditions are addressed. Full article
(This article belongs to the Special Issue Selected Papers from XXI SPB National Congress of Biochemistry 2021)
Show Figures

Figure 1

14 pages, 2064 KB  
Article
Simultaneous Quantification and Speciation of Trace Metals in Paired Serum and CSF Samples by Size Exclusion Chromatography–Inductively Coupled Plasma–Dynamic Reaction Cell–Mass Spectrometry (SEC-DRC-ICP-MS)
by Bernhard Michalke, Achim Berthele and Vivek Venkataramani
Int. J. Mol. Sci. 2021, 22(16), 8892; https://doi.org/10.3390/ijms22168892 - 18 Aug 2021
Cited by 13 | Viewed by 4122
Abstract
Background: Transition metals play a crucial role in brain metabolism: since they exist in different oxidation states they are involved in ROS generation, but they are also co-factors of enzymes in cellular energy metabolism or oxidative defense. Methods: Paired serum and cerebrospinal fluid [...] Read more.
Background: Transition metals play a crucial role in brain metabolism: since they exist in different oxidation states they are involved in ROS generation, but they are also co-factors of enzymes in cellular energy metabolism or oxidative defense. Methods: Paired serum and cerebrospinal fluid (CSF) samples were analyzed for iron, zinc, copper and manganese as well as for speciation using SEC-ICP-DRC-MS. Brain extracts from Mn-exposed rats were additionally analyzed with SEC-ICP-DRC-MS. Results: The concentration patterns of transition metal size fractions were correlated between serum and CSF: Total element concentrations were significantly lower in CSF. Fe-ferritin was decreased in CSF whereas a LMW Fe fraction was relatively increased. The 400–600 kDa Zn fraction and the Cu-ceruloplasmin fraction were decreased in CSF, by contrast the 40–80 kDa fraction, containing Cu- and Zn-albumin, relatively increased. For manganese, the α-2-macroglobulin fraction showed significantly lower concentration in CSF, whereas the citrate Mn fraction was enriched. Results from the rat brain extracts supported the findings from human paired serum and CSF samples. Conclusions: Transition metals are strictly controlled at neural barriers (NB) of neurologic healthy patients. High molecular weight species are down-concentrated along NB, however, the Mn-citrate fraction seems to be less controlled, which may be problematic under environmental load. Full article
(This article belongs to the Special Issue The Role of Trace Elements in Diseases)
Show Figures

Graphical abstract

Back to TopTop