Automated SEM-EDS Analysis of Transition Metals and Other Metallic Compounds Emitted from Incinerating Agricultural Waste Plastic Film
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design
2.2. Incineration Test Infrastructure
2.3. Experimental Method
3. Results and Discussion
3.1. Conditions for Specimen and Test
3.2. Major Chemical Categories by Particle Diameter
3.3. Analysis of Transition Metals and Other Metals
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Joint Related Ministries. The Second Implementation Plan for the Fine Dust Season Management System (Proposal); Joint Related Ministries: Jacksonville, FL, USA, 2020; pp. 528–529.
- Merrington, A. 9—Recycling of Plastics. In Applied Plastics Engineering Handbook, 2nd ed; Kutz, M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2017; pp. 167–189. [Google Scholar]
- Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef]
- Pascall, M.A.; Zabik, M.E.; Zabik, M.J.; Hernandez, R.J. Uptake of Polychlorinated Biphenyls (PCBs) from an Aqueous Medium by Polyethylene, Polyvinyl Chloride, and Polystyrene Films. J. Agric. Food Chem. 2005, 53, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Holmes, L.A.; Turner, A.; Thompson, R.C. Interactions between trace metals and plastic production pellets under estuarine conditions. Mar. Chem. 2014, 167, 25–32. [Google Scholar] [CrossRef]
- Canellas, C.G.L.; Carvalho, S.M.F.; Anjos, M.J.; Lopes, R.T. Determination of Cu/Zn and Fe in human serum of patients with sickle cell anemia using radiation synchrotron. Appl. Radiat. Isotopes 2012, 70, 1277–1280. [Google Scholar] [CrossRef] [PubMed]
- Dunaief, J.L. Iron Induced Oxidative Damage As a Potential Factor in Age-Related Macular Degeneration: The Cogan Lecture. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4660–4664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erie, J.C.; Good, J.A.; Butz, J.A.; Pulido, J.S. Reduced Zinc and Copper in the Retinal Pigment Epithelium and Choroid in Age-related Macular Degeneration. Am. J. Ophthalmol. 2009, 147, 276–282.e1. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, H.L.; Nilsson, L.; Möller, L. Subway Particles Are More Genotoxic than Street Particles and Induce Oxidative Stress in Cultured Human Lung Cells. Chem. Res. Toxicol. 2005, 18, 19–23. [Google Scholar] [CrossRef]
- Kelly, F.J.; Fussell, J.C. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 2012, 60, 504–526. [Google Scholar] [CrossRef]
- Wadge, A.; Hutton, M. The cadmium and lead content of suspended particulate matter emitted from a U.K. refuse incinerator. Sci. Total Environ. 1987, 67, 91–95. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, G.; Fu, B.; Liu, Y.; Xue, X. The transformation and enrichment of Cd in fine particulate matter during coal combustion: The key roles of Ti-bearing components. Fuel 2021, 292, 120285. [Google Scholar] [CrossRef]
- Picuno, P.; Sica, C.; Laviano, R.; Dimitrijević, A.; Scarascia-Mugnozza, G. Experimental tests and technical characteristics of regenerated films from agricultural plastics. Polym. Degrad. Stab. 2012, 97, 1654–1661. [Google Scholar] [CrossRef]
- Balart, M.J.; Hao, X.; Davis, C.L. Automated SEM/EDS Analysis for Assessment of Trace Cross-Contamination in 316L Stainless Steel Powders. Metall. Mater. Trans. A 2021, 53, 345–358. [Google Scholar] [CrossRef]
- Pietranik, A.; Kierczak, J.; Tyszka, R.; Schulz, B. Understanding Heterogeneity of a Slag-Derived Weathered Material: The Role of Automated SEM-EDS Analyses. Minerals 2018, 8, 513. [Google Scholar] [CrossRef] [Green Version]
- Bender, R.; Neimke, D.; Niewöhner, L.; Barth, M.; Ebert, M. Discrimination of SINTOX® GSR against environmental particles and its automated investigation by SEM/EDS. Forensic Chem. 2021, 24, 100338. [Google Scholar] [CrossRef]
- ASTM International. Standard Practice for Gunshot Residue Analysis by Scanning Electron Microscopy/Energy Dispersive X-Ray Spectrometry; ASTM E1588—20; ASTM: West Conshohocken, PA, USA, 2020. [Google Scholar]
- Miyauchi, H.; Kumihashi, M.; Shibayama, T. The contribution of trace elements from smokeless powder to post firing residues. J. Forensic Sci. 1997, 43, 90–96. [Google Scholar] [CrossRef]
- Petruk, W. (Ed.) Applied Mineralogy in the Mining Industry; Elsevier Science: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Schulz, B.; Merker, G.; Gutzmer, J. Automated SEM mineral liberation analysis (MLA) with generically labelled EDX spectra in the mineral processing of rare earth element ores. Minerals 2019, 9, 527. [Google Scholar] [CrossRef] [Green Version]
- Šegvić, B.; Ugarković, M.; Süssenberger, A.; Mählmann, R.F.; Moscariello, A. Compositional Properties and Provenance of Hellenistic Pottery From the Necropolis of Issa with Evidences on the Cross-Adriatic and the Mediterranean-Scale Trade. Mediterr. Archaeol. Archaeom. 2016, 16, 23–52. [Google Scholar]
- Haberlah, D.; Owen, M.; Botha, P.W.; Gottlieb, P. SEM-EDS-based protocol for subsurface drilling mineral identification and petrological classification. In Proceedings of the 10th International Congress for Applied Mineralogy (ICAM), Trondheim, Norway, 1–5 August 2011; Springer: Berlin/Heidelberg, Germany, 2012; pp. 265–273. [Google Scholar]
- Ford, F.D.; Wercholaz, C.R.; Lee, A. Predicting Process Outcomes for Sudbury Platinum-Group Minerals Using Grade-Recovery Modeling from Mineral Liberation Analyzer (MLA) Data. Can. Mineral. 2011, 49, 1627–1642. [Google Scholar] [CrossRef]
- Grammatikopoulos, T. Quantitative Characterization of the REE Minerals by QEMSCAN from the Nechalacho Heavy Rare Earth Deposit; SGS Minerals Services: Mobile, AL, USA, 2013.
- Rollinson, G.K.; Andersen, J.C.Ø.; Stickland, R.J.; Boni, M.; Fairhurst, R. Characterisation of non-sulphide zinc deposits using QEMSCAN®. Miner. Eng. 2011, 8, 778–787. [Google Scholar] [CrossRef]
- MacDonald, M.; Adair, B.; Bradshaw, D.; Dunn, M.; Latti, D. Learnings From Five Years of On-Site Mla at Kennecott Utah Copper Corporation: (Myth Busters Through Quantitative Evidence…); Springer: Berlin/Heidelberg, Germany, 2012; pp. 419–426. [Google Scholar]
- Anderson, K.F.E.; Wall, F.; Rollinson, G.K.; Moon, C.J. Quantitative mineralogical and chemical assessment of the Nkout iron ore deposit, Southern Cameroon. Ore Geol. Rev. 2014, 62, 25–39. [Google Scholar] [CrossRef]
- Korea Environment Corporation. Survey on the Agricultural Wastes in the Korea Environment Corporation; Korea Environment Corporation: Incheon, Korea, 2020. [Google Scholar]
- Kim, H.S. Survey on the Incineration of Agricultural Byproducts and Wastes in Rural Areas; Ministry of Agriculture, Food and Rural Affairs: Guelph, ON, Canada, 2020.
- Rural Development Administration’s Pesticide Safety Information System. Available online: http://psis.rda.go.kr/psis/agc/res/agchmRegistStusLst.ps (accessed on 23 August 2021).
- Ahn, J.H.; Song, I.H.; Kang, M.S. Correlation between Raw Materials and Chemical Contents of Livestock Compost. J. Korean Soc. Agric. Eng. 2013, 55, 37–45. [Google Scholar]
- Galván Josa, V.; Castellano, G.; Bertolino, S.R. Quantification by SEM–EDS in uncoated non-conducting samples. Radiat. Phys. Chem. 2013, 88, 32–37. [Google Scholar] [CrossRef]
- Schwoeble, A.J.; David, L. Exline Current Methods in Forensic Gunshot Residue Analysis, 1st ed.; CRC Press: Abingdon, UK, 2000. [Google Scholar]
- Aloupi, E.; Karydas, A.G.; Paradellis, T. Pigment analysis of wall paintings and ceramics from Greece and Cyprus. The optimum use of x-ray spectrometry on specific archaeological issues. X-Ray Spectrom 2018, 29, 18. [Google Scholar] [CrossRef]
- Krüsemann, H. SEMs and forensic science. Probl. Forensic Sci. 2001, 47, 110–121. [Google Scholar]
- Hortolà, P. SEM examination of human erythrocytes in uncoated bloodstains on stone: Use of conventional as environmental-like SEM in a soft biological tissue (and hard inorganic material). J. Microsc. 2005, 218, 94–103. [Google Scholar] [CrossRef]
- Schleicher, L.S.; Miller, J.W.; Watkins-Kenney, S.C.; Carnes-McNaughton, L.F.; Wilde-Ramsing, M.U. Non-destructive chemical characterization of ceramic sherds from Shipwreck 31CR314 and Brunswick Town, North Carolina. J. Archaeol. Sci. 2008, 35, 2824–2838. [Google Scholar] [CrossRef]
- Yadav, R.K.; Shanker, R. Backscattering of 8–28keV electrons from a thick Al, Ti, Ag and Pt targets. J. Electron Spectrosc. Relat. Phenom. 2006, 151, 71–77. [Google Scholar] [CrossRef]
- EPA Method 5G. Determination of Particulate Matter Emissions from Wood Heaters (Dilution Tunnel Sampling Location); EPA Method 5G: Washington, DC, USA, 2017. [Google Scholar]
- Kim, M.U. Emission Characteristics of Fine Particulate Matter and Analysis of Air Quality Impact from Biomass Burning. Ph.D. Thesis, Sejong University, Seoul, Korea, 2019. [Google Scholar]
- Park, S.; Choi, S.; Park, G.; Kim, J.; Bong, C.; Park, S.; Kim, J.; Hwang, U. Collection Characteristics of Particulate Matters from Biomass Burning by Control Devices: Mainly Commercial Meat Cooking. J. Korean Soc. Atmos. Environ. 2011, 27, 641–649. [Google Scholar] [CrossRef]
- Draxler, R. Ronald Hysplit_4 User’s Guide; National Oceanic and Atmospheric Administration: Washington, DC, USA, 1999.
- Akbari, M.Z.; Thepnuan, D.; Wiriya, W.; Janta, R.; Punsompong, P.; Hemwan, P.; Charoenpanyanet, A.; Chantara, S. Emission factors of metals bound with PM2.5 and ashes from biomass burning simulated in an open-system combustion chamber for estimation of open burning emissions. Atmos. Pollut. Res. 2021, 12, 13–24. [Google Scholar] [CrossRef]
- Hosseini, S.; Shrivastava, M.; Qi, L.; Weise, D.R.; Cocker, D.R.; Miller, J.W.; Jung, H.S. Effect of low-density polyethylene on smoke emissions from burning of simulated debris piles. J. Air Waste Manage Assoc. 2014, 64, 690–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redondo-Bermúdez, M.d.C.; Gulenc, I.T.; Cameron, R.W.; Inkson, B.J. ‘Green barriers’ for air pollutant capture: Leaf micromorphology as a mechanism to explain plants capacity to capture particulate matter. Environ. Pollut. 2021, 288, 117809. [Google Scholar] [CrossRef]
- Cholakian, A.; Coll, I.; Colette, A.; Beekmann, M. Exposure of the population of southern France to air pollutants in future climate case studies. Atmos. Environ. 2021, 264, 118689. [Google Scholar] [CrossRef]
- Huang, Y.; Cheng, X. Chapter 22—Characteristics and sources of atmospheric particulate matter and health risk in Southwest China. In Asian Atmospheric Pollution; Singh, R.P., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 409–433. [Google Scholar]
- ISO. Particle Size Analysis—Image Analysis Methods; ISO 13322-1:2014; ISO: Geneva, Switzerland, 2014. [Google Scholar]
- Jillavenkatesa, A.; Lum, L.H.; Dapkunas, S. NIST Recommended Practice Guide: Particle Size Characterization; NIST: Gaithersburg, MD, USA, 2001. [Google Scholar]
- Luo, Y.R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Shah, A.D.; Huffman, G.P.; Huggins, F.E.; Shah, N.; Helble, J.J. Behavior of carboxyl-bound potassium during combustion of an ion-exchanged lignite. Fuel Process. Technol. 1995, 44, 105–120. [Google Scholar] [CrossRef]
- Chen, Y.; Shah, N.; Huggins, F.E.; Huffman, G.P.; Linak, W.P.; Miller, C.A. Investigation of primary fine particulate matter from coal combustion by computer-controlled scanning electron microscopy. Fuel Process. Technol. 2004, 85, 743–761. [Google Scholar] [CrossRef]
- MAC—Micro-Analysis Consultants. Available online: https://www.macstandards.co.uk (accessed on 12 January 2022).
- Löndahl, J.; Massling, A.; Pagels, J.; Swietlicki, E.; Vaclavik, E.; Loft, S. Size-resolved respiratory-tract deposition of fine and ultrafine hydrophobic and hygroscopic aerosol particles during rest and exercise. Inhal. Toxicol. 2007, 19, 109–116. [Google Scholar] [CrossRef]
- Löndahl, J.; Pagels, J.; Swietlicki, E.; Zhou, J.; Ketzel, M.; Massling, A.; Bohgard, M. A set-up for field studies of respiratory tract deposition of fine and ultrafine particles in humans. J. Aerosol Sci. 2006, 37, 1152–1163. [Google Scholar] [CrossRef]
- Tseng, H.; Wey, M.; Fu, C. Carbon materials as catalyst supports for SO2 oxidation: Catalytic activity of CuO–AC. Carbon 2003, 41, 139–149. [Google Scholar] [CrossRef]
- Tseng, H.; Wey, M. Study of SO2 adsorption and thermal regeneration over activated carbon-supported copper oxide catalysts. Carbon 2004, 42, 2269–2278. [Google Scholar] [CrossRef]
- Jemec Kokalj, A.; Dolar, A.; Titova, J.; Visnapuu, M.; Škrlep, L.; Drobne, D.; Vija, H.; Kisand, V.; Heinlaan, M. Long Term Exposure to Virgin and Recycled LDPE Microplastics Induced Minor Effects in the Freshwater and Terrestrial Crustaceans Daphnia magna and Porcellio scaber. Polymers 2021, 13, 771. [Google Scholar] [CrossRef]
- Thipse, S.S.; Schoenitz, M.; Dreizin, E.L. Morphology and composition of the fly ash particles produced in incineration of municipal solid waste. Fuel Process. Technol. 2002, 75, 173–184. [Google Scholar] [CrossRef]
- Prideaux, E. Plastic incineration rise draws ire. Japan Times, 3 November 2007. [Google Scholar]
- Chemical Information. Available online: http://msds.kosha.or.kr/MSDSInfo/kcic/english/msdssearch.do (accessed on 1 November 2021).
- Chen, S.; Liu, Z.; Jiang, S.; Hou, H. Carbonization: A feasible route for reutilization of plastic wastes. Sci. Total Environ. 2020, 710, 136250. [Google Scholar] [CrossRef] [PubMed]
- Alabi-Babalola, O.; Aransiola, E.; Shittu, T. Adsorption and Kinetic Study of Activated Carbon Produced from Post-Consumer Low-Density Polyethylene (LDPE) Wastes. Adv. Chem. Eng. Sci. 2021, 11, 38. [Google Scholar] [CrossRef]
- Alimi, O.S.; Farner Budarz, J.; Hernandez, L.M.; Tufenkji, N. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 2018, 52, 1704–1724. [Google Scholar] [CrossRef]
- Teuten, E.L.; Saquing, J.M.; Knappe, D.R.; Barlaz, M.A.; Jonsson, S.; Björn, A.; Rowland, S.J.; Thompson, R.C.; Galloway, T.S.; Yamashita, R. Transport and release of chemicals from plastics to the environment and to wildlife. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2027–2045. [Google Scholar] [CrossRef] [Green Version]
- Brennecke, D.; Duarte, B.; Paiva, F.; Caçador, I.; Canning-Clode, J. Microplastics as vector for heavy metal contamination from the marine environment. Estuar. Coast Shelf Sci. 2016, 178, 189–195. [Google Scholar] [CrossRef]
- Werkenthin, M.; Kluge, B.; Wessolek, G. Metals in European roadside soils and soil solution—A review. Environ. Pollut. 2014, 189, 98–110. [Google Scholar] [CrossRef]
- Baran, A.; Wieczorek, J.; Mazurek, R.; Urbański, K.; Klimkowicz-Pawlas, A. Potential ecological risk assessment and predicting zinc accumulation in soils. Environ. Geochem. Health 2018, 40, 435–450. [Google Scholar] [CrossRef] [Green Version]
- Habtemariam, S. Modulation of Reactive Oxygen Species in Health and Disease. Antioxidants 2019, 8, 513. [Google Scholar] [CrossRef] [Green Version]
Measurement | Unit | Repeat | ||
---|---|---|---|---|
1st | 2nd | 3rd | ||
Time | min | 11.57 | 15.12 | 17.1 |
Weight | g | 127 | 128.2 | 128.2 |
Avg. Airflow | m3/min | 0.46 | 0.84 | 0.54 |
Particles | ea | 14,296 | 12,364 | 19,656 |
Avg. gas temperature | °C | 74.31 | 83.37 | 87.55 |
Class | Subclass | Total | 1.0 μm < Dp ≤ 2.5 μm | 2.5 μm < Dp ≤ 10 μm | 10 μm < Dp ≤ 50 μm |
---|---|---|---|---|---|
Al | Al | 1.6 | 0.3 ± 0.5 | 1.3 ± 1.9 | ND |
Al-C | 8.7 | 1.7 ± 2.4 | 6.7 ± 9.4 | 0.3 ± 0.5 | |
Al-C-O | 27.7 | 8.7 ± 12.3 | 19 ± 26.9 | ND | |
Al-C-O-Cl | 4.4 | 1.7 ± 2.4 | 2.7 ± 3.1 | ND | |
Al-C-O-Si | 52.4 | 7.7 ± 2.1 | 23 ± 11.9 | 21.7 ± 14.4 | |
Al-O | 4.3 | 2 ± 2.8 | 2 ± 2.8 | 0.3 ± 0.5 | |
Al-O-Si | 13.3 | 1.3 ± 1.2 | 5.7 ± 4.6 | 6.3 ± 6.2 | |
Other | 4.3 | 0.3 ± 0.5 | 3.3 ± 2.4 | 0.7 ± 0.9 | |
Total | 116.7 | 23.7 | 63.7 | 29.3 | |
Ca | Ca-C | 2 | 0.7 ± 0.9 | 1.3 ± 0.9 | ND |
Ca-C-O | 34.3 | 5 ± 4.5 | 24.3 ± 26.4 | 5 ± 6.4 | |
Ca-O | 3 | 0.3 ± 0.5 | 2 ± 2.2 | 0.7 ± 0.9 | |
Ca-O-Si | 0.6 | ND | 0.3 ± 0.5 | 0.3 ± 0.5 | |
Ca-C-Si | 0.3 | ND | 0.3 ± 0.5 | ND | |
Ca-C-O-Si | 2.7 | 0.7 ± 0.5 | 1 ± 0.8 | 1 ± 1.4 | |
Other | 9 | 1.7 ± 0.5 | 6 ± 4.1 | 1.3 ± 1.2 | |
Total | 51.9 | 8.4 | 35.2 | 8.3 | |
Cu | Cu | 0.6 | 0.3 ± 0.5 | 0.3 ± 0.5 | ND |
Cu-C | 4.7 | ND | 3 ± 2.9 | 1.7 ± 2.4 | |
Cu-C-O | 12.1 | 2.7 ± 3.8 | 6.7 ± 8.7 | 2.7 ± 3.8 | |
Cu-C-O-Cl | 3.3 | 0.7 ± 0.9 | 2.3 ± 2.1 | 0.3 ± 0.5 | |
Cu-C-O-Si | 0.7 | ND | 0.7 ± 0.9 | ND | |
Other | 0.6 | ND | 0.3 ± 0.5 | 0.3 ± 0.5 | |
Total | 22 | 3.7 | 13.3 | 5 | |
Fe | Fe | 1 | 0.3 ± 0.5 | 0.7 ± 0.5 | ND |
Fe-C | 7 | 2.3 ± 2.1 | 4 ± 3.7 | 0.7 ± 0.9 | |
Fe-C-O | 59 | 5.3 ± 3.1 | 42.7 ± 30.7 | 11 ± 9 | |
Fe-C-O-Cl | 0.6 | 0.3 ± 0.5 | 0.3 ± 0.5 | ND | |
Fe-C-O-Cr | 1 | 0.3 ± 0.5 | 0.7 ± 0.9 | ND | |
Fe-O | 8 | 1.3 ± 0.9 | 5 ± 3.7 | 1.7 ± 1.2 | |
Fe-O-Cr | 0.3 | ND | 0.3 ± 0.5 | ND | |
Other | 4.3 | 0.3 ± 0.5 | 3.3 ± 2.9 | 0.7 ± 0.5 | |
Total | 81.2 | 10.1 | 57 | 14.1 | |
K | K | 2 | 0.7 ± 0.9 | 1.3 ± 1.2 | ND |
K-C | 0.3 | ND | 0.3 ± 0.5 | ND | |
K-O | 0.3 | 0.3 ± 0.5 | ND | ND | |
Other | 0.3 | 0.3 ± 0.5 | ND | ND | |
Total | 2.9 | 1.3 | 1.6 | ND | |
Mg | Mg | 0.3 | ND | 0.3 ± 0.5 | ND |
Mg-C | 0.3 | ND | 0.3 ± 0.5 | ND | |
Mg-C-O | 2.3 | 1 ± 0.8 | 1 ± 0.8 | 0.3 ± 0.5 | |
Other | 1.6 | ND | 1.3 ± 0.9 | 0.3 ± 0.5 | |
Total | 4.5 | 1 | 2.9 | 0.6 | |
Na | Na-C | 0.3 | ND | 0.3 ± 0.5 | ND |
Na-C-O | 2 | 0.3 ± 0.5 | 1 ± 1.4 | 0.7 ± 0.9 | |
Other | 5 | 1 ± 0.8 | 3.7 ± 2.1 | 0.3 ± 0.5 | |
Total | 7.3 | 1.3 | 5 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.-H.; Choi, B.-H.; Yoon, C.-S.; Ko, Y.-K.; Kang, M.-S.; Kook, J. Automated SEM-EDS Analysis of Transition Metals and Other Metallic Compounds Emitted from Incinerating Agricultural Waste Plastic Film. Atmosphere 2022, 13, 260. https://doi.org/10.3390/atmos13020260
Kim T-H, Choi B-H, Yoon C-S, Ko Y-K, Kang M-S, Kook J. Automated SEM-EDS Analysis of Transition Metals and Other Metallic Compounds Emitted from Incinerating Agricultural Waste Plastic Film. Atmosphere. 2022; 13(2):260. https://doi.org/10.3390/atmos13020260
Chicago/Turabian StyleKim, Tae-Han, Boo-Hun Choi, Choong-Sik Yoon, Yong-Kyu Ko, Moon-Sung Kang, and Joongjin Kook. 2022. "Automated SEM-EDS Analysis of Transition Metals and Other Metallic Compounds Emitted from Incinerating Agricultural Waste Plastic Film" Atmosphere 13, no. 2: 260. https://doi.org/10.3390/atmos13020260
APA StyleKim, T. -H., Choi, B. -H., Yoon, C. -S., Ko, Y. -K., Kang, M. -S., & Kook, J. (2022). Automated SEM-EDS Analysis of Transition Metals and Other Metallic Compounds Emitted from Incinerating Agricultural Waste Plastic Film. Atmosphere, 13(2), 260. https://doi.org/10.3390/atmos13020260