Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = transient receptor potential vanilloid 4

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1758 KiB  
Article
Bioactive Polysaccharides from Fermented Dendrobium officinale: Structural Insights and Their Role in Skin Barrier Repair
by Wanshuai Wang, Anqi Zou, Qingtao Yu, Zhe Wang, Daotong Tan, Kaiye Yang, Chao Cai and Guangli Yu
Molecules 2025, 30(13), 2875; https://doi.org/10.3390/molecules30132875 - 6 Jul 2025
Viewed by 611
Abstract
Dendrobium, a prominent genus in the Orchidaceae family, has generated significant research attention due to its demonstrated biological potential, particularly its notable anti-inflammatory and antioxidant activities. In this study, two fractions of fermented Dendrobium officinale polysaccharides (FDOPs) were successfully isolated through a [...] Read more.
Dendrobium, a prominent genus in the Orchidaceae family, has generated significant research attention due to its demonstrated biological potential, particularly its notable anti-inflammatory and antioxidant activities. In this study, two fractions of fermented Dendrobium officinale polysaccharides (FDOPs) were successfully isolated through a multi-stage purification strategy including gradient ethanol precipitation, gel column chromatography, and ion exchange chromatography with Lactobacillus reuteri CCFM863. Structural characterization revealed that both Dendrobium officinale polysaccharide fractions consisted of (1→4)-β-D-Manp, (1→4)-β-D-Glcp, and (1→4)-α-D-Glcp residues. The anti-inflammatory efficacy and keratinocyte-protective potential of FDOPs (FDOP-1A and FDOP-2A) were investigated by using lipopolysaccharide (LPS)-induced RAW264.7 and HaCaT cells models, which showed significant inhibitions on the inflammatory factors of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), nitric oxide (NO), and interleukin-1 beta (IL-1β); recovered levels of filaggrin (FLG), aquaporin 3 (AQP3), transient receptor potential vanilloid 4 (TRPV4), cathelicidin antimicrobial peptide (CAMP)/LL-37, and adiponectin (ADIPOQ); and the reduced protein expression of the TLR4/IκB-α/NF-κB/NLRP3 pathway. Notably, the FDOPs exhibited a remarkable reactive oxygen species (ROS) scavenging capacity, demonstrating superior antioxidant activity. Therefore, FDOPs show dual anti-inflammatory and antioxidant properties, making them suitable as active ingredients for modulating epidermal inflammation and promoting skin barrier repair. Full article
(This article belongs to the Special Issue Biotechnology and Biomass Valorization)
Show Figures

Figure 1

19 pages, 2016 KiB  
Article
Effects of Integrated Extracts of Trigonella foenum-graecum and Asparagus racemosus on Hot Flash-like Symptoms in Ovariectomized Rats
by Fusun Erten, Besir Er, Ramazan Ozmen, Muhammed Tokmak, Ebru Gokdere, Cemal Orhan, Abhijeet A. Morde, Muralidhara Padigaru and Kazim Sahin
Antioxidants 2025, 14(3), 355; https://doi.org/10.3390/antiox14030355 - 18 Mar 2025
Viewed by 1258
Abstract
Vasomotor symptoms, such as hot flashes (HFs), commonly affect women during menopause, leading to a reduced quality of life. The current study evaluates the combined effect of active components Asparagus racemosus (AR) and Trigonella foenum-graecum (TFG) in a single oral formulation (IAT) for [...] Read more.
Vasomotor symptoms, such as hot flashes (HFs), commonly affect women during menopause, leading to a reduced quality of life. The current study evaluates the combined effect of active components Asparagus racemosus (AR) and Trigonella foenum-graecum (TFG) in a single oral formulation (IAT) for alleviating menopausal symptoms in ovariectomized rats. Following bilateral ovariectomy, the animals were randomly assigned to nine groups: (1) Control, (2) Ovariectomy (OVX), (3) OVX+TA1 (TA: Combination of Trigonella and Asparagus; TFG 30 mg/kg + AR 30 mg/kg), (4) OVX+TA2 (TFG 30 mg/kg + AR 15 mg/kg), (5) OVX+TA3 (TFG 15 mg/kg + AR 30 mg/kg), (6) OVX+TA4 (TFG 40 mg/kg + AR 30 mg/kg), (7) OVX+TA5 (TFG 30 mg/kg + AR 40 mg/kg), (8) OVX+IAT1 (IAT: Integrated Asparagus and Trigonella; TFG+AR integrated extract, 30 mg/kg), and (9) OVX+IAT2 (TFG+AR integrated extract, 60 mg/kg). On the 8th day of treatment, tail and skin temperatures were recorded every 30 min for 24 h. Ovariectomized rats exhibited menopausal symptoms, such as hormonal imbalances and elevated skin temperature. Administration of AR, TFG, and IAT significantly decreased serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), and cortisol while increasing estradiol, progesterone, and dopamine (p < 0.0001), effectively alleviating hot flash-like symptoms. Additionally, they mitigated ovariectomy-induced oxidative stress by lowering malondialdehyde (MDA) levels and restoring antioxidant enzyme activity. Ovariectomized rats exhibited increased expression of a proto-oncogene (c-FOS), gonadotropin-releasing hormone (GnRH), Kisspeptin, Neurokinin B (NKB), and Transient receptor potential vanilloid 1 (TRPV1), along with reduced expressing brain-derived neurotrophic factor (BDNF) levels, which were reversed by treatment, especially with the IAT2 combination. The AR and TFG combination, particularly in IAT formulations, showed strong potential in alleviating menopausal symptoms in ovariectomized rats. These findings suggest that the combination of AR and TFG extracts could be a natural alternative for managing postmenopausal symptoms by restoring reproductive hormone levels, regulating lipid profiles, and enhancing antioxidant defense systems. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

22 pages, 3529 KiB  
Article
Activation of Adenosine Triphosphate-Gated Purinergic 2 Receptor Channels by Transient Receptor Potential Vanilloid Subtype 4 in Cough Hypersensitivity
by Wanzhen Li, Shengyuan Wang, Tongyangzi Zhang, Yiqing Zhu, Li Yu and Xianghuai Xu
Biomolecules 2025, 15(2), 285; https://doi.org/10.3390/biom15020285 - 14 Feb 2025
Viewed by 1220
Abstract
Background: Transient receptor potential vanilloid subtype 4 (TRPV4) is a Ca2+-permeable non-selective cation channel that is involved in the development of cough hypersensitivity. Purinergic 2 receptors (P2X) belong to a class of adenosine triphosphate (ATP)-gated non-selective cation channels that also play [...] Read more.
Background: Transient receptor potential vanilloid subtype 4 (TRPV4) is a Ca2+-permeable non-selective cation channel that is involved in the development of cough hypersensitivity. Purinergic 2 receptors (P2X) belong to a class of adenosine triphosphate (ATP)-gated non-selective cation channels that also play an important role in cough hypersensitivity. Nevertheless, little is known about the interaction between them for cough hypersensitivity. The present study was designed to clarify the roles of TRPV4 and ATP-P2X receptors in cough hypersensitivity, and to explore the possible involvement of ATP-P2X receptors in the development of cough hypersensitivity mediated by TRPV4. Design and Method: This study aims to establish a guinea pig model of citric acid-induced enhanced cough to confirm the effects of the TRPV4-mediated purinergic signaling pathway on cough sensitivity by testing the number of coughs, the release of ATP, and the expressions of P2X and TRPV4 receptors in the tracheal carina and vagal ganglion; recording the activity of cellular currents with the whole-cell patch clamp technique; and detecting changes in intracellular calcium flow in the vagus nerve cells. Results: The number of coughs in the TRPV4 agonist GSK1016790A-treated control group was elevated compared with that in the control group, whereas the number of coughs in the TRPV4 antagonist HC067047-treated model group was significantly reduced compared with that in the chronic cough group. When the individuals in the chronic cough group were treated with A317491, PSB12062, and A804598 (P2X3,4,7 antagonists), the number of coughs was significantly decreased. This suggests that TRPV4 and P2X3, P2X4, and P2X7 receptors have an effect on cough hyper-responsiveness in guinea pigs with chronic cough. Enzyme-linked immunosorbent assay results suggested that TRPV4 antagonist and P2X3,4,7 antagonist could differentially reduce the levels of inflammatory factor SP and CGRP in alveolar lavage fluid, and TRPV4 antagonist could reduce the ATP content in the alveolar lavage fluid of guinea pigs in the model. Western blot and immunohistochemistry results showed that, in the tracheal carina and vagal ganglion, the TRPV4 and P2X3,4,7 expression was elevated in the chronic cough group compared with the control group, and could be significantly inhibited by TRPV4 antagonist. Vagus ganglion neurons were isolated, cultured, identified, and subjected to whole-cell membrane clamp assay. When ATP was given extracellularly, a significant inward current was recorded in the examined cells of individuals in the chronic cough and control groups, and the inward current induced by ATP was higher in the chronic cough group relative to the control group. This inward current (IATP) was differentially blocked by P2X3, P2X4, and P2X7 antagonists. Further studies revealed that TRPV4 agonists potentiated ATP-activated currents, and the potentiated currents could still be inhibited by P2X3, P2X4, and P2X7 receptor antagonists, whereas TRPV4 inhibitors partially blocked ATP-activated currents. It is suggested that TRPV4 affects P2X3, P2X4, and P2X7 receptor-mediated ATP-activated currents. Calcium imaging also showed that TRPV4 agonists induced different degrees of calcium inward currents in the vagal neurons of the chronic cough and the control group, and the calcium inward currents were more significant in the model group. Conclusions: The TRPV4-mediated purinergic signaling pathway was identified to be involved in the development of cough hypersensitivity in guinea pigs with chronic cough; i.e., TRPV4 can lead to the release of airway epithelial ATP, which can stimulate P2X receptors on the cough receptor, and further activate the sensory afferent nerves in the peripheral airway, leading to increased cough sensitivity. Full article
(This article belongs to the Special Issue TRP Channels in Cardiovascular and Inflammatory Disease)
Show Figures

Figure 1

22 pages, 13927 KiB  
Article
Discovery of TRPV4-Targeting Small Molecules with Anti-Influenza Effects Through Machine Learning and Experimental Validation
by Yan Sun, Jiajing Wu, Beilei Shen, Hengzheng Yang, Huizi Cui, Weiwei Han, Rongbo Luo, Shijun Zhang, He Li, Bingshuo Qian, Lingjun Fan, Junkui Zhang, Tiecheng Wang, Xianzhu Xia, Fang Yan and Yuwei Gao
Int. J. Mol. Sci. 2025, 26(3), 1381; https://doi.org/10.3390/ijms26031381 - 6 Feb 2025
Viewed by 1284
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a calcium-permeable cation channel critical for maintaining intracellular Ca2+ homeostasis and is essential in regulating immune responses, metabolic processes, and signal transduction. Recent studies have shown that TRPV4 activation enhances influenza A virus infection, promoting [...] Read more.
Transient receptor potential vanilloid 4 (TRPV4) is a calcium-permeable cation channel critical for maintaining intracellular Ca2+ homeostasis and is essential in regulating immune responses, metabolic processes, and signal transduction. Recent studies have shown that TRPV4 activation enhances influenza A virus infection, promoting viral replication and transmission. However, there has been limited exploration of antiviral drugs targeting the TRPV4 channel. In this study, we developed the first machine learning model specifically designed to predict TRPV4 inhibitory small molecules, providing a novel approach for rapidly identifying repurposed drugs with potential antiviral effects. Our approach integrated machine learning, virtual screening, data analysis, and experimental validation to efficiently screen and evaluate candidate molecules. For high-throughput virtual screening, we employed computational methods to screen open-source molecular databases targeting the TRPV4 receptor protein. The virtual screening results were ranked based on predicted scores from our optimized model and binding energy, allowing us to prioritize potential inhibitors. Fifteen small-molecule drugs were selected for further in vitro and in vivo antiviral testing against influenza. Notably, glecaprevir and everolimus demonstrated significant inhibitory effects on the influenza virus, markedly improving survival rates in influenza-infected mice (protection rates of 80% and 100%, respectively). We also validated the mechanisms by which these drugs interact with the TRPV4 channel. In summary, our study presents the first predictive model for identifying TRPV4 inhibitors, underscoring TRPV4 inhibition as a promising strategy for antiviral drug development against influenza. This pioneering approach lays the groundwork for future clinical research targeting the TRPV4 channel in antiviral therapies. Full article
Show Figures

Graphical abstract

20 pages, 8904 KiB  
Article
Structure- and Ligand-Based Virtual Screening for Identification of Novel TRPV4 Antagonists
by Atefeh Saadabadi, Linda Wilkman, Marja Rantanen, Ari-Pekka Koivisto and Outi M. H. Salo-Ahen
Molecules 2025, 30(1), 100; https://doi.org/10.3390/molecules30010100 - 30 Dec 2024
Viewed by 1651
Abstract
Transient receptor potential vanilloid (TRPV) 4 is involved in signaling pathways specifically mediating pain and inflammation, making it a promising target for the treatment of various painful and inflammatory conditions. However, only one drug candidate targeting TRPV4 has entered the clinical trials. To [...] Read more.
Transient receptor potential vanilloid (TRPV) 4 is involved in signaling pathways specifically mediating pain and inflammation, making it a promising target for the treatment of various painful and inflammatory conditions. However, only one drug candidate targeting TRPV4 has entered the clinical trials. To identify potential TRPV4 inhibitors for drug development, we screened a library of ion channel-modulating compounds using both structure- and ligand-based virtual screening approaches. Since a high-resolution experimental structure of the human TRPV4 (hTRPV4) was not available during this study, we used a comparative model of hTRPV4 for the structure-based screening by molecular docking. The ligand-based virtual screening was performed using the pharmacophoric features of two known TRPV4 antagonists. Five potential hits were selected based on either the binding stability or the pharmacophore match, and their effect on hTRPV4 was tested using a FLIPRtetra assay. All tested compounds inhibited hTRPV4 at 30 µM, with compound Z1213735368 showing an IC50 of 8 µM at a concentration of 10 µM. Furthermore, natural stilbenoids, known to modulate other TRP channels, were evaluated for their hTRPV4 binding and inhibitory potential. The findings provide insight into the structural determinants of hTRPV4 modulation and may facilitate further efforts in developing therapeutic hTRPV4 ligands. Full article
Show Figures

Graphical abstract

11 pages, 280 KiB  
Review
Ion Channels as Potential Drug Targets in Dry Eye Disease and Their Clinical Relevance: A Review
by Carl Randall Harrell and Vladislav Volarevic
Cells 2024, 13(23), 2017; https://doi.org/10.3390/cells13232017 - 6 Dec 2024
Cited by 1 | Viewed by 1521
Abstract
Dry eye disease (DED) is a common multifactorial disorder characterized by a deficiency in the quality and/or quantity of tear fluid. Tear hyperosmolarity, the dysfunction of ion channel proteins, and eye inflammation are primarily responsible for the development and progression of DED. Alterations [...] Read more.
Dry eye disease (DED) is a common multifactorial disorder characterized by a deficiency in the quality and/or quantity of tear fluid. Tear hyperosmolarity, the dysfunction of ion channel proteins, and eye inflammation are primarily responsible for the development and progression of DED. Alterations in the structure and/or function of ion channel receptors (transient receptor potential ankyrin 1 (TRPA1), transient receptor potential melastatin 8 (TRPM8), transient receptor potential vanilloid 1 and 4 (TRPV1 and TRPV4)), and consequent hyperosmolarity of the tears represent the initial step in the development and progression of DED. Hyperosmolarity triggers the activation of ion channel-dependent signaling pathways in corneal epithelial cells and eye-infiltrated immune cells, leading to the activation of transcriptional factors that enhance the expression of genes regulating inflammatory cytokine production, resulting in a potent inflammatory response in the eyes of DED patients. A persistent and untreated detrimental immune response further modifies the structure and function of ion channel proteins, perpetuating tear hyperosmolarity and exacerbating DED symptoms. Accordingly, suppressing immune cell-driven eye inflammation and alleviating tear hyperosmolarity through the modulation of ion channels in DED patients holds promise for developing new therapeutic strategies. Here, we summarize current knowledge about the molecular mechanisms responsible for the inflammation-induced modification of ion channels leading to tear hyperosmolarity and immune cell dysfunction in DED patients. We also emphasize the therapeutic potential of the newly designed immunomodulatory and hypo-osmotic solution d-MAPPS™ Hypo-Osmotic Ophthalmic Solution, which can activate TRPV4 in corneal epithelial cells, stabilize the tear film, enhance natural cytokine communication, and suppress detrimental immune responses, an important novel approach for DED treatment. Full article
(This article belongs to the Section Cell Microenvironment)
14 pages, 2324 KiB  
Article
TRPV4 Mediates Alveolar Epithelial Barrier Integrity and Induces ADAM10-Driven E-Cadherin Shedding
by Lena Schaller, Thomas Gudermann and Alexander Dietrich
Cells 2024, 13(20), 1717; https://doi.org/10.3390/cells13201717 - 17 Oct 2024
Cited by 3 | Viewed by 1687
Abstract
Transient receptor potential vanilloid 4 (TRPV4) channels have been associated with numerous pulmonary pathologies, including hypertension, asthma, and acute lung injury. However, their role in the alveolar epithelium remains unclear. We performed impedance-based resistance measurements in primary differentiated alveolar epithelial type I (AT1) [...] Read more.
Transient receptor potential vanilloid 4 (TRPV4) channels have been associated with numerous pulmonary pathologies, including hypertension, asthma, and acute lung injury. However, their role in the alveolar epithelium remains unclear. We performed impedance-based resistance measurements in primary differentiated alveolar epithelial type I (AT1) cells from wild-type (WT) and TRPV4-deficient (TRPV4−/−) C57/BL6J mice to detect changes in AT1 barrier integrity upon TRPV4 activation. Both pharmacological (GSK1016790A) and a low pH-driven activation of TRPV4 were quantified, and the downstream effects on adherens junctions were assessed through the Western blotting of epithelial cadherin (E-cadherin) protein levels. Importantly, a drop in pH caused a rapid decrease in AT1 barrier resistance and increased the formation of a ~35 kDa E-cadherin C-terminal fragment, with both effects significantly reduced in TRPV4−/− AT1 cells. Similarly, the pharmacological activation of TRPV4 in AT1 cells triggered an immediate transient loss of barrier resistance and the formation of the same E-cadherin fragment, which was again diminished by TRPV4 deficiency. Moreover, TRPV4-mediated E-cadherin cleavage was significantly reduced by GI254023X, an antagonist of a disintegrin and metalloprotease 10 (ADAM10). Our results confirm the role of TRPV4 in regulating alveolar epithelial barrier permeability and provide insight into a novel signaling pathway by which TRPV4-induced Ca2+ influx stimulates metalloprotease-driven ectodomain shedding. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

17 pages, 2457 KiB  
Review
TRPV4 Channel Modulators as Potential Drug Candidates for Cystic Fibrosis
by Razan Orfali, Ali AlFaiz, Madhawi Alanazi, Rahaf Alabdulsalam, Meaad Alharbi, Yara Alromaih, Ismail Dallak, Marah Alrahal, Abdulaziz Alwatban and Reem Saud
Int. J. Mol. Sci. 2024, 25(19), 10551; https://doi.org/10.3390/ijms251910551 - 30 Sep 2024
Cited by 2 | Viewed by 2624
Abstract
Cystic fibrosis (CF) is a genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, resulting in defective chloride ion channels. This leads to thick, dehydrated mucus that severely disrupts mucociliary clearance in the respiratory system and [...] Read more.
Cystic fibrosis (CF) is a genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, resulting in defective chloride ion channels. This leads to thick, dehydrated mucus that severely disrupts mucociliary clearance in the respiratory system and triggers infection that eventually is the cause of death of CF patients. Current therapeutic strategies primarily focus on restoring CFTR function, blocking epithelial sodium channels to prevent mucus dehydration, or directly targeting mucus to reduce its viscosity. Among the ion channels expressed in ciliated bronchial epithelial cells, the transient receptor potential vanilloid 4 (TRPV4) channel emerges as a significant channel in CF pathogenesis. Activation of TRPV4 channels affects the regulation of airway surface liquid by modulating sodium absorption and intracellular calcium levels, which indirectly influences CFTR activity. TRPV4 is also involved in the regulatory volume decrease (RVD) process and enhances inflammatory responses in CF patients. Here, we combine current findings on TRPV4 channel modulation as a promising therapeutic approach for CF. Although limited studies have directly explored TRPV4 in CF, emerging evidence indicates that TRPV4 activation can significantly impact key pathological processes in the disease. Further investigation into TRPV4 modulators could lead to innovative treatments that alleviate severe respiratory complications and improve outcomes for CF patients. Full article
(This article belongs to the Special Issue Ion Movements and Membrane Proteins)
Show Figures

Figure 1

13 pages, 977 KiB  
Review
Biologic and Small Molecule Therapy in Atopic Dermatitis
by Mahek Shergill, Barinder Bajwa, Orhan Yilmaz, Karishma Tailor, Naila Bouadi and Ilya Mukovozov
Biomedicines 2024, 12(8), 1841; https://doi.org/10.3390/biomedicines12081841 - 13 Aug 2024
Cited by 6 | Viewed by 4923
Abstract
Atopic dermatitis is a chronic inflammatory dermatosis characterized by pruritic, scaly, erythematous lesions. Its incidence varies but is estimated to be approximately 20% in children and between 7 and 14% in adults, with variation amongst countries. It is a multifactorial condition, with a [...] Read more.
Atopic dermatitis is a chronic inflammatory dermatosis characterized by pruritic, scaly, erythematous lesions. Its incidence varies but is estimated to be approximately 20% in children and between 7 and 14% in adults, with variation amongst countries. It is a multifactorial condition, with a complex interplay between genetic, immunological, and environmental factors. Research into the inflammatory response has identified new therapeutic targets that work to reduce inflammation and subsequently reduce flares. This study explores existing therapeutic agents for atopic dermatitis as well as newer therapies such as biologics and small molecules, drawing upon each agent’s mechanism of action, relevant landmark clinical trials, efficacy, and safety profile. Current therapies include emollients, corticosteroids, cyclosporine A, calcineurin inhibitors, phototherapy, and methotrexate. Biologics described include dupilumab, tralokinumab, lebrikizumab, nemolizumab, and rocatinlimab. Small molecules inhibitors include Janus kinase inhibitors, phosphodiesterase 4 inhibitors, transient receptor potential vanilloid subfamily V member 1 antagonist, and aryl hydrocarbon receptor antagonist. Full article
(This article belongs to the Special Issue Current Molecular Research on Skin Diseases)
Show Figures

Figure 1

34 pages, 23627 KiB  
Article
Low-Intensity Extracorporeal Shock Wave Therapy Ameliorates Detrusor Hyperactivity with Impaired Contractility via Transient Potential Vanilloid Channels: A Rat Model for Ovarian Hormone Deficiency
by Kuang-Shun Chueh, Tai-Jui Juan, Jian-He Lu, Bin-Nan Wu, Rong-Jyh Lin, Jing-Wen Mao, Hung-Yu Lin, Shu-Mien Chuang, Chao-Yuan Chang, Mei-Chen Shen, Ting-Wei Sun and Yung-Shun Juan
Int. J. Mol. Sci. 2024, 25(9), 4927; https://doi.org/10.3390/ijms25094927 - 30 Apr 2024
Cited by 1 | Viewed by 1897
Abstract
This study explores low-intensity extracorporeal shock wave therapy (LiESWT)’s efficacy in alleviating detrusor hyperactivity with impaired contractility (DHIC) induced by ovarian hormone deficiency (OHD) in ovariectomized rats. The rats were categorized into the following four groups: sham group; OVX group, subjected to bilateral [...] Read more.
This study explores low-intensity extracorporeal shock wave therapy (LiESWT)’s efficacy in alleviating detrusor hyperactivity with impaired contractility (DHIC) induced by ovarian hormone deficiency (OHD) in ovariectomized rats. The rats were categorized into the following four groups: sham group; OVX group, subjected to bilateral ovariectomy (OVX) for 12 months to induce OHD; OVX + SW4 group, underwent OHD for 12 months followed by 4 weeks of weekly LiESWT; and OVX + SW8 group, underwent OHD for 12 months followed by 8 weeks of weekly LiESWT. Cystometrogram studies and voiding behavior tracing were used to identify the symptoms of DHIC. Muscle strip contractility was evaluated through electrical-field, carbachol, ATP, and KCl stimulations. Western blot and immunofluorescence analyses were performed to assess the expressions of various markers related to bladder dysfunction. The OVX rats exhibited significant bladder deterioration and overactivity, alleviated by LiESWT. LiESWT modified transient receptor potential vanilloid (TRPV) channel expression, regulating calcium concentration and enhancing bladder capacity. It also elevated endoplasmic reticulum (ER) stress proteins, influencing ER-related Ca2+ channels and receptors to modulate detrusor muscle contractility. OHD after 12 months led to neuronal degeneration and reduced TRPV1 and TRPV4 channel activation. LiESWT demonstrated potential in enhancing angiogenic remodeling, neurogenesis, and receptor response, ameliorating DHIC via TRPV channels and cellular signaling in the OHD-induced DHIC rat model. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

23 pages, 1743 KiB  
Review
Targeting TRPV4 Channels for Cancer Pain Relief
by Caren Tatiane de David Antoniazzi, Náthaly Andrighetto Ruviaro, Diulle Spat Peres, Patrícia Rodrigues, Fernanda Tibolla Viero and Gabriela Trevisan
Cancers 2024, 16(9), 1703; https://doi.org/10.3390/cancers16091703 - 27 Apr 2024
Cited by 7 | Viewed by 3154
Abstract
Despite the unique and complex nature of cancer pain, the activation of different ion channels can be related to the initiation and maintenance of pain. The transient receptor potential vanilloid 4 (TRPV4) is a cation channel broadly expressed in sensory afferent neurons. This [...] Read more.
Despite the unique and complex nature of cancer pain, the activation of different ion channels can be related to the initiation and maintenance of pain. The transient receptor potential vanilloid 4 (TRPV4) is a cation channel broadly expressed in sensory afferent neurons. This channel is activated by multiple stimuli to mediate pain perception associated with inflammatory and neuropathic pain. Here, we focused on summarizing the role of TRPV4 in cancer etiology and cancer-induced pain mechanisms. Many studies revealed that the administration of a TRPV4 antagonist and TRPV4 knockdown diminishes nociception in chemotherapy-induced peripheral neuropathy (CIPN). Although the evidence on TRPV4 channels’ involvement in cancer pain is scarce, the expression of these receptors was reportedly enhanced in cancer-induced bone pain (CIBP), perineural, and orofacial cancer models following the inoculation of tumor cells to the bone marrow cavity, sciatic nerve, and tongue, respectively. Effective pain management is a continuous problem for patients diagnosed with cancer, and current guidelines fail to address a mechanism-based treatment. Therefore, examining new molecules with potential antinociceptive properties targeting TRPV4 modulation would be interesting. Identifying such agents could lead to the development of treatment strategies with improved pain-relieving effects and fewer adverse effects than the currently available analgesics. Full article
Show Figures

Figure 1

20 pages, 3918 KiB  
Article
Exploring Microbial Metabolite Receptors in Inflammatory Bowel Disease: An In Silico Analysis of Their Potential Role in Inflammation and Fibrosis
by Michail Spathakis, Nikolas Dovrolis, Eirini Filidou, Leonidas Kandilogiannakis, Gesthimani Tarapatzi, Vassilis Valatas, Ioannis Drygiannakis, Vasilis Paspaliaris, Konstantinos Arvanitidis, Vangelis G. Manolopoulos, George Kolios and Stergios Vradelis
Pharmaceuticals 2024, 17(4), 492; https://doi.org/10.3390/ph17040492 - 12 Apr 2024
Cited by 4 | Viewed by 2307
Abstract
Metabolites produced by dysbiotic intestinal microbiota can influence disease pathophysiology by participating in ligand–receptor interactions. Our aim was to investigate the differential expression of metabolite receptor (MR) genes between inflammatory bowel disease (IBD), healthy individuals (HIs), and disease controls in order to identify [...] Read more.
Metabolites produced by dysbiotic intestinal microbiota can influence disease pathophysiology by participating in ligand–receptor interactions. Our aim was to investigate the differential expression of metabolite receptor (MR) genes between inflammatory bowel disease (IBD), healthy individuals (HIs), and disease controls in order to identify possible interactions with inflammatory and fibrotic pathways in the intestine. RNA-sequencing datasets containing 643 Crohn’s disease (CD) patients, 467 ulcerative colitis (UC) patients and 295 HIs, and 4 Campylobacter jejuni-infected individuals were retrieved from the Sequence Read Archive, and differential expression was performed using the RaNA-seq online platform. The identified differentially expressed MR genes were used for correlation analysis with up- and downregulated genes in IBD, as well as functional enrichment analysis using a R based pipeline. Overall, 15 MR genes exhibited dysregulated expression in IBD. In inflamed CD, the hydroxycarboxylic acid receptors 2 and 3 (HCAR2, HCAR3) were upregulated and were associated with the recruitment of innate immune cells, while, in the non-inflamed CD ileum, the cannabinoid receptor 1 (CNR1) and the sphingosine-1-phospate receptor 4 (S1PR4) were downregulated and were involved in the regulation of B-cell activation. In inflamed UC, the upregulated receptors HCAR2 and HCAR3 were more closely associated with the process of TH-17 cell differentiation, while the pregnane X receptor (NR1I2) and the transient receptor potential vanilloid 1 (TRPV1) were downregulated and were involved in epithelial barrier maintenance. Our results elucidate the landscape of metabolite receptor expression in IBD, highlighting associations with disease-related functions that could guide the development of new targeted therapies. Full article
(This article belongs to the Special Issue Gut Microbiota Metabolites in Intestinal Inflammation and Fibrosis)
Show Figures

Graphical abstract

19 pages, 6608 KiB  
Article
Effect of TRPV4 Antagonist GSK2798745 on Chlorine Gas-Induced Acute Lung Injury in a Swine Model
by Meghan S. Vermillion, Nathan Saari, Mathieu Bray, Andrew M. Nelson, Robert L. Bullard, Karin Rudolph, Andrew P. Gigliotti, Jeffrey Brendler, Jacob Jantzi, Philip J. Kuehl, Jacob D. McDonald, Mark E. Burgert, Waylon Weber, Scott Sucoloski and David J. Behm
Int. J. Mol. Sci. 2024, 25(7), 3949; https://doi.org/10.3390/ijms25073949 - 2 Apr 2024
Cited by 3 | Viewed by 2019
Abstract
As a regulator of alveolo-capillary barrier integrity, Transient Receptor Potential Vanilloid 4 (TRPV4) antagonism represents a promising strategy for reducing pulmonary edema secondary to chemical inhalation. In an experimental model of acute lung injury induced by exposure of anesthetized swine to chlorine gas [...] Read more.
As a regulator of alveolo-capillary barrier integrity, Transient Receptor Potential Vanilloid 4 (TRPV4) antagonism represents a promising strategy for reducing pulmonary edema secondary to chemical inhalation. In an experimental model of acute lung injury induced by exposure of anesthetized swine to chlorine gas by mechanical ventilation, the dose-dependent effects of TRPV4 inhibitor GSK2798745 were evaluated. Pulmonary function and oxygenation were measured hourly; airway responsiveness, wet-to-dry lung weight ratios, airway inflammation, and histopathology were assessed 24 h post-exposure. Exposure to 240 parts per million (ppm) chlorine gas for ≥50 min resulted in acute lung injury characterized by sustained changes in the ratio of partial pressure of oxygen in arterial blood to the fraction of inspiratory oxygen concentration (PaO2/FiO2), oxygenation index, peak inspiratory pressure, dynamic lung compliance, and respiratory system resistance over 24 h. Chlorine exposure also heightened airway response to methacholine and increased wet-to-dry lung weight ratios at 24 h. Following 55-min chlorine gas exposure, GSK2798745 marginally improved PaO2/FiO2, but did not impact lung function, airway responsiveness, wet-to-dry lung weight ratios, airway inflammation, or histopathology. In summary, in this swine model of chlorine gas-induced acute lung injury, GSK2798745 did not demonstrate a clinically relevant improvement of key disease endpoints. Full article
(This article belongs to the Special Issue TRP Channels in Physiology and Pathophysiology 2.0)
Show Figures

Figure 1

14 pages, 1263 KiB  
Review
Impact of TRP Channels on Extracellular Matrix Remodeling: Focus on TRPV4 and Collagen
by Qin Wang, Chenfan Ji, Patricio Smith and Christopher A. McCulloch
Int. J. Mol. Sci. 2024, 25(7), 3566; https://doi.org/10.3390/ijms25073566 - 22 Mar 2024
Cited by 4 | Viewed by 2421
Abstract
Disturbed remodeling of the extracellular matrix (ECM) is frequently observed in several high-prevalence pathologies that include fibrotic diseases of organs such as the heart, lung, periodontium, liver, and the stiffening of the ECM surrounding invasive cancers. In many of these lesions, matrix remodeling [...] Read more.
Disturbed remodeling of the extracellular matrix (ECM) is frequently observed in several high-prevalence pathologies that include fibrotic diseases of organs such as the heart, lung, periodontium, liver, and the stiffening of the ECM surrounding invasive cancers. In many of these lesions, matrix remodeling mediated by fibroblasts is dysregulated, in part by alterations to the regulatory and effector systems that synthesize and degrade collagen, and by alterations to the functions of the integrin-based adhesions that normally mediate mechanical remodeling of collagen fibrils. Cell-matrix adhesions containing collagen-binding integrins are enriched with regulatory and effector systems that initiate localized remodeling of pericellular collagen fibrils to maintain ECM homeostasis. A large cadre of regulatory molecules is enriched in cell-matrix adhesions that affect ECM remodeling through synthesis, degradation, and contraction of collagen fibrils. One of these regulatory molecules is Transient Receptor Potential Vanilloid-type 4 (TRPV4), a mechanically sensitive, Ca2+-permeable plasma membrane channel that regulates collagen remodeling. The gating of Ca2+ across the plasma membrane by TRPV4 and the consequent generation of intracellular Ca2+ signals affect several processes that determine the structural and mechanical properties of collagen-rich ECM. These processes include the synthesis of new collagen fibrils, tractional remodeling by contractile forces, and collagenolysis. While the specific mechanisms by which TRPV4 contributes to matrix remodeling are not well-defined, it is known that TRPV4 is activated by mechanical forces transmitted through collagen adhesion receptors. Here, we consider how TRPV4 expression and function contribute to physiological and pathological collagen remodeling and are associated with collagen adhesions. Over the long-term, an improved understanding of how TRPV4 regulates collagen remodeling could pave the way for new approaches to manage fibrotic lesions. Full article
(This article belongs to the Special Issue TRP Channels in Physiology and Pathophysiology 2.0)
Show Figures

Figure 1

15 pages, 3565 KiB  
Article
Establishing an ANO1-Based Cell Model for High-Throughput Screening Targeting TRPV4 Regulators
by Kai Zheng, Jiang Hu, Cheng Hu, Xueying Liu, Yanyan Wang, Haojian Han, Wenzhu Xing, Liu Yang, Junran Zhang, Qiyuan Hong, Feng Hao and Wenliang Li
Molecules 2024, 29(5), 1036; https://doi.org/10.3390/molecules29051036 - 28 Feb 2024
Viewed by 1597
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a widely expressed cation channel that plays an important role in many physiological and pathological processes. However, most TRPV4 drugs carry a risk of side effects. Moreover, existing screening methods are not suitable for the high-throughput [...] Read more.
Transient receptor potential vanilloid 4 (TRPV4) is a widely expressed cation channel that plays an important role in many physiological and pathological processes. However, most TRPV4 drugs carry a risk of side effects. Moreover, existing screening methods are not suitable for the high-throughput screening (HTS) of drugs. In this study, a cell model and HTS method for targeting TRPV4 channel drugs were established based on a calcium-activated chloride channel protein 1 Anoctamin 1 (ANO1) and a double mutant (YFP-H148Q/I152L) of the yellow fluorescent protein (YFP). Patch-clamp experiments and fluorescence quenching kinetic experiments were used to verify that the model could sensitively detect changes in intracellular Ca2+ concentration. The functionality of the TRPV4 cell model was examined through temperature variations and different concentrations of TRPV4 modulators, and the performance of the model in HTS was also evaluated. The model was able to sensitively detect changes in the intracellular Ca2+ concentration and also excelled at screening TRPV4 drugs, and the model was more suitable for HTS. We successfully constructed a drug cell screening model targeting the TRPV4 channel, which provides a tool to study the pathophysiological functions of TRPV4 in vitro. Full article
Show Figures

Figure 1

Back to TopTop