Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (299)

Search Parameters:
Keywords = transformed lymphoma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 365 KiB  
Review
Precision Oncology in Hodgkin’s Lymphoma: Immunotherapy and Emerging Therapeutic Frontiers
by Adit Singhal, David Mueller, Benjamin Ascherman, Pratik Shah, Wint Yan Aung, Edward Zhou and Maria J. Nieto
Lymphatics 2025, 3(3), 24; https://doi.org/10.3390/lymphatics3030024 (registering DOI) - 6 Aug 2025
Abstract
Hodgkin’s Lymphoma (HL) affects approximately 8500 individuals annually in the United States. The 5-year relative survival rate has improved to 88.5%, driven by transformative advances in immunotherapy and precision oncology. The integration of Brentuximab vedotin (BV) and immune checkpoint inhibitors (ICIs) has redefined [...] Read more.
Hodgkin’s Lymphoma (HL) affects approximately 8500 individuals annually in the United States. The 5-year relative survival rate has improved to 88.5%, driven by transformative advances in immunotherapy and precision oncology. The integration of Brentuximab vedotin (BV) and immune checkpoint inhibitors (ICIs) has redefined treatment paradigms. The phase III SWOG S1826 trial established nivolumab plus doxorubicin, vinblastine, and dacarbazine (N + AVD) as an emerging new standard for advanced-stage HL, achieving a 2-year progression-free survival (PFS) of 92% compared to 83% for BV plus AVD (HR 0.48, 95% CI: 0.33–0.70), with superior safety, particularly in patients over 60. In relapsed/refractory HL, pembrolizumab outperforms BV, with a median PFS of 13.2 versus 8.3 months (HR 0.65, 95% CI: 0.48–0.88), as demonstrated in the KEYNOTE-204 trial. Emerging strategies, including novel ICI combinations, minimal residual disease (MRD) monitoring via circulating tumor DNA (ctDNA), and artificial intelligence (AI)-driven diagnostics, promise to further personalize therapy. This review synthesizes HL’s epidemiology, pathogenesis, diagnostic innovations, and therapeutic advances, highlighting the role of precision medicine in addressing unmet needs and disparities in HL care. Full article
Show Figures

Figure 1

25 pages, 1035 KiB  
Review
Liquid Biopsy and Epigenetic Signatures in AML, ALL, and CNS Tumors: Diagnostic and Monitoring Perspectives
by Anne Aries, Bernard Drénou and Rachid Lahlil
Int. J. Mol. Sci. 2025, 26(15), 7547; https://doi.org/10.3390/ijms26157547 - 5 Aug 2025
Viewed by 117
Abstract
To deliver the most effective cancer treatment, clinicians require rapid and accurate diagnoses that delineate tumor type, stage, and prognosis. Consequently, minimizing the need for repetitive and invasive procedures like biopsies and myelograms, along with their associated risks, is a critical challenge. Non-invasive [...] Read more.
To deliver the most effective cancer treatment, clinicians require rapid and accurate diagnoses that delineate tumor type, stage, and prognosis. Consequently, minimizing the need for repetitive and invasive procedures like biopsies and myelograms, along with their associated risks, is a critical challenge. Non-invasive monitoring offers a promising avenue for tumor detection, screening, and prognostication. While the identification of oncogenes and biomarkers from circulating tumor cells or tissue biopsies is currently standard practice for cancer diagnosis and classification, accumulating evidence underscores the significant role of epigenetics in regulating stem cell fate, including proliferation, self-renewal, and malignant transformation. This highlights the importance of analyzing the methylome, exosomes, and circulating RNA for detecting cellular transformation. The development of diagnostic assays that integrate liquid biopsies with epigenetic analysis holds immense potential for revolutionizing tumor management by enabling rapid, non-invasive diagnosis, real-time monitoring, and personalized treatment decisions. This review covers current studies exploring the use of epigenetic regulation, specifically the methylome and circulating RNA, as diagnostic tools derived from liquid biopsies. This approach shows promise in facilitating the differentiation between primary central nervous system lymphoma and other central nervous system tumors and may enable the detection and monitoring of acute myeloid/lymphoid leukemia. We also discuss the current limitations hindering the rapid clinical translation of these technologies. Full article
(This article belongs to the Special Issue Molecular Research in Hematologic Malignancies)
Show Figures

Figure 1

20 pages, 4576 KiB  
Article
Enhanced HoVerNet Optimization for Precise Nuclei Segmentation in Diffuse Large B-Cell Lymphoma
by Gei Ki Tang, Chee Chin Lim, Faezahtul Arbaeyah Hussain, Qi Wei Oung, Aidy Irman Yajid, Sumayyah Mohammad Azmi and Yen Fook Chong
Diagnostics 2025, 15(15), 1958; https://doi.org/10.3390/diagnostics15151958 - 4 Aug 2025
Viewed by 156
Abstract
Background/Objectives: Diffuse Large B-Cell Lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma and demands precise segmentation and classification of nuclei for effective diagnosis and disease severity assessment. This study aims to evaluate the performance of HoVerNet, a deep learning model, [...] Read more.
Background/Objectives: Diffuse Large B-Cell Lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma and demands precise segmentation and classification of nuclei for effective diagnosis and disease severity assessment. This study aims to evaluate the performance of HoVerNet, a deep learning model, for nuclei segmentation and classification in CMYC-stained whole slide images and to assess its integration into a user-friendly diagnostic tool. Methods: A dataset of 122 CMYC-stained whole slide images (WSIs) was used. Pre-processing steps, including stain normalization and patch extraction, were applied to improve input consistency. HoVerNet, a multi-branch neural network, was used for both nuclei segmentation and classification, particularly focusing on its ability to manage overlapping nuclei and complex morphological variations. Model performance was validated using metrics such as accuracy, precision, recall, and F1 score. Additionally, a graphic user interface (GUI) was developed to incorporate automated segmentation, cell counting, and severity assessment functionalities. Results: HoVerNet achieved a validation accuracy of 82.5%, with a precision of 85.3%, recall of 82.6%, and an F1 score of 83.9%. The model showed powerful performance in differentiating overlapping and morphologically complex nuclei. The developed GUI enabled real-time visualization and diagnostic support, enhancing the efficiency and usability of DLBCL histopathological analysis. Conclusions: HoVerNet, combined with an integrated GUI, presents a promising approach for streamlining DLBCL diagnostics through accurate segmentation and real-time visualization. Future work will focus on incorporating Vision Transformers and additional staining protocols to improve generalizability and clinical utility. Full article
(This article belongs to the Special Issue Artificial Intelligence-Driven Radiomics in Medical Diagnosis)
Show Figures

Figure 1

16 pages, 8040 KiB  
Article
Low BOK Expression Promotes Epithelial–Mesenchymal Transition and Migration via the Wnt Signaling Pathway in Breast Cancer Cells
by Ling Liu, Tiantian He, Zhen Zhang, Wenjie Dai, Liyang Ding, Hong Yang, Bo Xu, Yitong Shang, Yu Deng, Xufeng Fu and Xing Du
Int. J. Mol. Sci. 2025, 26(15), 7252; https://doi.org/10.3390/ijms26157252 - 27 Jul 2025
Viewed by 289
Abstract
The B-cell lymphoma 2 (Bcl-2)-related ovarian killer (BOK), a member of the Bcl-2 protein family, shares a similar domain structure and amino acid sequence homology with the pro-apoptotic family members BAX and BAK. Although BOK is involved in the development of various types [...] Read more.
The B-cell lymphoma 2 (Bcl-2)-related ovarian killer (BOK), a member of the Bcl-2 protein family, shares a similar domain structure and amino acid sequence homology with the pro-apoptotic family members BAX and BAK. Although BOK is involved in the development of various types of cancer, its mechanism of action in breast cancer remains unclear. This study found that BOK was involved in the process of MG132, inhibiting the migration and epithelial–mesenchymal transition (EMT) of breast cancer cells induced by transforming growth factor-β. Furthermore, interfering BOK reversed the inhibition of breast cancer cell migration and the EMT process by MG132. Additional studies revealed that BOK silencing promoted the expression of EMT-related markers in breast cancer cells, while BOK overexpression inhibited EMT and migration. Using RNA-seq sequencing and Western blotting, we confirmed that the Wnt signaling pathway is involved in BOK regulating the EMT process in breast cancer cells. Therefore, we conclude that low BOK expression promotes breast cancer EMT and migration by activating the Wnt signaling pathway. This study enhances our understanding of breast cancer pathogenesis and suggests that BOK may serve as a potential prognostic marker and therapeutic target for breast cancer. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 968 KiB  
Review
IL-4 and Brentuximab Vedotin in Mycosis Fungoides: A Perspective on Potential Therapeutic Interactions and Future Research Directions
by Mihaela Andreescu, Sorin Ioan Tudorache, Cosmin Alec Moldovan and Bogdan Andreescu
Curr. Issues Mol. Biol. 2025, 47(8), 586; https://doi.org/10.3390/cimb47080586 - 24 Jul 2025
Viewed by 295
Abstract
Background: Mycosis fungoides (MF), the most prevalent cutaneous T cell lymphoma, features clonal CD4⁺ T cell proliferation within a Th2-dominant microenvironment. Interleukin-4 (IL-4) promotes disease progression while Brentuximab Vedotin (BV), an anti-CD30 antibody–drug conjugate, shows efficacy but faces resistance challenges. Methods: We conducted [...] Read more.
Background: Mycosis fungoides (MF), the most prevalent cutaneous T cell lymphoma, features clonal CD4⁺ T cell proliferation within a Th2-dominant microenvironment. Interleukin-4 (IL-4) promotes disease progression while Brentuximab Vedotin (BV), an anti-CD30 antibody–drug conjugate, shows efficacy but faces resistance challenges. Methods: We conducted a narrative literature review (2010–2024) synthesizing evidence on IL-4 signaling and BV’s efficacy in MF to develop a theoretical framework for combination therapy. Results: IL-4 may modulate CD30 expression and compromise BV’s effectiveness through immunosuppressive microenvironment remodeling. Theoretical mechanisms suggest that IL-4 pathway inhibition could reprogram the microenvironment toward Th1 dominance and restore BV sensitivity. However, no direct experimental evidence validates this combination, and safety concerns including potential disease acceleration require careful evaluation. Conclusions: The proposed IL-4/BV combination represents a biologically compelling but unproven hypothesis requiring systematic preclinical validation and biomarker-driven clinical trials. This framework could guide future research toward transforming treatment approaches for CD30-positive MF by targeting both malignant cells and their immunologically permissive microenvironment. Full article
(This article belongs to the Special Issue Future Challenges of Targeted Therapy of Cancers: 2nd Edition)
Show Figures

Figure 1

16 pages, 1927 KiB  
Article
Missense Mutations in the KAT Domain of CREBBP Gene in Patients with Follicular Lymphoma: Implications for Differential Diagnosis and Prognosis
by Anna Smolianinova, Ivan Bolshakov, Yulia Sidorova, Alla Kovrigina, Tatiana Obukhova, Nelli Gabeeva, Eduard Gemdzhian, Elena Nikulina, Bella Biderman, Nataliya Severina, Nataliya Risinskaya, Andrey Sudarikov, Eugeniy Zvonkov and Elena Parovichnikova
Int. J. Mol. Sci. 2025, 26(14), 6913; https://doi.org/10.3390/ijms26146913 - 18 Jul 2025
Viewed by 406
Abstract
Follicular lymphoma (FL) is one of the most common types of non-Hodgkin’s lymphomas. The tumor is characterized by a wide range of clinical manifestations, ranging from indolent forms to early transformation and progression with a poor prognosis. The search for clinically significant genetic [...] Read more.
Follicular lymphoma (FL) is one of the most common types of non-Hodgkin’s lymphomas. The tumor is characterized by a wide range of clinical manifestations, ranging from indolent forms to early transformation and progression with a poor prognosis. The search for clinically significant genetic changes is essential for personalized risk assessment and treatment selection. The CREBBP gene is frequently mutated in this type of lymphoma, with changes occurring at the level of the earliest tumor precursor cells. However, the prognostic and diagnostic significance of the CREBBP gene mutation status in FL has not been fully established. In this study, we analyzed sequencing data of exons 22–30 of the CREBBP gene in 86 samples from patients with different grades of FL (1–3B), including those in the 3A–3B subgroup without the t(14;18) translocation. We also investigated the prognostic significance of CREBBP gene mutations in relation to the treatment options, namely high-dose chemotherapy with autologous hematopoietic stem cell transplantation (HDCT/auto-HSCT) and conventional chemotherapy programs (CCT). It was found that FL patients with a single missense mutation in the KAT domain of the CREBBP gene experienced an extremely low number of early adverse events related to lymphoma and had better long-term survival rates, regardless of treatment option. In contrast, when comparing patients with FL without a missense mutation in the KAT domain or those with multiple mutations in the CREBBP gene, overall and progression free survival were worse, and early progression and histological transformation were more common. Compared to standard therapy, patients who underwent HDCT/auto-HSCT in the FL 1–3B (14;18)-positive group without a single missense mutation in the KAT domain had better survival rates and lower rates of transformation and early progression. In addition, among patients with FL 3A–3B (14;18)-negative, we found that there were no cases of a missense mutation in the KAT domain of the CREBBP gene. This suggests that a single missense mutation in the CREBBP gene may be a feature that discriminates 14;18-positive FL with a favorable prognosis from a high-risk disease. FL 3A–3B (14;18)-negative may represent a distinct variant with different biology and underlying mechanisms of development compared to classical FL. Full article
(This article belongs to the Special Issue Molecular Diagnostics and Genomics of Tumors)
Show Figures

Figure 1

20 pages, 3018 KiB  
Review
A Review of KSHV/HHV8-Associated Neoplasms and Related Lymphoproliferative Lesions
by Jamie Rigney, Kevin Zhang, Michael Greas and Yan Liu
Lymphatics 2025, 3(3), 20; https://doi.org/10.3390/lymphatics3030020 - 15 Jul 2025
Viewed by 242
Abstract
There has been extensive research on the KSHV/HHV8 virus, which has led to a better understanding of viral transmission, pathogenesis, viral-driven lymphoid proliferation, neoplastic transformation, and how we might combat these processes clinically. On an extensive review of the literature, only two true [...] Read more.
There has been extensive research on the KSHV/HHV8 virus, which has led to a better understanding of viral transmission, pathogenesis, viral-driven lymphoid proliferation, neoplastic transformation, and how we might combat these processes clinically. On an extensive review of the literature, only two true KSHV/HHV8-positive lymphoid neoplasms are described: primary effusion lymphoma (PEL), which can also present as solid or extracavitary primary effusion lymphoma (EC-PEL) and diffuse large B-cell lymphoma (DLBCL). Two lymphoproliferative disorders have also been described, and while they are not true monotypic neoplasms, these lesions can transform into neoplasms: KSHV/HHV8-positive germinotropic lymphoproliferative disorder (GLPD) and multicentric Castleman disease (MCD). This review provides a somewhat concise overview of information related to KSHV/HHV8-positive lymphoid neoplasms and pertinent associated lymphoproliferative lesions. Full article
Show Figures

Figure 1

21 pages, 453 KiB  
Review
Precision Medicine in Hematologic Malignancies: Evolving Concepts and Clinical Applications
by Rita Khoury, Chris Raffoul, Christina Khater and Colette Hanna
Biomedicines 2025, 13(7), 1654; https://doi.org/10.3390/biomedicines13071654 - 7 Jul 2025
Viewed by 819
Abstract
Precision medicine is transforming hematologic cancer care by tailoring treatments to individual patient profiles and moving beyond the traditional “one-size-fits-all” model. This review outlines foundational technologies, disease-specific advances, and emerging directions in precision hematology. The field is enabled by molecular profiling techniques, including [...] Read more.
Precision medicine is transforming hematologic cancer care by tailoring treatments to individual patient profiles and moving beyond the traditional “one-size-fits-all” model. This review outlines foundational technologies, disease-specific advances, and emerging directions in precision hematology. The field is enabled by molecular profiling techniques, including next-generation sequencing (NGS), whole-exome sequencing (WES), and RNA sequencing (RNA-seq), as well as epigenomic and proteomic analyses. Complementary tools such as liquid biopsy and minimal residual disease (MRD) monitoring have improved diagnosis, risk stratification, and therapeutic decision making. We discuss major molecular targets and personalized strategies across hematologic malignancies: FLT3 and IDH1/2 in acute myeloid leukemia (AML); Philadelphia chromosome–positive and Ph-like subtypes in acute lymphoblastic leukemia (ALL); BCR-ABL1 in chronic myeloid leukemia (CML); TP53 and IGHV mutations in chronic lymphocytic leukemia (CLL); molecular subtypes and immune targets in diffuse large B-cell lymphoma (DLBCL) and other lymphomas; and B-cell maturation antigen (BCMA) in multiple myeloma. Despite significant progress, challenges remain, including high costs, disparities in access, a lack of standardization, and integration barriers in clinical practice. However, advances in single-cell sequencing, spatial transcriptomics, drug repurposing, immunotherapies, pan-cancer trials, precision prevention, and AI-guided algorithms offer promising avenues to refine treatment and improve outcomes. Overcoming these barriers will be critical for ensuring the equitable and widespread implementation of precision medicine in routine hematologic oncology care. Full article
(This article belongs to the Special Issue Pathogenesis, Diagnosis and Treatment of Hematologic Malignancies)
Show Figures

Figure 1

23 pages, 7163 KiB  
Article
Entropy-Regularized Attention for Explainable Histological Classification with Convolutional and Hybrid Models
by Pedro L. Miguel, Leandro A. Neves, Alessandra Lumini, Giuliano C. Medalha, Guilherme F. Roberto, Guilherme B. Rozendo, Adriano M. Cansian, Thaína A. A. Tosta and Marcelo Z. do Nascimento
Entropy 2025, 27(7), 722; https://doi.org/10.3390/e27070722 - 3 Jul 2025
Viewed by 427
Abstract
Deep learning models such as convolutional neural networks (CNNs) and vision transformers (ViTs) perform well in histological image classification, but often lack interpretability. We introduce a unified framework that adds an attention branch and CAM Fostering, an entropy-based regularizer, to improve Grad-CAM visualizations. [...] Read more.
Deep learning models such as convolutional neural networks (CNNs) and vision transformers (ViTs) perform well in histological image classification, but often lack interpretability. We introduce a unified framework that adds an attention branch and CAM Fostering, an entropy-based regularizer, to improve Grad-CAM visualizations. Six backbone architectures (ResNet-50, DenseNet-201, EfficientNet-b0, ResNeXt-50, ConvNeXt, CoatNet-small) were trained, with and without our modifications, on five H&E-stained datasets. We measured explanation quality using coherence, complexity, confidence drop, and their harmonic mean (ADCC). Our method increased the ADCC in five of the six backbones; ResNet-50 saw the largest gain (+15.65%), and CoatNet-small achieved the highest overall score (+2.69%), peaking at 77.90% on the non-Hodgkin lymphoma set. The classification accuracy remained stable or improved in four models. These results show that combining attention and entropy produces clearer, more informative heatmaps without degrading performance. Our contributions include a modular architecture for both convolutional and hybrid models and a comprehensive, quantitative explainability evaluation suite. Full article
Show Figures

Figure 1

19 pages, 2482 KiB  
Article
Modeling the t(2;5) Translocation of Anaplastic Large Cell Lymphoma Using CRISPR-Mediated Chromosomal Engineering
by Robin Khan, Laurent Phely, Sophia Ehrenfeld, Tatjana Schmitz, Pia Veratti, Jakob Wolfes, Khalid Shoumariyeh, Geoffroy Andrieux, Uta S. Martens, Stephan de Bra, Martina Auer, Oliver Schilling, Melanie Boerries, Michael Speicher, Anna L. Illert, Justus Duyster and Cornelius Miething
Cancers 2025, 17(13), 2226; https://doi.org/10.3390/cancers17132226 - 2 Jul 2025
Viewed by 550
Abstract
Background/Objectives: ALK+ Anaplastic Large Cell Lymphoma (ALCL) is an aggressive T-cell lymphoma that is characterized by expression of the Anaplastic Lymphoma Kinase (ALK), which is induced by the t(2;5) chromosomal rearrangement, leading to the expression of the NPM-ALK fusion oncogene. Most previous preclinical [...] Read more.
Background/Objectives: ALK+ Anaplastic Large Cell Lymphoma (ALCL) is an aggressive T-cell lymphoma that is characterized by expression of the Anaplastic Lymphoma Kinase (ALK), which is induced by the t(2;5) chromosomal rearrangement, leading to the expression of the NPM-ALK fusion oncogene. Most previous preclinical models of ALK+ ALCL were based on overexpression of the NPM-ALK cDNA from heterologous promoters. Due to the enforced expression, this approach is prone to artifacts arising from synthetic overexpression, promoter competition and insertional variation. Methods: To improve the existing ALCL models and more closely recapitulate the oncogenic events in ALK+ ALCL, we employed CRISPR/Cas-based chromosomal engineering to selectively introduce translocations between the Npm1 and Alk gene loci in murine cells. Results: By inducing precise DNA cleavage at the syntenic loci on chromosome 11 and 17 in a murine IL-3-dependent Ba/F3 reporter cell line, we generated de novo Npm-Alk translocations in vivo, leading to IL-3-independent cell growth. To verify efficient recombination, we analyzed the expression of the NPM-ALK fusion protein in the recombined cells and could also show the t(11;17) in the IL-3 independent Ba/F3 cells. Subsequent functional testing of these cells using an Alk-inhibitor showed exquisite responsiveness towards Crizotinib, demonstrating strong dependence on the newly generated ALK fusion oncoprotein. Furthermore, a comparison of the gene expression pattern between Ba/F3 cells overexpressing the Npm-Alk cDNA with Ba/F3 cells transformed by CRISPR-mediated Npm-Alk translocation indicated that, while broadly overlapping, a set of pathways including the unfolded protein response pathway was increased in the Npm-Alk overexpression model, suggesting increased reactive changes induced by exogenous overexpression of Npm-Alk. Furthermore, we observed clustered expression changes in genes located in chromosomal regions close to the breakpoint in the new CRISPR-based model, indicating positional effects on gene expression mediated by the translocation event, which are not part of the older models. Conclusions: Thus, CRISPR-mediated recombination provides a novel and more faithful approach to model oncogenic translocations, which may lead to an improved understanding of the molecular pathogenesis of ALCL and enable more accurate therapeutic models of malignancies driven by oncogenic fusion proteins. Full article
(This article belongs to the Special Issue Genomics of Hematologic Cancers (Volume II))
Show Figures

Figure 1

18 pages, 2983 KiB  
Article
IRF4 Mediates Immune Evasion to Facilitate EBV Transformation
by Ling Wang, Culton R. Hensley, Jahan Rifat, Adam D. Walker, Katharine Ning, Jonathan P. Moorman, Zhi Q. Yao and Shunbin Ning
Viruses 2025, 17(7), 885; https://doi.org/10.3390/v17070885 - 24 Jun 2025
Viewed by 492
Abstract
The lymphocyte-specific transcription factor interferon regulatory factor 4 (IRF4) is a key player in immune evasion in cancers, with the complex mechanism(s) being barely understood. In this study, we have focused on the role of IRF4 in regulating T cell functions through its [...] Read more.
The lymphocyte-specific transcription factor interferon regulatory factor 4 (IRF4) is a key player in immune evasion in cancers, with the complex mechanism(s) being barely understood. In this study, we have focused on the role of IRF4 in regulating T cell functions through its transcriptional regulation of programmed death 1 (PD1) and its ligand PD1 ligand 1 (PD-L1), which were identified as IRF4 transcriptional targets in multi-omics analysis. We have shown that IRF4 transcriptionally regulates both PD1 and PD-L1, promoting immune suppression in the context of Epstein–Barr virus (EBV) infection. Co-culturing EBV+ JiJoye lymphoma cells with CD4+ T cells or with peripheral blood mononuclear cells (PBMCs) downregulates CD4+ T cell functions, but the depletion of IRF4 in EBV+ JiJoye lymphoma cells reduces PD1 and PD-L1 expression, and partially restores CD4+ T cell functions. Moreover, CD4+ T cell depletion from PBMCs enhances EBV transformation, and EBV has a greater efficiency in transforming PBMCs from HIV patients with impaired CD4+ T cell functions. These findings support the role of IRF4 in immune evasion by upregulating PD1/PD-L1 during EBV transformation, and that functional CD4+ T cells are essential for limiting EBV transformation. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

25 pages, 540 KiB  
Review
Malignancies in Celiac Disease—A Hidden Threat with Diagnostic Pitfalls
by Aleksandra Kubas and Ewa Małecka-Wojciesko
Biomedicines 2025, 13(6), 1507; https://doi.org/10.3390/biomedicines13061507 - 19 Jun 2025
Viewed by 690
Abstract
Celiac disease (CeD) is an autoimmune disorder that is triggered by gluten ingestion in genetically predisposed individuals. Untreated or poorly controlled CeD leads to various disease complications, such as malnutrition, osteoporosis, autoimmune diseases, or refractory celiac disease (RCD). Accumulating recent research has highlighted [...] Read more.
Celiac disease (CeD) is an autoimmune disorder that is triggered by gluten ingestion in genetically predisposed individuals. Untreated or poorly controlled CeD leads to various disease complications, such as malnutrition, osteoporosis, autoimmune diseases, or refractory celiac disease (RCD). Accumulating recent research has highlighted the association between CeD and the development of malignancies, particularly enteropathy-associated T-cell lymphoma (EATL) and small bowel carcinoma (SBC), which are neoplasms with extremely poor prognoses. Genetic alterations in the JAK1–STAT3 pathway and the high prevalence of microsatellite instability may be the main drivers of CeD-associated lymphomagenesis and small bowel oncogenesis and therefore could be an attractive therapeutic target to block cancer transformation. However, to date, the risk factors and exact mechanisms underlying malignancy development in patients with CeD remain unclear, and prospective cohort studies that include molecular profiling are needed. Moreover, current guidelines on the management of CeD do not provide standardized protocols for cancer surveillance—particularly regarding screening intervals, risk stratification, and monitoring strategies for high-risk patients such as those with RCD. This paper reviews the existing knowledge on malignancies in CeD, highlights diagnostic challenges, and discusses future perspectives on the early detection, monitoring, and treatment of CeD-associated neoplasms. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

21 pages, 1475 KiB  
Review
Molecular Features Accompanying Richter’s Transformation in Patients with Chronic Lymphocytic Leukemia
by Xiaole Wang and Jingyu Chen
Int. J. Mol. Sci. 2025, 26(12), 5563; https://doi.org/10.3390/ijms26125563 - 10 Jun 2025
Viewed by 681
Abstract
Chronic Lymphocytic Leukemia (CLL) is a highly heterogeneous tumor. Although targeted therapies such as Bruton’s Tyrosine Kinase (BTK) inhibitors and B-cell lymphoma-2 (Bcl-2) inhibitors have significantly improved patient outcomes in CLL, the disease remains incurable. A critical aspect of CLL progression is its [...] Read more.
Chronic Lymphocytic Leukemia (CLL) is a highly heterogeneous tumor. Although targeted therapies such as Bruton’s Tyrosine Kinase (BTK) inhibitors and B-cell lymphoma-2 (Bcl-2) inhibitors have significantly improved patient outcomes in CLL, the disease remains incurable. A critical aspect of CLL progression is its transformation from an indolent tumor to a high-grade malignancy, a process known as Richter’s Transformation (RT) or Richter Syndrome. Treatment options for RT are very limited, and patient prognosis is often poor. The molecular mechanisms driving RT are not yet fully elucidated. This review aims to summarize recent advances in research aimed at uncovering the mechanisms underlying RT in CLL. By integrating findings from genetics, signaling pathways, epigenetics, and the tumor microenvironment, this review seeks to provide insights that could guide further basic research into RT and inform the development of novel therapeutic strategies to improve patient outcomes. Full article
(This article belongs to the Special Issue Molecular Advances in Blood Disorders)
Show Figures

Graphical abstract

17 pages, 921 KiB  
Systematic Review
Bullous Pemphigoid as a Manifestation of Graft-Versus-Host Disease Following Allogeneic Hematopoietic Stem Cell Transplantation: A Systematic Review and Report of a Novel Case
by Sapir Glazer Levavi, Moshe Yeshurun, Pia Raanani, Mor Frisch, Meital Oren-Shabtai, Lev Pavlovsky, Daniel Mimouni and Anna Aronovich
J. Clin. Med. 2025, 14(12), 4068; https://doi.org/10.3390/jcm14124068 - 9 Jun 2025
Cited by 1 | Viewed by 664
Abstract
Background/Objective: Bullous Pemphigoid (BP) is a well-recognized autoimmune subepidermal blistering disease. However, its occurrence following allogeneic hematopoietic stem cell transplantation (HSCT) is extremely rare. The objective of this study is to systematically review the available data on BP following an allogeneic HSCT [...] Read more.
Background/Objective: Bullous Pemphigoid (BP) is a well-recognized autoimmune subepidermal blistering disease. However, its occurrence following allogeneic hematopoietic stem cell transplantation (HSCT) is extremely rare. The objective of this study is to systematically review the available data on BP following an allogeneic HSCT with focus on treatment options. Methods: A systematic review of studies evaluating BP following allogeneic HSCT, incorporating a highly treatment-resistant case from our graft-versus-host disease (GvHD) dermatology clinic, of a 47-year-old patient, notable as the only reported instance of BP following HSCT in a patient with chronic lymphocytic leukemia (CLL) that transformed into diffuse large B-cell lymphoma (DLBCL) and GvHD due to HSCT. The review yielded 15 publications that met the eligibility criteria. Including our case, a total of 16 cases were analyzed. Results: Nearly all patients (14/16) in this review had chronic GvHD due to their HSCT. Twelve patients were males, and six were of Japanese origin. The mean age for BP diagnosis was 38 years (a range of 5–67). On average, BP developed one year post-HSCT. The most common treatment for BP in these patients was prednisolone, with the majority experiencing complete resolution of symptoms. Conclusions: BP following HSCT is an exceptionally rare condition with an unclear underlying mechanism. Full article
(This article belongs to the Special Issue Autoimmune Skin Diseases: Innovations, Challenges, and Opportunities)
Show Figures

Figure 1

25 pages, 985 KiB  
Review
From Molecular Precision to Clinical Practice: A Comprehensive Review of Bispecific and Trispecific Antibodies in Hematologic Malignancies
by Behzad Amoozgar, Ayrton Bangolo, Maryam Habibi, Christina Cho and Andre Goy
Int. J. Mol. Sci. 2025, 26(11), 5319; https://doi.org/10.3390/ijms26115319 - 1 Jun 2025
Viewed by 2825
Abstract
Multispecific antibodies have redefined the immunotherapeutic landscape in hematologic malignancies. Bispecific antibodies (BsAbs), which redirect cytotoxic T cells toward malignant targets via dual antigen engagement, are now established components of treatment for diseases such as acute lymphoblastic leukemia (ALL), diffuse large B-cell lymphoma [...] Read more.
Multispecific antibodies have redefined the immunotherapeutic landscape in hematologic malignancies. Bispecific antibodies (BsAbs), which redirect cytotoxic T cells toward malignant targets via dual antigen engagement, are now established components of treatment for diseases such as acute lymphoblastic leukemia (ALL), diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), and multiple myeloma (MM). Clinical trials of agents like blinatumomab, glofitamab, mosunetuzumab, and teclistamab have demonstrated deep and durable responses in heavily pretreated populations. Trispecific antibodies (TsAbs), although still investigational, represent the next generation of immune redirection therapies, incorporating additional tumor antigens or co-stimulatory domains (e.g., CD28, 4-1BB) to mitigate antigen escape and enhance T-cell persistence. This review provides a comprehensive evaluation of BsAbs and TsAbs across hematologic malignancies, detailing molecular designs, mechanisms of action, therapeutic indications, resistance pathways, and toxicity profiles including cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), cytopenias, and infections. We further discuss strategies to mitigate adverse effects and resistance, such as antigen switching, checkpoint blockade combinations, CELMoDs, and construct optimization. Notably, emerging platforms such as tetrafunctional constructs, checkpoint-integrated multispecifics, and protease-cleavable masking designs are expanding the therapeutic index of these agents. Early clinical evidence also supports the feasibility of applying multispecific antibodies to solid tumors. Finally, we highlight the transformative role of artificial intelligence (AI) and machine learning (ML) in multispecific antibody development, including antigen discovery, biomarker-driven treatment selection, toxicity prediction, and therapeutic optimization. Together, BsAbs and TsAbs illustrate the convergence of molecular precision, clinical innovation, and AI-driven personalization, establishing a new paradigm for immune-based therapy across hematologic and potentially solid tumor malignancies. Full article
(This article belongs to the Special Issue Antibody Therapy for Hematologic Malignancies)
Show Figures

Figure 1

Back to TopTop