Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = transboundary air pollution transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2943 KiB  
Article
Urban Precipitation Scavenging and Meteorological Influences on BTEX Concentrations: Implications for Environmental Quality
by Kristina Kalkan, Vitaly Efremov, Dragan Milošević, Mirjana Vukosavljev, Nikolina Novakov, Kristina Habschied, Kresimir Mastanjević and Brankica Kartalović
Chemosensors 2025, 13(8), 274; https://doi.org/10.3390/chemosensors13080274 - 24 Jul 2025
Viewed by 358
Abstract
This study provides an assessment of BTEX compounds—benzene, toluene, ethylbenzene, and xylene isomers—in urban precipitation collected in the city of Novi Sad, Republic of Serbia, during autumn and winter 2024, analyzed by gas chromatography-mass spectrometry (GC-MS). By combining chemical analysis with meteorological observations [...] Read more.
This study provides an assessment of BTEX compounds—benzene, toluene, ethylbenzene, and xylene isomers—in urban precipitation collected in the city of Novi Sad, Republic of Serbia, during autumn and winter 2024, analyzed by gas chromatography-mass spectrometry (GC-MS). By combining chemical analysis with meteorological observations and HYSPLIT backward trajectory modeling, the study considers the mechanisms of BTEX removal from the atmosphere via wet scavenging and highlights the role of local weather conditions and long-range atmospheric transport in pollutant concentrations. During the early observation period (September to late November), average concentrations were 0.45 µg/L benzene, 3.45 µg/L ethylbenzene, 4.0 µg/L p-xylene, 2.31 µg/L o-xylene, and 1.32 µg/L toluene. These values sharply dropped to near-zero levels in December for benzene, ethylbenzene, and xylenes, while toluene persisted at 1.12 µg/L. A pronounced toluene spike exceeding 6 µg/L on 28 November was likely driven by transboundary air mass transport from Central Europe, as confirmed by trajectory modeling. The environmental risks posed by BTEX deposition, especially from toluene and xylenes, underline the need for regulatory frameworks to include precipitation as a pathway for pollutant deposition. It should be clarified that the identified risk primarily concerns aquatic organisms, due to the potential for BTEX infiltration into surface waters and subsequent ecotoxicological impacts. Incorporating such monitoring into EU policies can improve protection of air, water, and ecosystems. Full article
Show Figures

Figure 1

41 pages, 4553 KiB  
Review
Global Distribution, Ecotoxicity, and Treatment Technologies of Emerging Contaminants in Aquatic Environments: A Recent Five-Year Review
by Yue Li, Yihui Li, Siyuan Zhang, Tianyi Gao, Zhaoyi Gao, Chin Wei Lai, Ping Xiang and Fengqi Yang
Toxics 2025, 13(8), 616; https://doi.org/10.3390/toxics13080616 - 24 Jul 2025
Viewed by 771
Abstract
With the rapid progression of global industrialization and urbanization, emerging contaminants (ECs) have become pervasive in environmental media, posing considerable risks to ecosystems and human health. While multidisciplinary evidence continues to accumulate regarding their environmental persistence and bioaccumulative hazards, critical knowledge gaps persist [...] Read more.
With the rapid progression of global industrialization and urbanization, emerging contaminants (ECs) have become pervasive in environmental media, posing considerable risks to ecosystems and human health. While multidisciplinary evidence continues to accumulate regarding their environmental persistence and bioaccumulative hazards, critical knowledge gaps persist in understanding their spatiotemporal distribution, cross-media migration mechanisms, and cascading ecotoxicological consequences. This review systematically investigates the global distribution patterns of ECs in aquatic environments over the past five years and evaluates their potential ecological risks. Furthermore, it examines the performance of various treatment technologies, focusing on economic cost, efficiency, and environmental sustainability. Methodologically aligned with PRISMA 2020 guidelines, this study implements dual independent screening protocols, stringent inclusion–exclusion criteria (n = 327 studies). Key findings reveal the following: (1) Occurrences of ECs show geographical clustering in highly industrialized river basins, particularly in Asia (37.05%), Europe (24.31%), and North America (14.01%), where agricultural pharmaceuticals and fluorinated compounds contribute disproportionately to environmental loading. (2) Complex transboundary pollutant transport through atmospheric deposition and oceanic currents, coupled with compound-specific partitioning behaviors across water–sediment–air interfaces. (3) Emerging hybrid treatment systems (e.g., catalytic membrane bioreactors, plasma-assisted advanced oxidation) achieve > 90% removal for recalcitrant ECs, though requiring 15–40% cost reductions for scalable implementation. This work provides actionable insights for developing adaptive regulatory frameworks and advancing green chemistry principles in environmental engineering practice. Full article
Show Figures

Graphical abstract

17 pages, 5116 KiB  
Article
Impact of Real-Time Boundary Conditions from the CAMS Database on CHIMERE Model Predictions
by Anita Tóth and Zita Ferenczi
Air 2025, 3(3), 19; https://doi.org/10.3390/air3030019 - 18 Jul 2025
Viewed by 199
Abstract
Air quality forecasts play a crucial role in informing the public about atmospheric pollutant levels that pose risks to human health and the environment. The accuracy of these forecasts strongly depends on the quality and resolution of the input data used in the [...] Read more.
Air quality forecasts play a crucial role in informing the public about atmospheric pollutant levels that pose risks to human health and the environment. The accuracy of these forecasts strongly depends on the quality and resolution of the input data used in the modelling process. At HungaroMet, the Hungarian Meteorological Service, the CHIMERE chemical transport model is used to provide two-day air quality forecasts for the territory of Hungary. This study compares two configurations of the CHIMERE model: the current operational setup, which uses climatological averages from the LMDz-INCA database for boundary conditions, and a test configuration that incorporates real-time boundary conditions from the CAMS global forecast. The primary objective of this work was to assess how the use of real-time versus climatological boundary conditions affects modelled concentrations of key pollutants, including NO2, O3, PM10, and PM2.5. The model results were evaluated against observational data from the Hungarian Air Quality Monitoring Network using a range of statistical metrics. The results indicate that the use of real-time boundary conditions, particularly for aerosol-type pollutants, improves the accuracy of PM10 forecasts. This improvement is most significant under meteorological conditions that favour the long-range transport of particulate matter, such as during Saharan dust or wildfire episodes. These findings highlight the importance of incorporating dynamic, up-to-date boundary data, especially for particulate matter forecasting—given the increasing frequency of transboundary dust events. Full article
Show Figures

Figure 1

19 pages, 1214 KiB  
Article
Physical and Chemical Characteristics of Different Aerosol Fractions in the Southern Baikal Region (Russia) During the Warm Season
by Liudmila P. Golobokova, Tamara V. Khodzher, Vladimir A. Obolkin, Vladimir L. Potemkin and Natalia A. Onischuk
Atmosphere 2025, 16(7), 829; https://doi.org/10.3390/atmos16070829 - 8 Jul 2025
Viewed by 266
Abstract
The Baikal region, including areas with poor environmental conditions, has significant clean background zones. In the summer of 2023, we analyzed the physical and chemical parameters of aerosol particles with different size fractions at Irkutsk and Listvyanka monitoring stations. Reduced wildfires and minimal [...] Read more.
The Baikal region, including areas with poor environmental conditions, has significant clean background zones. In the summer of 2023, we analyzed the physical and chemical parameters of aerosol particles with different size fractions at Irkutsk and Listvyanka monitoring stations. Reduced wildfires and minimal impact from fuel and energy industries allowed us to observe regional and transboundary pollution transport. A large data array indicated that, during the shift of cyclones from Mongolia to the south of the Baikal region, the concentrations of Na+, Ca2+, Mg2+, K+, and Cl ions increased at the Irkutsk station, dominated by NH4+ and SO42−. The growth of the ionic concentrations at the Listvyanka station was observed in aerosol particles during the northwesterly transport. When air masses arrived from the southerly direction, the atmosphere was the cleanest. The analysis of 27 elements in aerosols revealed that Al, Fe, Mn, Cu, and Zn made the greatest contribution to air pollution at the Irkutsk station, while Fe, Al, Cu, Cr, Mn, and Ni made the greatest contribution to air pollution at the Listvyanka station. The dynamics of the investigated elements were mainly due to natural processes in the air under various synoptic situations and weather conditions in the region, although anthropogenic factors also affected the formation of aerosol composition wth certain directions of air mass transport. Full article
Show Figures

Figure 1

19 pages, 9490 KiB  
Article
Source Analysis of Ozone Pollution in Liaoyuan City’s Atmosphere Based on Machine Learning Models and HYSPLIT Clustering Method
by Xinyu Zou, Xinlong Li, Dali Wang and Ju Wang
Toxics 2025, 13(6), 500; https://doi.org/10.3390/toxics13060500 - 13 Jun 2025
Viewed by 647
Abstract
Firstly, this study investigates the spatiotemporal distribution characteristics of the ozone (O3) pollution in Liaoyuan City using monitoring data from 2015 to 2024. Then, three machine learning models (ML)—random forest (RF), support vector machine (SVM), and artificial neural network (ANN)—are employed [...] Read more.
Firstly, this study investigates the spatiotemporal distribution characteristics of the ozone (O3) pollution in Liaoyuan City using monitoring data from 2015 to 2024. Then, three machine learning models (ML)—random forest (RF), support vector machine (SVM), and artificial neural network (ANN)—are employed to quantify the influence of meteorological and non-meteorological factors on O3 concentrations. Finally, the HYSPLIT clustering method and CMAQ model are utilized to analyze inter-regional transport characteristics, identifying the causes of O3 pollution. The results indicate that O3 pollution in Liaoyuan exhibits a distinct seasonal pattern, with the highest concentrations found in spring and summer, peaking in the afternoon. Among the three ML models, the random forest model demonstrates the best predictive performance (R2 = 0.9043). Feature importance identifies NO2 as the primary driving factor, followed by meteorological conditions in the second quarter and land surface characteristics. Furthermore, regional transport significantly contributes to O3 pollution, with approximately 80% of air mass trajectories in heavily polluted episodes originating from adjacent industrial areas and the sea. The combined effects of transboundary precursors and O3 transport with local emissions and meteorological conditions further increase the O3 pollution level. This study highlights the need to strengthen coordinated NOX and VOCs emission reductions and enhance regional joint prevention and control strategies in China. Full article
Show Figures

Figure 1

21 pages, 6971 KiB  
Article
Transport Mechanisms and Pollutant Dynamics Influencing PM10 Levels in a Densely Urbanized and Industrialized Region near Naples, South Italy: A Residence Time Analysis
by Antonella Giarra, Angelo Riccio, Elena Chianese, Marco Annetta, Maria Toscanesi and Marco Trifuoggi
Atmosphere 2025, 16(4), 393; https://doi.org/10.3390/atmos16040393 - 28 Mar 2025
Cited by 1 | Viewed by 400
Abstract
This study explores the transport mechanisms and pollutant dynamics influencing particulate matter concentrations at the Pomigliano d’Arco monitoring site, situated in a densely urbanized and industrialized region near Naples, Southern Italy, where daily PM10 averages consistently exceed EU thresholds. Exploiting an innovative [...] Read more.
This study explores the transport mechanisms and pollutant dynamics influencing particulate matter concentrations at the Pomigliano d’Arco monitoring site, situated in a densely urbanized and industrialized region near Naples, Southern Italy, where daily PM10 averages consistently exceed EU thresholds. Exploiting an innovative residence time analysis, based on backward-trajectory analysis with the HYSPLIT model, we investigated air mass histories from 2018 to 2023 to identify predominant pollutant transport pathways and their temporal dynamics. Seven distinct airflow clusters were identified, with the most frequent originating from the western and northeastern directions, influenced by local circulation and long-range transport from the central Mediterranean and northern Africa. Seasonal variations revealed elevated PM10 levels during winter months, attributed to increased residential heating and temperature inversions, as well as summer peaks linked to Saharan dust transport and secondary aerosol formation. The residence time analysis highlighted regions within the central Mediterranean and northern Africa as significant contributors to high PM10 concentrations at the monitoring site, emphasizing the role of both local emissions and transboundary pollution. These findings provide critical insights for policymakers and air quality managers to develop targeted mitigation strategies aimed at reducing PM pollution in urban and industrialized areas, thereby enhancing public health and environmental sustainability. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

17 pages, 3246 KiB  
Article
A Nation-by-Nation Assessment of the Contribution of Southeast Asian Open Biomass Burning to PM2.5 in Thailand Using the Community Multiscale Air Quality-Integrated Source Apportionment Method Model
by Nanthapong Chantaraprachoom, Hikari Shimadera, Katsushige Uranishi, Luong Viet Mui, Tomohito Matsuo and Akira Kondo
Atmosphere 2024, 15(11), 1358; https://doi.org/10.3390/atmos15111358 - 12 Nov 2024
Viewed by 2312
Abstract
This study utilized the Community Multiscale Air Quality (CMAQ) model to assess the impact of open biomass burning (OBB) in Thailand and neighboring countries—Myanmar, Laos, Cambodia, and Vietnam—on the PM2.5 concentrations in the Bangkok Metropolitan Region (BMR) and Upper Northern Region of [...] Read more.
This study utilized the Community Multiscale Air Quality (CMAQ) model to assess the impact of open biomass burning (OBB) in Thailand and neighboring countries—Myanmar, Laos, Cambodia, and Vietnam—on the PM2.5 concentrations in the Bangkok Metropolitan Region (BMR) and Upper Northern Region of Thailand. The Upper Northern Region was further divided into the west, central, and east sub-regions (WUN, CUN, and EUN) based on geographical borders. The CMAQ model was used to simulate the spatiotemporal variations in PM2.5 over a wide domain in Asia in 2019. The Integrated Source Apportionment Method (ISAM) was utilized to quantify the contributions from OBB from each country. The results showed that OBB had a minor impact on PM2.5 in the BMR, but transboundary transport from Myanmar contributed to an increase in PM2.5 levels during the peak burning period from March to April. In contrast, OBB substantially impacted PM2.5 in the Upper Northern Region, with Myanmar being the major contributor in WUN and CUN and domestic burning being the major contributor to EUN during the peak months. Despite Laos having the highest OBB emissions, meteorological conditions caused the spread of PM2.5 eastward rather than into Thailand. These findings highlight the critical impact of regional transboundary transport and emphasize the necessity for collaborative strategies for mitigating PM2.5 pollution across Southeast Asia. Full article
Show Figures

Graphical abstract

18 pages, 6972 KiB  
Article
The Accurate Inversion of the Vertical Ozone Profile in High-Concentration Aerosols Based on a New DIAL-A Case Study
by Na Ma, Jie Wang, Chenglei Pei, Sipeng Yang, Tianshu Zhang, Yujun Zhang, Jianing Wan and Yiwei Xu
Remote Sens. 2024, 16(16), 2997; https://doi.org/10.3390/rs16162997 - 15 Aug 2024
Viewed by 1182
Abstract
Recently, in China, during the period of transition between spring and summer, the combination of sandstorms and ozone (O3) pollution has posed a significant challenge to the strategy of coordinated control of fine particulate matters (PM2.5) and O3 [...] Read more.
Recently, in China, during the period of transition between spring and summer, the combination of sandstorms and ozone (O3) pollution has posed a significant challenge to the strategy of coordinated control of fine particulate matters (PM2.5) and O3. On the one hand, the dust invasion brings many primary aerosols and causes a large range of transboundary transport. On the other hand, the high concentration of aerosol causes a severe disturbance to the distribution of O3. Traditionally, high-resolution assessments of the spatial distribution of aerosols and O3 can be carried out using LiDAR technology. However, the negligence of the influence of aerosols in the process of O3 retrieval in traditional differential absorption lidar (DIAL) leads to an error in the accuracy of ozone concentration. Especially when dust transit occurs, the errors become bigger. In this study, a self-customized four-wavelength differential-absorption LiDAR system was used to synchronously obtain the accurate vertical distributions of ozone and high-concentration aerosol. The wavelength index of concentrated aerosol was inverted and applied to the differential equation framework for O3 calculation. This novel approach to retrieving the vertical profile of O3 was proposed and verified by applying it to a dust pollution event that occurred from April to May 2021 in Anyang City Henan Province, which is located in Northern China. It was found that the extinction coefficient of aerosol reached 2.5 km−1 during the dust period, and O3 was mainly distributed between 500 m and 1500 m. The O3 error exceeded over 10% arising from the high-concentration aerosol below 1.5 km during the dust storm event. By employing the inversion algorithm while considering the aerosol effects, the ozone concentration error was improved by over 10% compared with the error recorded without considering the aerosol influence especially in dust events. Through this study, it was found that the algorithm could effectively realize the synchronous and accurate inversion of high-concentration aerosols and O3 and can provide key technical support for air pollution control in China in the future. Full article
Show Figures

Graphical abstract

16 pages, 4392 KiB  
Article
The Impact of Vertical Eddy Diffusivity Changes in the CMAQ Model on PM2.5 Concentration Variations in Northeast Asia: Focusing on the Seoul Metropolitan Area
by Dong-Ju Kim, Tae-Hee Kim, Jin-Young Choi, Jae-bum Lee, Rhok-Ho Kim, Jung-Seok Son and Daegyun Lee
Atmosphere 2024, 15(3), 376; https://doi.org/10.3390/atmos15030376 - 19 Mar 2024
Cited by 2 | Viewed by 1804
Abstract
The vertical eddy diffusion process plays a crucial role in PM2.5 prediction, yet accurately predicting it remains challenging. In the three-dimensional atmospheric chemistry transport model (3-D AQM) CMAQ, a parameter, Kz, is utilized, and it is known that PM2.5 prediction tendencies [...] Read more.
The vertical eddy diffusion process plays a crucial role in PM2.5 prediction, yet accurately predicting it remains challenging. In the three-dimensional atmospheric chemistry transport model (3-D AQM) CMAQ, a parameter, Kz, is utilized, and it is known that PM2.5 prediction tendencies vary according to the floor value of this parameter (Kzmin). This study aims to examine prediction characteristics according to Kzmin values, targeting days exceeding the Korean air quality standards, and to derive appropriate Kzmin values for predicting PM2.5 concentrations in the DJFM Seoul Metropolitan Area (SMA). Kzmin values of 0.01, 0.5, 1.0, and 2.0, based on the model version and land cover, were applied as single values. Initially focusing on December 4th to 12th, 2020, the prediction characteristics were examined during periods of local and inflow influence. Results showed that in both periods, as Kzmin increased, surface concentrations over land decreased while those in the upper atmosphere increased, whereas over the sea, concentrations increased in both layers due to the influence of advection and diffusion without emissions. During the inflow period, the increase in vertically diffused pollutants led to increased inflow concentrations and affected contribution assessments. Long-term evaluations from December 2020 to March 2021 indicated that the prediction performance was superior when Kzmin was set to 0.01, but it was not significant for the upwind region (China). To improve trans-boundary effects, optimal values were applied differentially by region (0.01 for Korea, 1.0 for China, and 0.01 for other regions), resulting in significantly improved prediction performance with an R of 0.78, IOA of 0.88, and NMB of 0.7%. These findings highlight the significant influence of Kzmin values on winter season PM2.5 prediction tendencies in the SMA and underscore the need for considering differential application of optimal values by region when interpreting research and making policy decisions. Full article
(This article belongs to the Special Issue Novel Insights into Air Pollution over East Asia)
Show Figures

Figure 1

26 pages, 5335 KiB  
Article
Aerosol Vertical Structure and Optical Properties during Two Dust and Haze Episodes in a Typical Valley Basin City, Lanzhou of Northwest China
by Junyang Ma, Jianrong Bi, Bowen Li, Di Zhu, Xiting Wang, Zhaozhao Meng and Jinsen Shi
Remote Sens. 2024, 16(5), 929; https://doi.org/10.3390/rs16050929 - 6 Mar 2024
Cited by 4 | Viewed by 1854
Abstract
The vertical profiles of aerosol optical properties are vital to clarify their transboundary transport, climate forcing and environmental health influences. Based on synergistic measurements of multiple advanced detection techniques, this study investigated aerosol vertical structure and optical characteristics during two dust and haze [...] Read more.
The vertical profiles of aerosol optical properties are vital to clarify their transboundary transport, climate forcing and environmental health influences. Based on synergistic measurements of multiple advanced detection techniques, this study investigated aerosol vertical structure and optical characteristics during two dust and haze events in Lanzhou of northwest China. Dust particles originated from remote deserts traveled eastward at different altitudes and reached Lanzhou on 10 April 2020. The trans-regional aloft (~4.0 km) dust particles were entrained into the ground, and significantly modified aerosol optical properties over Lanzhou. The maximum aerosol extinction coefficient (σ), volumetric depolarization ratio (VDR), optical depth at 500 nm (AOD500), and surface PM10 and PM2.5 concentrations were 0.4~1.5 km−1, 0.15~0.30, 0.5~3.0, 200~590 μg/m3 and 134 μg/m3, respectively, under the heavy dust event, which were 3 to 11 times greater than those at the background level. The corresponding Ångström exponent (AE440–870), fine-mode fraction (FMF) and PM2.5/PM10 values consistently persisted within the ranges of 0.10 to 0.50, 0.20 to 0.50, and 0.20 to 0.50, respectively. These findings implied a prevailing dominance of coarse-mode and irregular non-spherical particles. A severe haze episode stemming from local emissions appeared at Lanzhou from 30 December 2020 to 2 January 2021. The low-altitude transboundary transport aerosols seriously deteriorated the air quality level in Lanzhou, and aerosol loading, surface air pollutants and fine-mode particles strikingly increased during the gradual strengthening of haze process. The maximum AOD500, AE440–870nm, FMF, PM2.5 and PM10 concentrations, and PM2.5/PM10 were 0.65, 1.50, 0.85, 110 μg/m3, 180 μg/m3 and 0.68 on 2 January 2021, respectively, while the corresponding σ and VDR at 0.20–0.80 km height were maintained at 0.68 km−1 and 0.03~0.12, implying that fine-mode and spherical small particles were predominant. The profile of ozone concentration exhibited a prominent two-layer structure (0.60–1.40 km and 0.10–0.30 km), and both concentrations at two heights always remained at high levels (60~72 μg/m3) during the entire haze event. Conversely, surface ozone concentration showed a significant decrease during severe haze period, with the peak value of 20~30 μg/m3, which was much smaller than that before haze pollution (~80 μg/m3 on 30 December). Our results also highlighted that the vertical profile of aerosol extinction coefficient was a good proxy for evaluating mass concentrations of surface particulate matters under uniform mixing layers, which was of great scientific significance for retrieving surface air pollutants in remote desert or ocean regions. These statistics of the aerosol vertical profiles and optical properties under heavy dust and haze events in Lanzhou would contribute to investigate and validate the transboundary transport and radiative forcing of aloft aerosols in the application of climate models or satellite remote sensing. Full article
Show Figures

Figure 1

25 pages, 8085 KiB  
Article
Statistical Characteristics of Air Quality Index DAQx*-Specific Air Pollutants Differentiated by Types of Air Quality Monitoring Stations: A Case Study of Seoul, Republic of Korea
by Hyunjung Lee, Sookuk Park and Helmut Mayer
Sustainability 2023, 15(11), 8599; https://doi.org/10.3390/su15118599 - 25 May 2023
Cited by 5 | Viewed by 3358
Abstract
Seoul has a high density of air quality monitoring stations (AQMSs) grouped into roadside, urban, and background types. Using the extensive data from 42 AQMSs in the period 2018 to 2021, the statistical characteristics of air pollutants required to calculate the daily air [...] Read more.
Seoul has a high density of air quality monitoring stations (AQMSs) grouped into roadside, urban, and background types. Using the extensive data from 42 AQMSs in the period 2018 to 2021, the statistical characteristics of air pollutants required to calculate the daily air quality index DAQx* (daily maximum 1 h O3 and NO2 means and daily 24 h PM10 and PM2.5 means) are determined, depending on station types and three temporal periods (individual years, winters, and summers). The results for (i) annual cycles, which include peak concentrations of PM10 (up to 517 µg/m3 in May 2021) and PM2.5 (up to 153 µg/m3 in March 2019) owing to transboundary transport, (ii) annual medians, (iii) annual scattering ranges, (iv) partitioning of frequencies into DAQx*-related concentration ranges, and (v) maximum daily variations within individual station types indicate clear statistical air pollutant characteristics depending on the station types. They were primarily caused by different emission and atmospheric exchange conditions in a circular buffer around each AQMS, which are often approximated by urban form variables. The maximum daily variations were highest in the middle NO2 concentration range of the “satisfying” class for the roadside type (between 53% in summer 2019 and 90% in winter 2020). Full article
(This article belongs to the Special Issue Urban Climate and Health)
Show Figures

Figure 1

21 pages, 4573 KiB  
Article
Integrated Assessment Modelling of Future Air Quality in the UK to 2050 and Synergies with Net-Zero Strategies
by Helen ApSimon, Tim Oxley, Huw Woodward, Daniel Mehlig, Mike Holland and Sarah Reeves
Atmosphere 2023, 14(3), 525; https://doi.org/10.3390/atmos14030525 - 9 Mar 2023
Cited by 12 | Viewed by 3254
Abstract
Integrated assessment modelling (IAM) has been successfully used in the development of international agreements to reduce transboundary pollution in Europe, based on the GAINS model of IIASA. At a national level in the UK, a similar approach has been taken with the UK [...] Read more.
Integrated assessment modelling (IAM) has been successfully used in the development of international agreements to reduce transboundary pollution in Europe, based on the GAINS model of IIASA. At a national level in the UK, a similar approach has been taken with the UK Integrated Assessment Model, UKIAM, superimposing pollution abatement measures and behavioural change on energy projections designed to meet targets set for the reduction of greenhouse gas emissions and allowing for natural and imported contributions from other countries and shipping. This paper describes how the UKIAM was used in the development of proposed targets for the reduction of fine particulate PM2.5 in the UK Environment Act, exploring scenarios encompassing different levels of ambition in reducing the emissions of air pollutants up to 2050, with associated health and other environmental benefits. There are two PM2.5 targets, an annual mean concentration target setting a maximum concentration to be reached by a future year, and a population exposure reduction target with benefits for health across the whole population. The work goes further, also demonstrating links to social deprivation. There is a strong connection between climate measures aimed at reducing net GHG emissions to zero by 2050 and future air quality, which may be positive or negative, as illustrated by sectoral studies for road transport where electrification of the fleet needs to match the evolution of energy production, and for domestic heating, where the use of wood for heating is an air quality issue. The UKIAM has been validated against air pollution measurements and other types of modelling, but there are many uncertainties, including future energy projections. Full article
Show Figures

Figure 1

26 pages, 9115 KiB  
Article
Particulate Matter Concentrations over South Korea: Impact of Meteorology and Other Pollutants
by Shaik Allabakash, Sanghun Lim, Kyu-Soo Chong and Tomohito J. Yamada
Remote Sens. 2022, 14(19), 4849; https://doi.org/10.3390/rs14194849 - 28 Sep 2022
Cited by 23 | Viewed by 7177
Abstract
Air pollution is a serious challenge in South Korea and worldwide, and negatively impacts human health and mortality rates. To assess air quality and the spatiotemporal characteristics of atmospheric particulate matter (PM), PM concentrations were compared with meteorological conditions and the concentrations of [...] Read more.
Air pollution is a serious challenge in South Korea and worldwide, and negatively impacts human health and mortality rates. To assess air quality and the spatiotemporal characteristics of atmospheric particulate matter (PM), PM concentrations were compared with meteorological conditions and the concentrations of other airborne pollutants over South Korea from 2015 to 2020, using different linear and non-linear models such as linear regression, generalized additive, and multivariable linear regression models. The results showed that meteorological conditions played a significant role in the formation, transportation, and deposition of air pollutants. PM2.5 levels peaked in January, while PM10 levels peaked in April. Both were at their lowest levels in July. Further, PM2.5 was the highest during winter, followed by spring, autumn, and summer, whereas PM10 was the highest in spring followed by winter, autumn, and summer. PM concentrations were negatively correlated with temperature, relative humidity, and precipitation. Wind speed had an inverse relationship with air quality; zonal and vertical wind components were positively and negatively correlated with PM, respectively. Furthermore, CO, black carbon, SO2, and SO4 had a positive relationship with PM. The impact of transboundary air pollution on PM concentration in South Korea was also elucidated using air mass trajectories. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

11 pages, 16893 KiB  
Technical Note
Real-Time Synchronous 3-D Detection of Air Pollution and Wind Using a Solo Coherent Doppler Wind Lidar
by Jinlong Yuan, Yunbin Wu, Zhifeng Shu, Lian Su, Dawei Tang, Yuanjian Yang, Jingjing Dong, Saifen Yu, Zhen Zhang and Haiyun Xia
Remote Sens. 2022, 14(12), 2809; https://doi.org/10.3390/rs14122809 - 11 Jun 2022
Cited by 15 | Viewed by 2872
Abstract
The monitoring and tracking of urban air pollution is a challenging environmental issue. The approach of synchronous 3-D detection of wind and pollution using a solo coherent Doppler wind lidar (CDWL) is developed and demonstrated. The 3-D distribution of pollutant is depicted by [...] Read more.
The monitoring and tracking of urban air pollution is a challenging environmental issue. The approach of synchronous 3-D detection of wind and pollution using a solo coherent Doppler wind lidar (CDWL) is developed and demonstrated. The 3-D distribution of pollutant is depicted by the backscatter coefficient based on signal intensity of CDWL. Then, a high-resolution wind field is derived to track the local air pollution source with its diffusion and to analyze transboundary air pollution episodes. The approach is experimentally implemented in a chemical industry park. Smoke plumes caused by point source pollutions are captured well using plan position indicator (PPI) scanning with low elevation. A typical source of pollution is located, combining the trajectory of the smoke plume and the horizontal wind vector. In addition, transboundary air pollution caused by the transport of dust storms is detected in a vertical profile scanning pattern, which is consistent with the results of national monitoring stations and backward trajectory models. Our present work provides a significant 3-D detection approach to air pollution monitoring with its sources, paths, and heights by using a solo-CDWL system. Full article
(This article belongs to the Special Issue Stereoscopic Remote Sensing of Air Pollutants and Applications)
Show Figures

Graphical abstract

18 pages, 5806 KiB  
Article
Aloft Transport of Haze Aerosols to Xuzhou, Eastern China: Optical Properties, Sources, Type, and Components
by Kai Qin, Qin He, Yishu Zhang, Jason Blake Cohen, Pravash Tiwari and Simone Lolli
Remote Sens. 2022, 14(7), 1589; https://doi.org/10.3390/rs14071589 - 25 Mar 2022
Cited by 8 | Viewed by 5496
Abstract
Rapid industrialization and urbanization have caused frequent haze pollution episodes during winter in eastern China. Considering that the vertical profile of the aerosol properties changes significantly with altitude, investigating aerosol aloft information via satellite remote sensing is essential for studying regional transport, climate [...] Read more.
Rapid industrialization and urbanization have caused frequent haze pollution episodes during winter in eastern China. Considering that the vertical profile of the aerosol properties changes significantly with altitude, investigating aerosol aloft information via satellite remote sensing is essential for studying regional transport, climate radiative effects, and air quality. Through a synergic approach between lidar, the AErosol RObotic NETwork sunphotometer observations, and WRF-Chem simulations, several transboundary aloft transport events of haze aerosols to Xuzhou, eastern China, are investigated in terms of source, type, and composition and the impact on optical properties. Upper-air aerosol layers are short-lived tiny particles that increase the total aerosol optical depth (AOD). The aloft aerosols not only play a critical role during the haze event, enhancing the scattering of aerosol particles significantly but also cause a rise in the AOD and the Ångström exponent (AE), which increases the proportion of fine particles, exacerbating the pollution level near the surface. Based on the model simulation results, our study highlights that the transported aloft aerosols lead to the rapid formation of secondary inorganic substances, such as secondary sulfates, nitrates, and ammonium salts, which strongly contribute to haze event formation. Moreover, the results provide evidence that the haze frequency events associated with polluted dust outbreaks were higher for 2014–2015 winter. A closer analysis shows that the advected dust layers over Xuzhou originated from Inner Mongolia and the Xinjiang Uygur Autonomous Region. The study of the occurrence frequency, height, thickness, and optical properties of aloft anthropogenic haze in China will further deepen our understanding and provide a strong basis to assess aerosol impact on transport and the Earth–atmosphere radiative balance. Full article
Show Figures

Figure 1

Back to TopTop