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Abstract: Air pollution is a serious challenge in South Korea and worldwide, and negatively impacts
human health and mortality rates. To assess air quality and the spatiotemporal characteristics
of atmospheric particulate matter (PM), PM concentrations were compared with meteorological
conditions and the concentrations of other airborne pollutants over South Korea from 2015 to 2020,
using different linear and non-linear models such as linear regression, generalized additive, and
multivariable linear regression models. The results showed that meteorological conditions played
a significant role in the formation, transportation, and deposition of air pollutants. PM2.5 levels
peaked in January, while PM10 levels peaked in April. Both were at their lowest levels in July.
Further, PM2.5 was the highest during winter, followed by spring, autumn, and summer, whereas
PM10 was the highest in spring followed by winter, autumn, and summer. PM concentrations
were negatively correlated with temperature, relative humidity, and precipitation. Wind speed had
an inverse relationship with air quality; zonal and vertical wind components were positively and
negatively correlated with PM, respectively. Furthermore, CO, black carbon, SO2, and SO4 had a
positive relationship with PM. The impact of transboundary air pollution on PM concentration in
South Korea was also elucidated using air mass trajectories.

Keywords: air pollution; generalized additive model; multivariable linear regression model; meteorology;
particulate matter; transboundary air pollution; South Korea

1. Introduction

Poor air quality due to air pollution critically impacts human health and can lead
to increased mortality rates as well as negative impacts on biodiversity, ecosystems, and
regional climate [1]. Atmospheric particulate matter (PM) is a mixture of suspended liquid
and solid particles that plays a significant role in air pollution. In recent decades, rapid
industrialization and urbanization in East Asia have resulted in severe air pollution and
frequent haze events in the region [2]. South Korea is a recently developed East Asian coun-
try located downwind of China, Mongolia, and Russia. Elevated PM concentrations occur
in South Korea due to emissions from local traffic, industrial facilities, and the long-range
transport of anthropogenic emissions, Asian dust, and wildfire ash [3]. PM concentrations
vary depending on human activities, topography, and meteorological factors [4]. In particu-
lar, meteorological parameters play a significant role in the dispersion, transformation, and
removal of air pollutants from the atmosphere [5]. Consequently, a regional meteorology
analysis is required to fully describe the characteristics of PM [6].

Many studies have been conducted around the world to examine the physical and
chemical properties of atmospheric PM, as well as the relationship between PM and
meteorological parameters [6–11]. PM concentrations were negatively correlated with
wind speed (WS), precipitation, and humidity, and positively correlated with pressure over
China [12]. Furthermore, it is known that PM concentrations vary seasonally. Li et al. [13]
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found high PM2.5 and PM10 concentrations in winter and autumn and low concentrations
in spring and summer in Shenyang, Northeastern China. Caramagna et al. [14] observed
that fine particle concentrations (PM2.5 and PM10) were higher during working (high traffic)
days and lower during non-working days over Catania (Italy). Brusca et al. [15] described
the plume’s characteristics and the relationship between the plume and obstacles of various
shapes using laboratory experiments.

Several researchers have investigated the variability of PM concentrations in South
Korea. Kim et al. [3] observed that the inter-annual PM concentration was negatively
correlated with WS variations over the Seoul metropolitan area. Furthermore, PM10 levels
peaked in the spring and were positively correlated with SO2, NO2, and CO [11]. The Korea–
United States Air Quality (KORUS-AQ) field campaign was conducted in South Korea from
May–June 2016. This field campaign investigated the factors controlling air quality over
the South Korean region using observations from three aircraft, an extensive ground-based
network, and three ships as well as an array of air quality forecast models [16,17]. The
campaign showed that the PM2.5 concentrations were higher over central Seoul than in
coastal regions during transboundary transport days, due to gaseous urban emissions [18].
The transboundary pollution from China was mixed with the local pollution, and the
heterogeneous chemical reactions produced high PM2.5 concentrations [19]. Foreign and
domestic contributions have different effects on PM concentration in South Korea. Kumar
et al. [20] investigated the contributions of foreign pollution (particularly from China) to
PM2.5 levels in South Korea. They found that the Chinese anthropogenic contributions
were greatest during the winter and spring seasons. The highest contribution was around
60% in January and February, and the lowest was in August. China accounted for 45% of
annual anthropogenic emissions. They also stated that domestic contributions were lower
than Chinese contributions both monthly and annually, and contributions from the rest of
the world were minor. Xie and Liao [21] examined the effects of changes in anthropogenic
emissions in China on PM2.5 concentrations in South Korea and Japan. The reduction in
anthropogenic emissions in China resulted in a 7.7% and 7.9% decrease in PM2.5 concentra-
tions in South Korea and Japan, respectively. Additionally, the reduction in anthropogenic
emissions in China reduced the concentrations of sulfate, ammonium, BC, and OC in Korea
and Japan. During the KORUS-AQ campaign, which was conducted from May 1 to June
12, 2016, Lee et al. [22] examined the impact of long-distance transboundary transport
on the Korean peninsula. They concluded that anthropogenic emissions in East-Central
China, particularly in the Shandong region, have a significant impact on aerosol pollution
in the Korean region. Yim et al. [23] described the impact of local and transboundary
air pollution on air quality in Japan and South Korea. According to the authors, local
emissions in both Japan and Korea accounted for 30% of the pollution, while transbound-
ary emissions, specifically emissions from China’s industrial sectors, accounted for the
remaining 70%. Transboundary air pollution increased during favorable weather condi-
tions (westerly or northwesterly winds) in the spring and winter seasons. Choi et al. [24]
explored the effects of local and transboundary air pollution on PM2.5 concentrations in
Korea during the months of May and June of 2016. During the extreme pollution period, the
Chinese contribution was 68% and the local contribution was 26%. Chinese and domestic
contributions were 25% and 57%, respectively, during the blocking period. Furthermore,
they discussed the role of emission sources in pollution reduction: the most prominent
were domestic anthropogenic NH3 emissions, followed by anthropogenic SO2 emissions
from Shandong, domestic anthropogenic NOX, anthropogenic NH3 emissions from the
Shandong region, domestic anthropogenic OC emissions, and domestic anthropogenic
BC emissions. Park [25] observed a link between particulate matter concentration and
mortality rate in Seoul, Korea. The author found that PM, NO2, and O3 concentrations were
high during the winter and spring, resulting in a high probability of mortality. Deaths were
unlikely in areas with low levels of PM, NO2, and O3. Pollutants have a significant impact
on human health during extreme weather events (cold and heat waves). Han et al. [26]
discovered high PM concentrations in the western and northwestern areas of the Seoul
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metropolitan region during winter haze events. The pollution is primarily attributed to for-
eign pollution (particularly Chinese emissions), but local pollution also plays an important
role under high pressure with weak vertical mixing. Using clustering analysis, Lee et al. [27]
identified the source regions for high PM10 concentrations in the Seoul region. High PM10
concentrations in Seoul were caused by external sources such as the Gobi desert area and
major cities and industrial districts in inland China, as well as internal sources such as
the Yellow Sea and inland Korea. According to Lee et al. [28], meteorological conditions
such as atmospheric pressure distribution, air current movement, and atmospheric stability
change can all play important roles in the occurrence and persistence of high-concentration
air pollution episodes in the Korea region. The majority of the pollution transported from
the Eastern China region is transported under favorable westerly conditions.

In recent years, South Korea has experienced significant industrial and economic
growth, resulting in frequent and severe haze events and increased mortality associated
with pollution. Despite the government’s efforts to control air pollution, poor air quality
remains a serious issue. The KORUS-AQ field study examined the impact of meteorology
on the relative influence of local and transboundary pollution and described the causes
of poor air quality in South Korea. However, the KORUS-AQ study was conducted for
only a short period of time during the spring, from 1 May to 10 June 2016. Thus, these
studies were narrowly focused on a specific time period and were less concerned with the
impact of various meteorological parameters on PM2.5 and PM10. Thus, the present study
more comprehensively discusses the PM2.5 and PM10 characteristics across South Korea
over a long period (2015–2020) and supports the findings of previous studies in this region.
Furthermore, the monthly, seasonal, and annual distributions of PM were described, as
well as the impact of various meteorological parameters, including the influence of local
and foreign pollution at different time scales. We investigated the relationship between PM
concentrations (both PM2.5 and PM10), other air pollutants (CO, black carbon (BC), SO2,
SO4, and O3), and various meteorological parameters (temperature (T), specific humidity
(QLML), WS, pressure (P), precipitation, wind direction, heat flux, and ground heating)
for different time scales. To achieve this, we used various techniques and tools such as
the Spearman correlation, generalized additive model (GAM), and multivariable linear
regression model (MLR). Further, we used Hysplit model outputs to define and interpret
the impact of transboundary pollution on the Korean peninsula.

2. Materials and Methods

Since the 1960s, the East Asian region has experienced rapid industrialization, urban-
ization, and economic growth [29], resulting in increased air pollution in all East Asian
countries, including South Korea. To measure and monitor air pollution, the Korean gov-
ernment established the Korean Ministry of Environment (KMOE) Network in 1973, which
is controlled by national and local government bodies. The network stations monitor
various types of pollution (air quality), including city air quality, road-side air quality, acid
deposition, background density, suburban air quality, heavy metals, harmful materials,
photochemical pollutants, the global atmosphere, PM concentrations, and air pollution
concentrations [30].

Figure 1 depicts South Korea’s 16 administrative areas, which include nine provinces
and seven major cities. The KMOE conducts continuous automatic monitoring of PM
concentrations in all 16 administrative areas using various monitoring equipment. We used
KMOE data to investigate the relationship between PM concentration and meteorology
in Korea. The KMOE network provides six different types of air pollutants, including
PM10, PM2.5, O3, CO, SO2, and NO. The air pollution-related information and data are
available at www.airkorea.or.kr (accessed on 8 July 2021). The network maintains data
accuracy and quality and filters out abnormal data in four stages. Abnormal data are
identified based on the conditions of the (1) measuring equipment (e.g., fault connection,
malfunction, calibration) and if the data exceeds the normal range or rate of change,
(2) if the data acquisition rate is less than 75%, (3) if there are large fluctuations in the

www.airkorea.or.kr
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data, and (4) if the data are inconsistent; and then the abnormal data filters automatically
using inbuilt algorithms [31]. The accuracy of the data has been verified and used by
several researchers for various air quality studies [3,11]. We also compared KMOE data
with MERRA re-analysis datasets and found good agreement (figure not shown).
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Figure 1. Map of South Korea showing the provinces and major cities.

In the present study, we used PM2.5 and PM10 measurements from 220 monitoring
stations across all administrative areas for six years (2015–2020). Monthly PM2.5 and PM10
data were converted into seasonal, inter-annual, and annual time scales for the 16 admin-
istrative areas and for the entire country. We used various meteorological parameters (T,
QLML, precipitation, WS, horizontal (zonal U) and vertical (W) wind vectors, ground
heating, pressure, and latent and sensible heat fluxes); the surface concentrations of pollu-
tants including CO, BC, SO4, and SO2; aerosol optical depth (AOD); and the mass mixing
ratio of O3 to explore their relationships with PM. Meteorological and pollutant parame-
ters were collected from the state-of-the-art MERRA-2 reanalysis dataset for South Korea.
Kim et al. [32] validated MERRA-2 data for the Korean Peninsula and found that it out-
performed other reanalysis datasets. Several researchers have also used MERRA-2 data in
different studies [33,34]. MERRA-2 data were developed and generated by the global model-
ing and assimilation office (GMAO) of the National Aeronautics and Space Administration
(NASA) using the Goddard Earth observing system, version 5.12.4 data assimilation sys-
tem [35]. MERRA-2 provides data at a 0.5◦ × 0.625◦ (latitude × longitude) spatial resolution
and various temporal resolutions (one hourly minimum time step). In this study, monthly
data were used to evaluate seasonal, inter-annual, and annual values for meteorological
and pollutant parameters. In addition, the data for each province and the entire country
were averaged.

2.1. Generalized Additive Model (GAM)

Simple linear regression models are frequently used in statistical applications. How-
ever, linear models often fail to accurately fit non-parametric or non-linear parameters [36].
GAMs are more advantageous for non-parametric applications because they can describe
and interpret non-linear parameters due to their additive effects. GAM supports a wide
range of distributions and link functions, which reduces the error in predicting the de-
pendent variable. GAMs are effective at handling complex non-linearity in air pollution
research and have been widely used to detect the relationship between air pollutants
and meteorological parameters [36–41]. GAMs are regression models that use smoothing
splines for covariates rather than parametric or linear coefficients [36,42]. The additive
model in the context of time series concentration can be described as [42].
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log(y i) = β0 +
n

∑
j=1

sj(x ij

)
+εi

where yi is the ith air pollution concentration, β0 is the overall mean of the response, sj(xij)
is the smooth function of the ith value of covariate j, n is the total number of covariates, εi
is the ith residual, and var(ε) = σ2, which is assumed to be normally distributed. We used
GAM to analyze the relationship between PM and meteorological parameters and other
pollutants. The Akaike Information Criterion (AIC) and adjusted R2 were used to select the
degrees of freedom, air pollutants, and the appropriate meteorological parameters [43]. The
smoothing parameters were selected based on the restricted maximum likelihood (REML)
method. The proposed adjusted model in the present study is as follows:

log(PM k) = β0+s(T) + s(prec) + s(WS) + s(pressure) + s(BC) + s(CO) + s(SO 4) + s(OZ) + εi (1)

where PMk represents either PM2.5 or PM10. The meteorological parameters, pollutants,
and PM were selected based on the smallest AIC and the largest adjusted R2, and cubic
regression spline smoothing functions were used for meteorological factors, which were
determined based on the REML standard All analyses were carried out in R using the
“mgcv” package [44].

2.2. MLR Model

MLR model was used to delineate the relationships between multiple independent
meteorological variables and a single dependent variable (pollutants). The MLR model
was computed based on the ordinary least squares (OLS) method. The model is as follows:

Yi = β0 + β1x1i + β2x2i + β3x3i + β4x4i + β5x5i + ε (2)

where i represents the site locations in Korea; β0, β1, β2, β3, β4, β5 are the regression coeffi-
cients; y is the concentration of the independent pollutant variable; x is the meteorological
variables (x1, x2, x3, x4, and x5 are the QLML, P, WS, T, and precipitation, respectively); and
ε is the stochastic error associated with the regression.

2.3. HYSPLIT Model

The National Oceanic and Atmospheric Administration (NOAA) developed the hybrid
single-particle Lagrangian Integrated Trajectory (HYSPLIT) to determine the transport
paths of air masses. This model has been widely used to investigate the transport of air
pollutants using forward- and back-trajectories. The model simulates air parcel trajectories,
emission, difficult transport, deposition, dispersion, and chemical transformation. The
NOAA’s global data assimilation system (GDAS) 1◦ × 1◦ grid resolution data were used
to examine transboundary air pollution. For trajectory calculation, the model employs
the NCEP/NCAR re-analysis meteorological dataset. Air mass trajectories define the
transportation of aerosols from one location to other [45]. At specific weather conditions,
the air mass carries a high number of aerosols and pollutants, which illustrates the heavy
pollution or haze events. In the present study, we used 24 h back-trajectories during haze
and non-haze events. The air mass backward trajectories were effective in determining the
source of the pollution and its pathway to the receptor (long-range transportation) [45].

3. Results
3.1. Monthly Distribution of PM and Other Pollutants

Figure 2a,b show the monthly mean variability of PM2.5 and PM10 over South Korea
from 2015 to 2020, respectively. There is a clear V-shaped distribution for both PM2.5 and
PM10 throughout each year. PM2.5 concentrations were highest in December, January, and
February, and lowest in July and August. In contrast, PM10 concentrations were highest
in March and April and lowest in July and August. PM2.5 concentrations ranged from
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10–40 µg m−3 and were higher than the World Health Organization (WHO) standard of
25 µg m−3. PM10 concentrations ranged at 20–80 µg m−3 and also exceeded the WHO
recommended levels of 50 µg m−3. High PM concentrations were caused by industrial
emissions and dust transport from neighboring countries in conjunction with favorable
meteorological conditions [3]. The peak PM2.5 concentration (40 µg m−3) was observed in
2019, due to heavy haze events. Generally, both PM2.5 and PM10 tended to decrease over
the study period, with the lowest PM concentrations observed in 2020 attributed to the full
and partial lockdowns in China and Korea to prevent the spread of the novel coronavirus
(COVID-19). During this period, major industries were closed, and traffic significantly
decreased, which had a considerable impact on emissions.
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The monthly mean variability across South Korea for CO, BC, SO2, SO4, and O3 are
shown in Figure 2c–g, respectively. The concentrations of CO, BC, and SO2 were high in
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December and January and low in July and August, similar to the annual variations in
PM2.5. In contrast, SO4 and O3 levels were high in March and April and low in January
and December. Peak values of CO, BC, SO2, and SO4 were detected in 2019, which were
probable sources of the simultaneous high PM2.5 concentrations. To examine the haze
events and pollution that caused these peak values, we described the diurnal variations
in PM2.5, PM10, and other pollutants in 2019. According to the Korea Meteorological
Administration, South Korea experienced two long-lasting severe haze events in 2019:
the first from January 11 to 15 and the second from February 20 to March 8 (especially
1–7 March 2019) [46]. Figure 3 shows the diurnal variabilities in PM and other pollutants
for January–March 2019. During these haze events, high concentrations of PM2.5 and
PM10 were observed, and peak values of 99.2 µg m−3 and 144.3 µg m−3, respectively, were
detected on 4–5 March 2019. The concentrations of other pollutants (CO, BC, SO2, and
SO4) were also higher during these events and peaked on 4–5 March 2019. However, there
was no significant variation in O3 levels. On 13–14 January 2019, PM2.5 and PM10 levels
were 90 µg m−3 and 120 µg m−3, respectively. Furthermore, CO, BC, and SO2 have high
peak values, whereas SO4 has a moderate peak value. The high concentrations of other
pollutants support the haze events that result in high PM concentrations. Interestingly, the
high and low trends of PM2.5 and PM10 were mostly consistent with CO, BC, SO2, and
SO4, while O3 differed. Figure S1 shows the AOD for these haze events. High AOD values
were observed on 11–15 January 2019and 1–7 March 2019and were associated with PM
and other pollutant concentrations. Furthermore, AOD was highest on 14 January 2019
(0.44) and 5 March 2019 (1.19) during the first and second events, which also matched the
peaked values of PM. The synoptic meteorological conditions during the severe haze events
(13–14 January and 4–5 March 2019) are shown in Figure S2. During these haze events,
low temperature, low-to-moderate humidity, and northwesterly/westerly winds with a
WS of 5–10 m s−1 were observed in South Korea. These northwesterly/westerly winds
possibly transported the pollutants from China to Korea. Figure S2 shows a high-pressure
system located in South Korea and low-pressure systems located in Northern China, North
Korea, and Japan. Because these low-pressure systems were extended and merged, wind
flow was reduced, which resulted in the stagnation of pollutants over the region. Thus,
the pollutants transported from China remained suspended for longer periods over South
Korea [26,47] and were mixed with the local emissions [19]. Therefore, the high-pressure
environment combined with weak vertical dispersion from winds led to PM accumulation.

Although local pollution prevailed in South Korea, we examined the 24 h backward
trajectories of air masses arriving at four sites (Seoul, Jeollabuk, Ulsan, and Jeju) from
1 to 5 March 2019to assess the impact of transboundary air pollution during heavy haze
events (See Figure 4). Despite the fact that Figure 4 only shows one eastern site, two
western sites, and one individual (Jeju) site, we observed trajectory patterns at all of the
sites. The western sites were significantly influenced by transboundary air pollution from
Eastern and Northern China; the backward trajectories show that majority of airmasses
were transported from Northern China (Harbin, Jilin, and Liaoning). Interestingly, during
the severe haze days (4–5 March 2019), airmasses were transported from the Beijing, Hebei,
and Tianjin regions; therefore, the severe haze events were primarily caused by emissions
from Eastern China. Figure 5 illustrates the trajectory frequencies and percentage of airmass
transport for the four sites from February 20 to March 10. Most of the airmasses arriving in
Seoul and Jeollabuk originated in Northern and Eastern China, while those in Ulsan and
Jeju arrived from all directions. Figure 6 depicts the trajectory frequencies for the January
haze event. Seoul and Jeollabuk have a higher percentage of airmasses transported from
Eastern and Northeastern China, whereas airmasses originated primarily in Northeastern
China for Ulsan and Jeju. We examined the airmass patterns during non-haze days from
January to March 2020.
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Figure S3 depicts the diurnal variation in PM concentrations during this time period.
No severe haze events occurred in this period, and thus, peak PM concentrations did not
occur as they did in January–March 2019 (Figure 3). PM concentrations were less than
60 µg m−3, and other pollutants were also in low concentrations (figure not shown). The
corresponding trajectory frequencies in 2020 are shown in Figure S4 (20 February–10 March)
and Figure S5 (1–15 January) for similar periods as those depicted in Figures 4 and 5 (2019).
Figures S4 and S5 clearly show that the majority of air masses originated in Northeastern
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China and the East China Sea, with no trajectories originating in Eastern China. According
to the trajectory patterns for 2019 and 2020, transboundary air pollution in South Korea
originated primarily in Northeast China and Mongolia. However, heavy transboundary
air pollution originated mostly in Eastern China; Western Korea was also significantly
influenced by this pollution.
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3.2. Seasonal Variability

We estimated seasonal mean values for all air pollutants and PM. Figure 7 shows
seasonal mean values of PM2.5, PM10, CO, BC, SO2, SO4, and O3 for the entire country.
PM2.5 was the highest in winter followed by spring, autumn, and summer. CO, BC,
and SO2 were also high in winter and low in summer. PM10 was the highest in spring,
followed by winter, autumn, and summer. SO4 and O3 concentrations were also high
in spring and interestingly, they were low during autumn. The high values of PM2.5 in
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winter were attributed to emissions from traffic, household heating and cooking, and
industries, including coal-fired power plants, semiconductors, biopharmaceuticals, and
cement [48]. The geography and climate of Korea, particularly wind direction, play an
important role in PM concentration. Figure S6 shows the seasonal mean WS and direction
over East Asia. Strong prevailing northwesterly winds blow over Korea from Northern
China and Southern Mongolia, transporting anthropogenic emissions from these regions.
In particular, the industrial regions of Harbin, Changchun, the Pearl Delta, Beijing–Tianjin,
Shanghai, and Shenyang that are in Northeast and Eastern China are known to have high
pollutant concentrations [2,6,13]. Thus, industrial emissions from have a significant impact
on PM2.5 concentrations in Korea. During the spring, the prevailing winds are westerly
and northwesterly; consequently, dust is transported to Korea from China and Mongolia,
increasing PM10, O3, and SO4 concentrations. In summer, heavy precipitation reduces
PM concentrations through wet removal and washing effects. Figure 2a,b show that the
seasonal variation of PM concentrations decreased from 2015 to 2020.
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3.3. Annual Distribution of PM and Other Pollutants

Figure 8 shows the annual mean distributions of PM and other pollutants. The
South Korean government has enacted several control measures and laws to improve air
quality; as a result, pollutant concentrations have decreased from 2015 to 2020. However,
pollution levels in South Korea remain higher than the WHO standards. Overall, the
maximum PM2.5 and PM10 concentrations were 34 µg m−3 and 54 µg m−3, respectively.
Furthermore, high values were detected in 2019 due to severe haze events (as described in
the previous section). The mean values of PM2.5 (PM10) were 26.8 µg m−3 (46.5 µg m−3),
25.9 µg m−3 (44.7 µg m−3), 24.1 µg m−3 (43.4 µg m−3), 22.7 µg m−3 (40.7 µg m−3), 22.6 µg
m−3 (40.4 µg m−3), and 18.4 µg m−3 (33.5 µg m−3) for 2015, 2016, 2017, 2018, 2019, and
2020, respectively. CO, BC, and SO4 also tended to decrease from 2015 to 2020; however,
SO2 remained mostly consistent, and O3 increased from 2015 to 2018 and then decreased.
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3.4. Spatial Distribution of PM and Other Pollutants

Monthly variations in PM2.5 and PM10 concentrations by administrative region are
shown in Figure 9. All locations show an overall downward trend from 2015–2020. PM2.5
concentration was high during winter and low during summer. In 2019, Chungcheong-
buk recorded the highest PM2.5 concentration (48.2 µg m−3), followed by Gyeonggi
(47.8 µg m−3), Jeollabuk (45.4 µg m−3), and Seoul (45.3 µg m−3). These were attributed
to the severe dust storm that occurred during the year. Seoul is the capital city and the
largest metropolitan area in South Korea; hence, traffic volume and population density are
high in the city and the surrounding Gyeonggi province. Seoul is commonly grouped with
Gyeonggi and Incheon; this region is referred to as greater Seoul.
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Figure 9. Monthly variations in PM2.5 and PM10 for the 16 administrative areas of South Korea
from 2015 to 2020. (a) Busan, (b) Chungcheongbuk, (c) Chungcheognam, (d) Daegu, (e) Daejeon,
(f) Gangwon, (g) Gwangju, (h) Gyeonggi, (i) Gyeongsanbuk, (j) Gyeongsangnam, (k) Incheon,
(l) Jeju, (m) Jeollabu, (n) Jeollanam, (o) Seoul, and (p) Ulsan.

This highly urbanized area is characterized by high emissions from heavy traffic, in-
dustrial facilities, power generation, and household heating and cooking. Chungcheongbuk
is located in the center of South Korea and on the southern side of the greater Seoul region.
During the winter and spring, the prevailing winds from greater Seoul carry dust aerosols
toward Chungcheongbuk. Furthermore, a diagonal mountain range to the southeast of
Chungcheongbuk and Jeollabuk prevents further transport of these aerosols, resulting in
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stagnation and accumulation of pollution. Bioindustrial and semiconductor industries
are in Chungcheongbuk, whereas light industries are in Jeollabuk. Consequently, PM2.5
concentrations were high in these regions. The record high PM10 concentration was in
Gyeonggi (89.6 µg m−3), followed by Seoul (88.7 µg m−3) and Incheon (88.4 µg m−3) in
2015. PM10 concentrations were high in the greater Seoul area compared to Jeollabuk
and Chungcheongbuk. During the spring, all stations recorded high PM10 concentrations.
Interestingly, PM10 concentrations were also high in Ulsan. Because this region has the
largest shipyard and numerous oil refineries, dust emissions were high. Interestingly, the
southernmost regions of Korea (Jeollanam and Jeju) had the lowest PM2.5 (60 µg m−3 and
PM10 (30 µg m−3) concentrations. Jeollanam lacks major industries and was less influenced
by the other regions (due to its location), and Jeju island is separated from the other Korean
regions and thus less affected by pollution.

3.5. Relationships between PM, Pollutant Concentrations, and Meteorological Parameters

Meteorological conditions are the primary drivers of air pollution transport and
dispersion [4,6,9,10,49]. Korea is surrounded by water on three sides and 70% of the
land is mountainous. Owing to its complex topography, Korea has distinctive atmospheric
conditions. The mountain winds, waves, and sea breezes significantly influence the weather.
Figure 10 shows the seasonal distribution of the meteorological variables in South Korea
that impact air pollution. Table 1 shows Spearman’s rank correlation coefficients between
the seasonal PM concentrations and pollutants and meteorological factors. The temperature
was negatively correlated with both PM10 and PM2.5 in all seasons, and the relationship
was significant during summer (−0.62 for PM2.5 and −0.64 for PM10). High temperatures
favor intense mixing and turbulence, leading to vertical dispersion and improved air
quality [33,50]. In winter, vertical dispersion was low (Figure 10h) due to more stable
conditions. QLML and precipitation also had a negative correlation with both PM10 and
PM2.5. The high QLML during summer promotes particle coalescence and leads to wet/dry
deposition that reduces airborne PM [51]. Furthermore, high temperatures and QLML are
conducive to strong convection, which causes heavy precipitation during summer. Heavy
precipitation reduces PM10 concentrations because raindrops entrain particles and remove
aerosols from the atmosphere. Further, wind flow affects/reduces the PM2.5 concentrations.
Thus, the rainy weather can reduce PM concentrations. Therefore, PM has a stronger inverse
relationship with QLML (−0.66 for PM2.5 and −0.69 for PM10) and precipitation (−0.49 for
PM2.5 and −0.47 for PM10) during summer. Conversely, QLML produced weak negative
correlations with PM in winter (−0.33 for PM2.5 and −0.44 for PM10), and precipitation had
weak negative correlations with PM during spring (−0.15 for PM2.5 and −0.03 for PM10).
Temperature, QLML, and precipitation showed significant negative correlations with PM10
during autumn (−0.71, −0.78, and −0.61, respectively). There were some interesting
correlations between WS and PM concentrations; in the summer and spring, WS was
negatively correlated with PM2.5 and PM10, but slightly positively correlated in the autumn
and winter. Although WS was generally low during spring and summer, the W wind
vector was high, which facilitated vertical pollutant dispersion. In contrast, the U wind
vector was low during the summer and spring, implying that the influence of horizontal
dispersion was minimal. Allabakash and Lim [33] attributed higher planetary boundary
layer heights during summer and spring to upward forcing. Conversely, W was low during
winter and autumn, while U was high. Therefore, horizontal PM dispersion predominated
during winter and autumn [33]. Table 1 shows that U was positively correlated with PM
concentration, whereas W was mostly negatively correlated. The pressure was positively
correlated with both PM2.5 and PM10 in all seasons except winter. Low pressure and
vertical winds during spring and summer transport PM upward. Conversely, high pressure
and low vertical winds tend to accumulate PM during winter [46,50]. Interestingly, the
relationship between PM and ground heating was positive in the spring, summer, and
winter, but negative in the autumn. We attribute this to soil moisture content; the soil is
generally dry in the spring and wet in autumn. A similar relationship was observed for
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latent and sensible heat fluxes. Finally, PM concentrations were positively correlated with
BC, CO, SO2, and SO4 during all seasons. O3 had weak correlations with PM in spring,
autumn, and winter, but a strong positive relationship during the summer.

Remote Sens. 2022, 14, x FOR PEER REVIEW 19 of 29 
 

 

  

Figure 10. Seasonal variations of meteorological variables impacting air pollution in South Korea 

(2015–2020). The blue boxes represent the variations of the parameters, the lower and upper edges 

of the box are 25th and 75th percentiles, respectively, the red colored mark is the median, and the 

red plus symbols indicate outliers. (a) temperature, (b) specific humidity, (c) precipitation, (d) wind 

speed, (e) pressure, (f) ground heating, (g) horizontal (zonal) wind vector, (h) vertical wind vector, 

(i) sensible heat flux, and (j) latent heat flux. 

Figure 10. Seasonal variations of meteorological variables impacting air pollution in South Korea
(2015–2020). The blue boxes represent the variations of the parameters, the lower and upper edges
of the box are 25th and 75th percentiles, respectively, the red colored mark is the median, and the
red plus symbols indicate outliers. (a) temperature, (b) specific humidity, (c) precipitation, (d) wind
speed, (e) pressure, (f) ground heating, (g) horizontal (zonal) wind vector, (h) vertical wind vector,
(i) sensible heat flux, and (j) latent heat flux.
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Table 1. Spearman’s rank correlation coefficients between the PM10 and PM2.5 concentrations and
the meteorological factors and pollutants by season. Here, PM = particulate matter concentrations,
T = temperature, QLML = specific humidity, Prec = precipitation, WS = wind speed, U = horizontal
wind vector, W = vertical wind vector, P = pressure, GHT = ground heat.

Season PM T QLML Prec WS U W P GHT BC CO SO2 SO4 O3

Spring
PM2.5 −0.42 −0.51 −0.15 −0.18 0.11 −0.39 0.43 0.11 0.77 0.61 0.64 0.64 −0.24

PM10 −0.15 −0.22 −0.03 −0.27 0.04 −0.17 0.24 0.33 0.64 0.58 0.73 0.73 0.05

Summer
PM2.5 −0.62 −0.66 −0.49 −0.61 0.41 −0.13 0.12 0.52 0.83 0.54 0.49 0.49 0.70

PM10 −0.64 −0.69 −0.47 −0.57 0.47 −0.13 0.06 0.49 0.85 0.59 0.56 0.56 0.66

Autumn
PM2.5 −0.55 −0.63 −0.44 −0.02 0.42 −0.04 0.58 −0.52 0.78 0.79 0.60 0.60 −0.05

PM10 −0.71 −0.78 −0.61 0.12 0.56 −0.22 0.72 −0.70 0.88 0.87 0.76 0.76 −0.25

Winter
PM2.5 −0.19 −0.33 −0.27 0.01 0.05 −0.01 −0.26 0.30 0.75 0.52 0.19 0.19 −0.10

PM10 −0.31 −0.43 −0.29 0.13 0.09 0.02 −0.36 0.43 0.71 0.48 0.19 0.19 0.04

We used the annual distributions of each parameter to determine the dominant meteo-
rological factor influencing PM concentration. The annual mean values of the pollutants
and meteorological parameters for each year are shown in Figure 8 and Figure S7, respec-
tively. PM2.5 and PM10 concentrations decreased from 2015 to 2020, but they were higher in
2019 than in 2018 and 2020. These figures show an upward trend for all parameters with a
negative relationship with PM and vice versa. However, precipitation (Figure S7c) generally
shows an upward trend, except for the very dry year in 2017, which does not agree with
the trends in PM concentrations. Additionally, WS (Figure S7d) shows an upward trend,
indicating a negative relationship with PM. Furthermore, WS was low in 2019, which
suggests an inverse relationship with PM concentration. Based on these findings, we infer
that WS was the dominant meteorological factor influencing PM concentration, in line with
the findings of Kim et al. [3].

3.6. Generalized Additive Model (GAM) Analysis

GAM was used to describe the dependencies and non-linear relationships between
PM and other pollutants and meteorological factors over South Korea during 2015–2020.
Figure 11 shows the relationships for PM2.5. Straight lines represent linear relationships,
while curved lines represent non-linear relationships. PM2.5 shows a strong negative
dependency on temperature and precipitation. PM2.5 has a negative relationship with low
WS (<6 m s−1) but no clear relationship with high WS (>6 m s−1). Furthermore, PM2.5
has a strong positive relationship with pressure, BC, and O3, and a significant non-linear
relationship with CO and SO4. For low CO (<200 ppbv), the relationship was stable,
whereas high CO (>200 ppbv) values were positively correlated. Interestingly, PM2.5 was
positively correlated with low SO4 values and weakly negatively correlated with high SO4
values. Figure 12 shows the GAM analysis for PM10 dependencies, which are broadly
similar to PM2.5 dependencies. Precipitation and temperature show strong and weak
negative relationships with PM10, respectively, while pressure, BC, and O3 show strong
positive relationships. PM10 has a weak relationship with WS and CO. SO4 shows a non-
linear relationship with PM10. Overall, the relationships between PM and meteorological
factors and other pollutant were consistent with the Spearman correlations shown in
Table 1.
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Figure 11. Generalized additive model (GAM) dependency analysis for PM2.5 concentration. Re-
sponse curves of PM2.5 concentration to changes in (a) air temperature, (b) precipitation, (c) wind
speed, (d) air pressure, (e) BC, (f) CO, (g) ozone mass mixing ratio, and (h) SO4. The y-axis represents
the smoothing function values (example s(T) is the trend in PM2.5 concentration when air tempera-
ture changes, and the number (1) is the degree of freedom for the trend. The x-axis represents the
measured values of the influencing factor, the solid line indicates the trend in PM2.5 concentration
with the change in influencing factors, and the dashed lines surrounding the solid line indicate the
95% confidence intervals.
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Figure 12. Generalized additive model (GAM) dependency analysis for PM10 concentration. Re-
sponse curves of PM10 concentration to changes in (a) air temperature, (b) precipitation, (c) wind
speed, (d) air pressure, (e) BC, (f) CO, (g) ozone mass mixing ratio, and (h) SO4. The y-axis represents
the smoothing function values (example s(T) is the trend in PM10 concentration when air tempera-
ture changes, and the number (1) is the degree of freedom for the trend. The x-axis represents the
measured values of the influencing factor, the solid line indicates the trend in PM10 concentration
with the change in influencing factors, and the dashed lines surrounding the solid line indicate the
95% confidence intervals.

3.7. MLR Model Analysis

Table 1 shows the linear correlations between PM, other pollutants, and meteorological
factors during different seasons throughout South Korea. While the GAM model was used
to describe non-linear relationships between these factors, the MLR model was used to



Remote Sens. 2022, 14, 4849 20 of 26

further examine the influence of meteorological factors on pollutants at 16 sites during
different seasons. The independent variables for the MLR model were selected based on
their low multi-collinearity and high R2, F-test, and T-test values. Thus, QLML, P, WS, T,
and precipitation were selected. The significance of the MLR model for PM2.5 passed the
F-test at 15 sites, with an average R2 of 0.76 and at least four independent variables that
passed the t-test. The F-test for PM10 was also passed by 15 sites, with an average R2 of
0.78 and at least four independent variables that passed the t-test. For concentrations of
other pollutants (CO, BC, SO2, SO4, and O3), the MLR model passed the F-test at 13 sites
with an average R2 of 0.74 and at least four independent variables that passed the t-test.
The findings revealed that meteorological factors had distinct impacts in different parts of
South Korea during different seasons.

Figure 13 depicts the effect of meteorological variables on PM2.5 concentrations at all
16 sites during different seasons. During spring, WS and precipitation were the dominant
factors that affected the PM2.5 concentrations at all the sites except the eastern-most sites.
Pressure also played a key role in PM2.5 concentration changes over the central and eastern
regions. In summer, temperature and precipitation were the dominant factors at most sites,
and pressure was a significant factor at Ulsan and Busan. The WS influenced PM2.5 levels
in the central and southern regions during autumn (except Seoul and surrounding regions).
WS was the main contributor to PM2.5 levels in the northern and central regions (Gyeonggi
and surrounding areas) during the winter. Temperature also had a strong influence on
PM2.5 in the southeast. Temperature and QLML influenced PM2.5 at Jeju in the spring and
winter, while pressure dominated in the summer.

The impacts of the meteorological variables on PM10 concentrations are shown in
Figure 14. During spring, WS, T, precipitation, and pressure were the dominant factors that
influenced the PM10 concentrations at most sites. During the summer, T and precipitation
were the dominant factors in most sites, QLML and WS were dominant in the central sites,
and P was dominant in the southeastern sites. PM10 in the central and eastern regions
was primarily influenced by WS; however, P was also influencing PM10 over the eastern
sites during autumn. In winter, WS was the dominant factor influencing PM10 in Seoul,
Jeollabuk, Gyengsonbuk, Daejon, Ulsan, Busan, and Daegu during the winter. T and
P were the dominant factors that influenced PM10 concentrations in Jeju during spring,
summer, and winter, while precipitation, WS, and QLML influenced PM10 concentrations
in autumn. Figure S8 shows the impacts of the meteorological factors on CO. WS, T, P, and
precipitation were the dominant factors impacting CO concentrations during all seasons
at Seoul. Further, pressure significantly affected CO at all sites during all seasons. Over
southeastern sites, T, P, and WS were dominant in the spring, and T and P were dominant
in the winter, and these factors influence CO concentrations. In Jeju, CO concentration was
influenced by T and P during spring and winter. However, WS was dominant in summer,
and T and QLML were dominant during autumn. Figure S9 shows that, BC concentrations
were significantly influenced by all the meteorological factors in the western part of Korea,
but their influence was less in the east during all seasons. In Jeju, T was the dominant factor
for BC concentration during all seasons. Furthermore, P and precipitation impacted the BC
concentration during summer, while QLML impacted it during autumn and winter. Figure
S10 shows the impacts of the meteorological factors on SO4; they were mostly similar to
those on BC. Figure S11 shows that the SO2 concentrations over northwestern regions
(especially the Seoul metropolitan region) were influenced by all meteorological factors,
especially WS and precipitation, during all seasons. In Jeju, SO2 was mostly influenced
by T. SO2 at the central sites was less affected by meteorological parameters during the
summer. Figure S12 shows that the O3 concentrations during spring were influenced by all
the meteorological factors (mainly T, precipitation, and WS) in the western and southern
regions. During the summer, all meteorological factors influenced O3 concentrations
in the northwest (Seoul and surrounding areas). Meteorological factors influenced O3
concentrations at all sites during the autumn and winter seasons. O3 concentrations in Jeju
were influenced by T, P, and QLML during all seasons.
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Figure 13. MLR model results between PM2.5 and the meteorological parameters. The colors represent
the type of the meteorological parameter, and the size indicates the magnitude of the influencing
parameter. R2 represents the fitting effect of the model, the F-test determines the significance of the
model, and the t-test determines the significance of the independent variables.
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Figure 14. MLR model results between PM10 and the meteorological parameters. The colors represent
the type of the meteorological parameter, and the size indicates the magnitude of the influencing
parameter. R2 represents the fitting effect of the model, the F-test determines the significance of the
model, and the t-test determines the significance of the independent variables.

4. Conclusions

We analyzed the spatial and temporal variability in PM2.5 and PM10 over South Korea
during 2015–2020, as well as the relationship between PM, other pollutants, and meteoro-
logical parameters. The highest nationally averaged PM2.5 concentrations were observed
during December and January, and the highest PM10 concentrations were observed during
March and April. PM2.5 and PM10 were the lowest during July and August. Seasonal
patterns revealed that PM2.5 levels were highest in winter, then in spring, autumn, and sum-
mer. CO, BC, and SO2 concentrations peaked as well during the winter. In contrast, PM10,
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SO4, and O3 were highest in the spring and lowest in the summer. High PM concentrations
were attributed to emissions from traffic, household heating and cooking, and industries
during the winter and spring. During spring and winter, the prevailing westerly and
northwesterly winds were relatively strong and transported anthropogenic emissions and
dust to Korea from China and Mongolia. The greater Seoul region is characterized by high
traffic, population density, and various industrial facilities; therefore, high PM10 and PM2.5
concentrations were recorded in the region. CO, BC, SO2, and SO4 were also high over the
greater Seoul region. The highest PM2.5 concentrations were observed over Chungcheong-
buk and Jeollabuk due to emissions from biological, semiconductor, and light industries
in these provinces. Furthermore, prevailing winds carried emissions from greater Seoul
to Chungcheongbuk and Jeollabuk. Western South Korea had higher PM and pollutant
concentrations than the eastern regions due to its proximity to China. Due to the occurrence
of two heavy haze events in 2019, pollution was high, which was aided by high AOD values.
The back trajectories of the Hysplit model described how emissions from Eastern China
sources significantly influence pollution in Korea during haze events. The Jeju site was less
influenced by foreign pollution. We explored the relationships between PM2.5 and PM10,
meteorological parameters, and other pollutants. PM2.5 and PM10 concentrations showed
negative correlations with temperature, QLML, and precipitation in all seasons. During
summer, PM2.5 and PM10 had strong negative correlations with temperature, QLML, and
precipitation. Temperature and QLML tend to be high during summer, and these warm
and humid conditions were conducive to strong convection and precipitation. Under heavy
precipitation, the wet scavenging effect reduced PM concentrations. During the summer
and spring, PM2.5 and PM10 were inversely related to WS. During these seasons, W was
high, and U was low, promoting vertical pollutant dispersion. Conversely, horizontal winds
predominated during autumn and winter and horizontal dispersion was the primary driver
modulating PM concentrations. PM2.5 and PM10 were positively correlated with pressure
during all seasons except winter. PM is transported upwards by low pressure and high
W, whereas PM is accumulated by high pressure and low W. PM was positively correlated
with ground heating during all seasons, except autumn, which was attributed to varying
seasonal soil moisture content. PM concentrations were positively correlated with CO, BC,
SO2, and SO4 in all seasons. A GAM analysis was conducted to identify PM concentration
dependencies on meteorological parameters and other pollutants. Furthermore, the MLR
model demonstrated the impact of meteorological parameters on PM concentrations and
other pollutants at each site throughout the seasons. Spearman’s rank correlation, GAM,
and MLR were used to investigate the relationship between meteorological factors and PM
concentrations, as well as the dominant influencing factors and their effect on pollution
levels in each region of Korea during different seasons.

The primary focus of this study was the relationship between meteorological factors
and PM concentrations during different months and seasons. However, in the future,
we will conduct a separate study to examine the contributions of foreign/transboundary
and local air pollution in Korea for various meteorological conditions/events using WRF,
CMAQ, and other chemical models.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14194849/s1, Figure S1: Diurnal distribution of aerosol optical
depth (AOD) during the severe haze events in (a) January and (b) February–March in 2019. The
vertical dotted line in (b) indicates the separation between the two months; Figure S2: (a) Surface
temperature and relative humidity profiles and (b) surface pressure and wind profiles on 13–14
January 2019; the dashed lines indicate isotherms. (c) Surface temperature and relative humidity
profiles and (d) surface pressure and wind profiles on 4–5 March 2019. The dashed lines indicate
isotherms, the white spaces represent the absence of data, and the solid-colored lines represent
isobars; Figure S3: Diurnal distribution of the particulate matter (PM) concentration from January to
March 2020. (a) PM2.5 concentrations and (b) PM10 concentrations; Figure S4: Trajectory frequencies
(percentage of airmass transport) over the four sites during 20 February–10 March 2020; Figure S5:
Trajectory frequencies (percentage of airmass transport) over the four sites during 1–15 January 2020;
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Figure S6: Spatial distribution of seasonal mean wind speed (m s−1) and direction over East Asia
(2015–2020). (a) spring, (b) summer, (c) autumn, and (d) winter; Figure S7: Mean annual distribution
of the meteorological parameters impacting air pollution in South Korea (2015–2020). The straight
red line indicates the linear fit of the values. (a) temperature, (b) specific humidity, (c) precipitation,
(d) wind speed, (e) pressure, (f) ground heating, (g) horizontal (zonal) wind vector, (h) vertical wind
vector, (i) sensible heat flux, and (j) latent heat flux; Figure S8: MLR model results between CO and
the meteorological parameters. The colors represent the type of the meteorological parameter, and the
size indicates the magnitude of the influencing parameter. R2 represents the fitting effect of the model,
the F-test determines the significance of the model, and the t-test determines the significance of the
independent variables; Figure S9: MLR model results between BC and the meteorological parameters.
The colors represent the type of the meteorological parameter, and the size indicates the magnitude
of the influencing parameter. R2 represents the fitting effect of the model, the F-test determines the
significance of the model, and the t-test determines the significance of the independent variables;
Figure S10: MLR model results between SO4 and the meteorological parameters. The colors represent
the type of the meteorological parameter, and the size indicates the magnitude of the influencing
parameter. R2 represents the fitting effect of the model, the F-test determines the significance of the
model, and the t-test determines the significance of the independent variables; Figure S11: MLR
model results between SO2 and the meteorological parameters. The colors represent the type of
the meteorological parameter and size indicates the magnitude of the influencing parameter. R2

represents the fitting effect of the model, the F-test determines the significance of the model, and
the t-test determines the significance of the independent variables; Figure S12: MLR model results
between O3 and the meteorological parameters. The colors represent the type of the meteorological
parameter, and the size indicates the magnitude of the influencing parameter. R2 represents the fitting
effect of the model, the F-test determines the significance of the model, and the t-test determines the
significance of the independent variables.
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