Integrated Assessment Modelling of Future Air Quality in the UK to 2050 and Synergies with Net-Zero Strategies
Abstract
:1. Introduction
- Annual mean concentration target (AMCT), which sets a maximum concentration to be reached by a specified future year;
- Population exposure reduction target (PERT), which will reduce concentrations and health impacts for everyone.
2. UKIAM
2.1. Baseline Calculations
2.2. Model Validation
3. Scenarios
- The target baseline reflects existing interventions and policies with a natural technology turnover; it assumes NAEI2018 projections with some adjustments reflecting more recent findings.
- The medium scenario reflects the implementation of proven technology with limited behavioural change and assumes typical timescales and uptake rates.
- The high scenario reflects technology considered likely to be implementable in the future, combined with increased behavioural change, more rapid implementation timescales, and better uptake rates.
- The speculative scenario reflects all feasible measures, including emerging technology with significant behavioural change, optimistic uptake rates, and implementation timescales.
4. Sectoral Studies
5. Results & Discussion
5.1. Target Setting
5.1.1. Annual Mean Concentration Target (AMCT)
5.1.2. Population Exposure Reduction Target (PERT)
5.2. Monetised Benefits
5.3. Social Impacts & Deprivation
6. Uncertainties
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary
ACTM | Atmospheric Chemical Transport Model (e.g., EMEP4UK) |
AQEG | Air Quality Expert Group, https://uk-air.defra.gov.uk/research/aqeg/ (accessed on 1 February 2023) |
AURN | Automatic Urban and Rural Network of monitoring stations, https://uk-air.defra.gov.uk/networks/network-info?view=aurn (accessed on 1 February 2023) |
BRUTAL | Road Transport sub-model of the UKIAM [14] |
CLRTAP | UNECE Convention on Long-Range Transboundary Air Pollution; renamed as the Air Convention https://unece.org/environment-policy/air (accessed on 1 February 2023) |
CORINAIR | CORe INventory of AIR Emissions |
EMEP | (1) Cooperative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (1984, Geneva Protocol) http://www.emep.int/ (accessed on 1 February 2023) (2) Unified EMEP Eulerian model [8] |
EMEP4UK | EMEP4UK model [20,21,22,23,24,25,26,27,28] |
GAINS | Greenhouse gas and Air pollution INteractions and Synergies; a development of the RAINS model to address the inter-relationships with effects of greenhouse gases (GHG), https://gains.iiasa.ac.at/models/ (accessed on 1 February 2023) |
ICE | Internal Combustion Engine |
IIASA | International Institute of Applied Systems Analysis, https://iiasa.ac.at/ (accessed on 1 February 2023) |
IMO | International Maritime Organisation, https://www.imo.org/ (accessed on 1 February 2023) |
IMD | Index of Multiple Deprivation, https://www.gov.uk/government/statistics/english-indices-of-deprivation-2019 (accessed on 1 February 2023) |
NAEI | National Atmospheric Emissions Inventory (http://naei.beis.gov.uk (accessed on 1 February 2023)) |
NH3 | Ammonia |
NH4+ | Ammonium Aerosol, forming either ammonium nitrate (NO3NH4) or ammonium sulphate (SO4(NH4)2) |
NECA | Nitrogen Emission Control Area |
NO3− | Nitrate Aerosol (in this paper this always refers to the fine (<2.5 µm) NO3−) |
NOx | Nitrogen Oxides comprised mainly of NO (Nitric Oxide) and NO2 (Nitrogen Dioxide) |
PM2.5 | Particulate Matter < 2.5 µm diameter |
PWMC | Population-Weighted Mean Concentration, , where the population in cell (ij) is Pij and the concentration is Cij |
SIA | Secondary Inorganic Aerosol, formed by precursor emissions of NH3, SO2 and NOx (SIA = SO42− + NO3− + NH4+) |
SMT | Scenario Modelling Tool (https://smt.ricardo-aea.com/ (accessed on 1 February 2023)) |
SNAP | Selected Nomenclature for Air Pollutants (https://en.eustat.eus/documentos/elem_13173/definicion.html (accessed on 1 February 2023)) |
SOA | Secondary Organic Aerosol, influenced by both biogenic and anthropogenic emissions |
SO2 | Sulphur Dioxide |
SO42− | Sulphate Aerosol |
UKIAM | UK Integrated Assessment Model, developed by Imperial College London [1,2] |
ULEZ | Ultra-Low Emission Zone (https://tfl.gov.uk/modes/driving/ultra-low-emission-zone (accessed on 1 February 2023)) |
VOC | Volatile Organic Compounds |
References
- ApSimon, H.; Oxley, T.; Woodward, H.; Mehlig, D.; Holland, M. The UK Integrated Assessment Model for source apportionment and air pollution policy applications to PM2.5. Environ. Int. 2021, 153, 106515. [Google Scholar] [CrossRef] [PubMed]
- Oxley, T.; Dore, A.; ApSimon, H.; Hall, J.; Kryza, M. Modelling future impacts of air pollution using the multi-scale UK Integrated Assessment Model (UKIAM). Environ. Int. 2013, 61, 17–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ApSimon, H.; Oxley, T.; Woodward, H.; Mehlig, D.; Holland, M.; Vieno, M.; Reis, S. Analysis of Abatement Options to Reduce PM2.5 Concentrations, Report to Defra, Contract ECM-53210: Support for National Air Pollution Control Strategies. Available online: https://uk-air.defra.gov.uk/library/reports?report_id=1105 (accessed on 9 February 2023).
- Singles, R.; Sutton, M.; Weston, K. A multi-layer model to describe the atmospheric transport and deposition of ammonia in Great Britain. Atmos. Environ. 1998, 32, 393–399. [Google Scholar] [CrossRef]
- Fournier, N.; Dore, A.J.; Vieno, M.; Weston, K.J.; Dragosits, U.; Sutton, M.A. Modelling the deposition of atmospheric oxidised nitrogen and sulphur to the United Kingdom using a multi-layer long-range transport model. Atmos. Environ. 2004, 38, 683–694. [Google Scholar] [CrossRef]
- Dore, A.J.; Vieno, M.; Tang, Y.S.; Dragosits, U.; Dosio, A.; Weston, K.J.; Sutton, M.A. Modelling the atmospheric transport and deposition of sulphur and nitrogen over the United Kingdom and assessment of the influence of SO2 emissions from international shipping. Atmos. Environ. 2007, 41, 2355–2367. [Google Scholar] [CrossRef] [Green Version]
- Woodward, H.; Oxley, T.; Rowe, E.C.; Dore, A.J.; ApSimon, H. An exceedance score for the assessment of the impact of nitrogen deposition on habitats in the UK. Environ. Model. Softw. 2022, 150, 105355. [Google Scholar] [CrossRef]
- Simpson, D.; Benedictow, A.; Berge, H.; Bergström, R.; Emberson, L.D.; Fagerli, H.; Flechard, C.R.; Hayman, G.D.; Gauss, M.; Jonson, J.E.; et al. The EMEP MSC-W chemical transport model—Technical description. Atmos. Chem. Phys. 2012, 12, 7825–7865. [Google Scholar] [CrossRef] [Green Version]
- Oxley, T.; Vieno, M.; Woodward, H.; ApSimon, H.; Mehlig, D.; Beck, R.; Nemitz, E.; Reis, S. Reduced-form and complex ACTM modelling for air quality policy development: A model inter-comparison. Environ. Int. 2023, 171, 107676. [Google Scholar] [CrossRef]
- Tsagatakis, I.; Richardson, J.; Evangelides, C.; Pizzolato, M.; Pearson, B.; Passant, N.; Pommier, M.; Otto, A. UK Spatial Emissions Methodology: A Report of the National Atmospheric Emission Inventory 2019. 2021. Available online: https://naei.beis.gov.uk/reports/reports?report_id=1024 (accessed on 1 February 2023).
- Brunekreef, B.; Strak, M.; Chen, J.; Andersen, Z.J.; Atkinson, R.; Bauwelinck, M.; Bellander, T.; Boutron, M.-C.; Brandt, J.; Carey, I.; et al. Mortality and Morbidity Effects of Long-Term Exposure to Low-Level PM2.5, BC, NO2, and O3: An Analysis of European Cohorts in the ELAPSE Project; Health Effects Institute: Boston, MA, USA, 2021; Volume 208, Available online: https://www.healtheffects.org/system/files/brunekreef-rr-208-report_0.pdf (accessed on 1 February 2023).
- Amann, M.; Borken-Kleefeld1, J.; Cofala, J.; Heyes, C.; Hoglund-Isaksson, L.; Kiesewetter, G.; Klimont, Z.; Rafaj, P.; Schöpp, W.; Wagner, F.; et al. Support to the Development of the Second Clean Air Outlook, Specific Contract 6 under Framework Contract ENV.C.3/FRA/2017/0012; Final Report; IIASA: Laxenburg, Austria, 2020; Available online: https://ec.europa.eu/environment/air/pdf/CAO2-MAIN-final-21Dec20.pdf (accessed on 1 February 2023).
- ApSimon, H.; Oxley, T.; Woodward, H. The Contribution of Shipping Emissions to Pollutant Concentrations and Nitrogen Deposition across the UK; Report to Defra (Contract ECN-53210); Imperial College London: London, UK, 2021. Available online: https://uk-air.defra.gov.uk/library/reports?report_id=1028 (accessed on 1 February 2023).
- Oxley, T.; Valiantis, M.; Elshkaki, A.; ApSimon, H. Background, Road and Urban Transport modelling of Air quality Limit values (the BRUTAL model). Environ. Model. Softw. 2009, 24, 1036–1050. [Google Scholar] [CrossRef]
- Mehlig, D.; Woodward, H.; Oxley, T.; Holland, M.; ApSimon, H. Electrification of Road Transport and the Impacts on Air Quality and Health in the UK. Atmosphere 2021, 12, 1491. [Google Scholar] [CrossRef]
- WHO (World Health Organisation). WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; Available online: https://apps.who.int/iris/handle/10665/345329 (accessed on 1 February 2023).
- Redington, A.; Derwent, R. Modelling secondary organic aerosol in the United Kingdom. Atmos. Environ. 2013, 64, 349–357. [Google Scholar] [CrossRef]
- ApSimon, H.; Oxley, T.; Woodward, H.; Mehlig, D. Uncertainties in Modelling the Contributions from Primary Particulate Sources to PM2.5 Concentrations; Report by Imperial College London under Defra Contract ECM-53210: Support for National Air Pollution Control Strategies (SNAPCS) 2018–2020; Imperial College London: London, UK, 2020. [Google Scholar]
- Shah, R.U.; Padilla, L.E.; Peters, D.R.; Dupuy-Todd, M.; Fonseca, E.R.; Ma, G.Q.; Popoola, O.A.M.; Jones, R.L.; Mills, J.; Martin, N.A.; et al. Identifying Patterns and Sources of Fine and Ultrafine Particulate Matter in London Using Mobile Measurements of Lung-Deposited Surface Area. Environ. Sci. Technol. 2022, 57, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Vieno, M.; Dore, A.; Wind, P.; Marco, C.; Nemitz, E.; Phillips, G.; Tarrasón, L.; Sutton, M. Application of the EMEP Unified Model to the UK with a Horizontal Resolution of 5 × 5 km2. In Atmospheric Ammonia; Sutton, M., Reis, S., Baker, S.H., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 367–372. [Google Scholar]
- Vieno, M.; Dore, A.J.; Stevenson, D.S.; Doherty, R.; Heal, M.R.; Reis, S.; Hallsworth, S.; Tarrason, L.; Wind, P.; Fowler, D.; et al. Modelling surface ozone during the 2003 heat-wave in the UK. Atmos. Chem. Phys. 2010, 10, 7963–7978. [Google Scholar] [CrossRef] [Green Version]
- Vieno, M.; Heal, M.R.; Hallsworth, S.; Famulari, D.; Doherty, R.M.; Dore, A.J.; Tang, Y.S.; Braban, C.F.; Leaver, D.; Sutton, M.A.; et al. The role of long-range transport and domestic emissions in determining atmospheric secondary inorganic particle concentrations across the UK. Atmos. Chem. Phys. 2014, 14, 8435–8447. [Google Scholar] [CrossRef] [Green Version]
- Ots, R.; Young, D.E.; Vieno, M.; Xu, L.; Dunmore, R.E.; Allan, J.D.; Coe, H.; Williams, L.R.; Herndon, S.C.; Ng, N.L.; et al. Simulating secondary organic aerosol from missing diesel-related intermediate-volatility organic compound emissions during the Clean Air for London (ClearfLo) campaign. Atmos. Chem. Phys. 2016, 16, 6453–6473. [Google Scholar] [CrossRef] [Green Version]
- Vieno, M.; Heal, M.R.; Twigg, M.M.; MacKenzie, I.A.; Braban, C.F.; Lingard, J.J.N.; Ritchie, S.; Beck, R.C.; Móring, A.; Ots, R.; et al. The UK particulate matter air pollution episode of March–April 2014: More than Saharan dust. Environ. Res. Lett. 2016, 11, 044004. [Google Scholar] [CrossRef]
- Vieno, M.; Heal, M.R.; Williams, M.L.; Carnell, E.J.; Nemitz, E.; Stedman, J.R.; Reis, S. The sensitivities of emissions reductions for the mitigation of UK PM2.5. Atmos. Chem. Phys. 2016, 16, 265–276. [Google Scholar] [CrossRef] [Green Version]
- Ots, R.; Heal, M.R.; Young, D.E.; Williams, L.R.; Allan, J.D.; Nemitz, E.; Di Marco, C.; Detournay, A.; Xu, L.; Ng, N.L.; et al. Modelling carbonaceous aerosol from residential solid fuel burning with different assumptions for emissions. Atmos. Chem. Phys. 2018, 18, 4497–4518. [Google Scholar] [CrossRef] [Green Version]
- Aleksankina, K.; Reis, S.; Vieno, M.; Heal, M.R. Advanced methods for uncertainty assessment and global sensitivity analysis of an Eulerian atmospheric chemistry transport model. Atmos. Chem. Phys. 2019, 19, 2881–2898. [Google Scholar] [CrossRef] [Green Version]
- Carnell, E.; Vieno, M.; Vardoulakis, S.; Beck, R.; Heaviside, C.; Tomlinson, S.; Dragosits, U.; Heal, M.R.; Reis, S. Modelling public health improvements as a result of air pollution control policies in the UK over four decades-1970 to 2010. Environ. Res. Lett. 2019, 14, 074001. [Google Scholar] [CrossRef]
- Warren, B.; Osund-Ireland, M.; Escoffier, C.; Peirce, M.; Calas, E.; Keyte, I.; Croad, B. Study to Identify Potential Measures to Reduce Future PM2.5 Concentrations to Inform PM2.5 Target Development; Report to Defra; Wood Group UK Limited: London, UK, 2022. Available online: https://uk-air.defra.gov.uk/library/reports?report_id=1106 (accessed on 9 February 2023).
- DfT (Department for Transport). Decarbonising Transport: A Better, Greener Britain. 2021. Available online: https://www.gov.uk/government/publications/transport-decarbonisation-plan (accessed on 1 February 2023).
- CCC (Committee for Climate Change). The Sixth Carbon Budget: The UK’s Past to Net Zero, Committee for Climate Change. 2020. Available online: http://www.theccc.org.uk/publications (accessed on 1 February 2023).
- Harrison, R.M.; Allan, J.; Carruthers, D.; Heal, M.R.; Lewis, A.C.; Marner, B.; Murrells, T.; Williams, A. Non-exhaust vehicle emissions of particulate matter and VOC from road traffic: A review. Atmos. Environ. 2021, 262, 118592. [Google Scholar] [CrossRef]
- Defra (Department for Environment, Food and Rural Affairs). Emissions of Air Pollutants in the UK—Particulate Matter (PM10 and PM2.5). Available online: https://www.gov.uk/government/statistics/emissions-of-air-pollutants (accessed on 1 February 2023).
- AQEG (Air Quality Expert Group). The Potential Air Quality Impacts of Biomass Combustion. 2017. Available online: https://uk-air.defra.gov.uk/research/aqeg/publications (accessed on 1 February 2023).
- Oxley, T.; ApSimon, H. PM2.5 from Domestic Combustion and the Contribution from Wood-Burning; Report to Defra February 2018, SNAPCS Contract AQ0974; Imperial College London: London, UK, 2018. [Google Scholar]
- EMEP. How Should Condensables Be Included in PM Emission Inventories Reported to EMEP/CLRTAP? Report of the Expert Workshop on Condensable Organics, MSC-W, Gothenburg, 17–19 March 2020; Technical Report MSC-W/4/2020; EMEP: Oslo, Norway, 2020; Available online: https://emep.int/publ/reports/2020/emep_mscw_technical_report_4_2020.pdf (accessed on 1 February 2023).
- DUKES (Digest of UK Energy Statistics). 2021. Available online: https://www.gov.uk/government/statistics/digest-of-uk-energy-statistics-dukes-2021 (accessed on 1 February 2023).
- Dajnak, D.; Kitwiroon, N.; Assareh, N.; Stewart, G.; Hicks, W.; Evangelopoulos, D.; Wood, D.; Walton, H.; Beevers, S. Pathway to WHO: Achieving Clean Air in the UK—Modelling Air Quality Costs and Benefits; Imperial College London: London, UK, 2022; Available online: https://www.imperial.ac.uk/school-public-health/environmental-research-group/research/modelling/pathway-to-who/ (accessed on 1 February 2023).
- Chalabi, Z.; Milojevic, A.; Doherty, R.M.; Stevenson, D.S.; MacKenzie, I.A.; Milner, J.; Vieno, M.; Williams, M.; Wilkinson, P. Applying air pollution modelling within a multi-criteria decision analysis framework to evaluate UK air quality policies. Atmos. Environ. 2017, 167, 466–475. [Google Scholar] [CrossRef]
- Brook, R.; King, K. Updated Analysis of Air Pollution Exposure in London, Report to Greater London Authority; Report reference 976; Aether Ltd.: Oxford, UK, 2017. [Google Scholar]
- Milojevic, A.; Niedzwiedz, C.L.; Pearce, J.; Milner, J.; MacKenzie, I.A.; Doherty, R.M.; Wilkinson, P. Socioeconomic and urban-rural differentials in exposure to air pollution and mortality burden in England. Environ. Health 2017, 16, 104. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, L.; Taylor, J.; Zhou, K.; Shrubsole, C.; Symonds, P.; Davies, M.; Dimitroulopoulou, S. Systemic inequalities in indoor ai pollution exposure in London, UK. Build. Cities 2021, 2, 425–448. [Google Scholar] [CrossRef] [PubMed]
- NETCEN. Air Quality and Social Deprivation in the UK: An Environmental Inequalities Analysis. Final Report to Department of Environment Food and Rural Affairs (Defra); Report AEAT/ENV/R/2170; NETCEN: Oxford, UK, 2006. Available online: https://uk-air.defra.gov.uk/assets/documents/reports/cat09/0701110944_AQinequalitiesFNL_AEAT_0506.pdf (accessed on 1 February 2023).
- DCLG (Department of Communities and Local Government). English Housing Survey, Housing Stock Report 2008. 2008. Available online: https://www.gov.uk/government/statistics/english-housing-survey-2008-housing-stock-report (accessed on 1 February 2023).
- Barnes, J.H.; Analitis, A.; Samoli, E.; Fuller, G.W.; Green, D.C.; Mudway, I.S.; Anderson, H.R.; Kelly, F. Emissions vs exposure: Increasing injustice from road traffic-related air pollution in the United Kingdom. Transp. Res. Part D Transp. Environ. 2019, 73, 56–66. [Google Scholar] [CrossRef]
National | Urban | Rural | London | England (excl. London) | Scotland | Wales | Northern Ireland | |
---|---|---|---|---|---|---|---|---|
UK Primary PM2.5 | 2.21 | 2.51 | 1.18 | 3.68 | 2.38 | 1.13 | 1.53 | 1.76 |
UK SIA | 2.08 | 2.12 | 1.93 | 2.57 | 2.23 | 1.04 | 1.79 | 1.09 |
Europe (pPM2.5 & SIA) | 1.22 | 1.22 | 1.20 | 1.62 | 1.27 | 0.71 | 1.22 | 1.24 |
Shipping | 0.70 | 0.71 | 0.69 | 0.88 | 0.74 | 0.39 | 0.77 | 0.48 |
Natural/Other | 2.95 | 2.99 | 2.84 | 3.58 | 3.09 | 2.18 | 2.63 | 1.87 |
TOTAL | 9.16 | 9.54 | 7.84 | 12.34 | 9.71 | 5.45 | 7.93 | 6.44 |
Medium Scenario | High Scenario | |
---|---|---|
Total Monetised Benefits | GBP 108,324 | GBP 135,009 |
Total Costs | GBP 17,915 | GBP 27,074 |
Net Present Value | GBP 90,410 | GBP 107,935 |
Benefit–Cost Ratio | 6.0 | 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
ApSimon, H.; Oxley, T.; Woodward, H.; Mehlig, D.; Holland, M.; Reeves, S. Integrated Assessment Modelling of Future Air Quality in the UK to 2050 and Synergies with Net-Zero Strategies. Atmosphere 2023, 14, 525. https://doi.org/10.3390/atmos14030525
ApSimon H, Oxley T, Woodward H, Mehlig D, Holland M, Reeves S. Integrated Assessment Modelling of Future Air Quality in the UK to 2050 and Synergies with Net-Zero Strategies. Atmosphere. 2023; 14(3):525. https://doi.org/10.3390/atmos14030525
Chicago/Turabian StyleApSimon, Helen, Tim Oxley, Huw Woodward, Daniel Mehlig, Mike Holland, and Sarah Reeves. 2023. "Integrated Assessment Modelling of Future Air Quality in the UK to 2050 and Synergies with Net-Zero Strategies" Atmosphere 14, no. 3: 525. https://doi.org/10.3390/atmos14030525
APA StyleApSimon, H., Oxley, T., Woodward, H., Mehlig, D., Holland, M., & Reeves, S. (2023). Integrated Assessment Modelling of Future Air Quality in the UK to 2050 and Synergies with Net-Zero Strategies. Atmosphere, 14(3), 525. https://doi.org/10.3390/atmos14030525