Urban Precipitation Scavenging and Meteorological Influences on BTEX Concentrations: Implications for Environmental Quality
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Meteorological Data
2.4. Analytical Methods
2.5. Data Processing and Statistical Analysis
2.6. Health Risk Assessment
3. Results and Discussion
3.1. BTEX in Precipitation
3.2. Meteorological Impacts on BTEX Levels
3.3. Modeling Air Mass Transport Using the HYSPLIT Model
3.4. Future Perspectives and Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BTEX | Benzene, toluene, ethylbenzene, xylene |
GC-MS | Gas chromatography-mass spectrometry |
VOC | Volatile organic compound |
WHO | World Health Organization |
LOQ | Limit of quantitation |
LOD | Limit of detection |
RQ | Risk quotient |
PNEC | Predicted no-effect concentration |
PEC | Predicted environmental concentration |
stdev | Standard deviation |
References
- Zhang, Z.; Teng, Y.; Guo, G.; Li, F.; Zhang, C. Risk assessment of BTEX in the groundwater of Songyuan region of Songhua River in China. Water Sci. Technol. 2016, 16, 135–143. [Google Scholar] [CrossRef]
- Dantas, G.; Gorne, I.; Da Silva, C.; Arbilla, G. Benzene, Toluene, Ethylbenzene and Xylene (BTEX) Concentrations in Urban Areas Impacted by Chemical and Petrochemical Industrial Emissions. Bull. Environ. Contam. Toxicol. 2022, 108, 204–211. [Google Scholar] [CrossRef]
- Bian, Y.; Zhang, Y.; Zhou, Y.; Feng, X. BTEX in the Environment: An Update on Sources, Fate, Distribution, Pretreatment, Analysis, and Removal Techniques. Chem. Eng. J. 2022, 435, 134825. [Google Scholar] [CrossRef]
- Afrasiabi, S.; Fattahi Darghlou, M.; Mohammadi, Y.; Leili, M. Effects of Short and Long-Term Exposure to Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) in Indoor Environment Air on Human Health: A Systematic Review and Meta-Analysis. J. Air Pollut. Health 2023, 8, 1–15. [Google Scholar] [CrossRef]
- WHO. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 41: Benzene; International Agency for Research on Cancer: Geneva, Switzerland, 1986. [Google Scholar]
- WHO. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 59: Ethylbenzene; International Agency for Research on Cancer: Geneva, Switzerland, 1993. [Google Scholar]
- Sowmya, H.N.; Dinamani, M.; Shivashankara, G.P.; Ramaraju, H.; Surendra, B.; Shanbhag, V.V.; Prajwal, R. A Novel Diurnal and Seasonal Variation Analysis of BTEX in Bengaluru Urban Area. Res. Cold Arid Reg. 2024, 16, 14–19. [Google Scholar] [CrossRef]
- Raja, S.; Valsaraj, K.T. Adsorption and Transport of Gas-Phase Naphthalene on Micron-Size Fog Droplets in Air. Environ. Sci. Technol. 2004, 35, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, X.; Dufresne, M.; Wang, T.; Wu, L.; Lara, R.; Seco, R.; Monge, M.; Yáñez-Serrano, A.M.; Gohy, M.; et al. Measurement Report: Exploring the Variations in Ambient BTEX in Urban Europe and Their Environmental Health Implications. Atmos. Chem. Phys. 2025, 25, 625–638. [Google Scholar] [CrossRef]
- Guiying, R.; Vejerano, E.P. Partitioning of Volatile Organic Compounds to Aerosols: A Review. Chemosphere 2018, 212, 282–296. [Google Scholar] [CrossRef] [PubMed]
- Bąk, J.; Bielski, A.; Meland, S.; Pala, K.; Wassilkowska, A. An Analysis of BTEX Occurrence in Stored Rainwater and Rainwater Runoff in Urban Environment. Sustainability 2025, 17, 1607. [Google Scholar] [CrossRef]
- Šoštarić, A.; Stanišić Stojić, S.; Vuković, G.; Mijić, Z.; Stojić, A.; Gržetić, I. Rainwater capacities for BTEX scavenging from ambient air. Atmos. Environ. 2017, 168, 46–54. [Google Scholar] [CrossRef]
- Mullaugh, K.; Hamilton, J.; Avery, G.; Felix, J.D.; Mead, R.N.; Willey, J.D.; Kieber, R.J. Temporal and Spatial Variability of Trace Volatile Organic Compounds in Rainwater. Chemosphere 2015, 134, 203–209. [Google Scholar] [CrossRef]
- Okochi, H.; Sakamoto, Y.; Igawa, M. The enhanced dissolution of some chlorinated hydrocarbons and monocyclic aromatic hydrocarbons in rainwater collected in Yokohama, Japan. Atmos. Environ. 2004, 38, 4403–4414. [Google Scholar] [CrossRef]
- McNeill, V.F.; Grannas, A.M.; Abbatt, J.P.D.; Ammann, M.; Ariya, P.; Bartels-Rausch, T.; Domine, F.; Donaldson, D.J.; Guzman, M.I.; Heger, D.; et al. Organics in Environmental Ices: Sources, Chemistry, and Impacts. Atmos. Chem. Phys. 2012, 12, 9653–9678. [Google Scholar] [CrossRef]
- Gworek, B.; Baczewska-Dąbrowska, A.H.; Kalinowski, R.; Górska, E.B.; Rekosz-Burlaga, H.; Gozdowski, D.; Olejniczak, I.; Graniewska, M.; Dmuchowski, W.; Achal, V. Ecological Risk Assessment for Land Contaminated by Petrochemical Industry. PLoS ONE 2018, 13, e0204852. [Google Scholar] [CrossRef]
- Hu, S.; Xiao, Y.; Zhang, A.; Lin, Z.; Li, F.; Zhang, B.; Wang, G.; Qu, F.; Yao, D.; Zhang, H. Ultrasensitive xylene sensor based on RuO2-modified BiVO4 nanosheets. Sens. Actuators B 2025, 422, 136623. [Google Scholar] [CrossRef]
- Victoria, F.D.; Adebayo, A.O. Monitoring of Soil and Groundwater Contamination Following a Pipeline Explosion and Petroleum Product Spillage in Ijegun, Lagos, Nigeria. Environ. Monit. Assess. 2012, 185, 4159–4170. [Google Scholar] [CrossRef]
- Kao, C.M.; Huang, W.; Chang, L.; Chen, T.; Chien, H.; Hou, F. Application of Monitored Natural Attenuation to Remediate a Petroleum-Hydrocarbon Spill Site. Water Sci. Technol. 2006, 53, 321–328. [Google Scholar] [CrossRef]
- Naveen, K.V.; Saravanakumar, K.; Zhang, X.; Sathiyaseelan, A.; Wang, M.-H. Impact of Environmental Phthalates on Human Health and Their Bioremediation Strategies Using Fungal Cell Factory. Environ. Res. 2022, 214, 113781. [Google Scholar] [CrossRef]
- Sun, K.; Song, Y.; He, F.; Jing, M.; Tang, J.; Liu, R. A Review of Human and Animal Exposure to Polycyclic Aromatic Hydrocarbons. Sci. Total Environ. 2021, 773, 145403. [Google Scholar] [CrossRef]
- Shao, R.; Wang, G.; Chai, J.; Lin, J.; Zhao, G.; Zeng, Z.; Wang, G. Multifunctional Janus-Structured Polytetrafluoroethylene-Carbon Nanotube-Fe3O4/MXene Membranes for Enhanced EMI Shielding and Thermal Management. Nano-Micro Lett. 2025, 17, 136. [Google Scholar] [CrossRef]
- Xinguo, M.; Shuo, Z.; Qiang, S.; Cheng, H.; Leyong, W. Macrocyclic host molecules: Rising as a promising supramolecular material. Chin. Chem. Lett. 2025, 36, 110950. [Google Scholar] [CrossRef]
- Fernandes, A.N.; Gouveia, C.D.; Grassi, M.T.; Crespo, J.d.S.; Giovanela, M. Determination of Monoaromatic Hydrocarbons (BTEX) in Surface Waters from a Brazilian Subtropical Hydrographic Basin. Bull. Environ. Contam. Toxicol. 2014, 92, 455–459. [Google Scholar] [CrossRef]
- Grynkiewicz, M.; Polkowska, Ż.; Zygmunt, B.; Namieśnik, J. Atmospheric Precipitation Sampling for Analysis. Pol. J. Environ. Stud. 2003, 12, 133–140. [Google Scholar]
- BioSense Institute. Agrosense Digital Platform; BioSense Institute: Novi Sad, Serbia, 2025; Available online: https://agrosense.rs (accessed on 4 June 2025).
- Otero, P.; Saha, S.K.; Moane, S.; Barron, J.; Clancy, G.; Murray, P. Improved Method for Rapid Detection of Phthalates in Bottled Water by Gas Chromatography-Mass Spectrometry. J. Chromatogr. A 2015, 1386, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Vasilief, I. QtiPlot, Version 0.9.8.9; IONDEV SRL: Bucharest, Romania, 2010; Available online: https://www.qtiplot.com/ (accessed on 5 June 2025).
- Microsoft Corporation. Microsoft Excel 2010; Microsoft Corporation: Redmond, WA, USA, 2010. [Google Scholar]
- Python Software Foundation. Python (Version 3.13.3) [Programming Language]. 2025. Available online: https://www.python.org/ (accessed on 3 June 2025).
- QGIS Development Team. QGIS Geographic Information System, Version 3.40.4; Open Source Geospatial Foundation: Bratislava, Slovakia, 2024; Available online: https://qgis.org (accessed on 5 June 2025).
- Backhaus, T.; Altenburger, R.; Arrhenius, Å.; Blanck, H.; Faust, M.; Finizio, A.; Gramatica, P.; Grote, M.; Junghans, M.; Meyer, W.; et al. The BEAM-Project: Prediction and Assessment of Mixture Toxicities in the Aquatic Environment. Cont. Shelf Res. 2003, 23, 1757–1796. [Google Scholar] [CrossRef]
- EC. Technical Guidance Document in Support of Risk Assessment for Substances; European Commission: Luxembourg, 2003; Available online: https://op.europa.eu/en/publication-detail/-/publication/212940b8-3e55-43f8-8448-ba258d0374bb (accessed on 5 June 2025).
- ECHA. Guidance on Information Requirements and Chemical Safety Assessment Chapter R.7b: Endpoint Specific Guidance; European Chemicals Agency: Helsinki, Finland, 2014. [Google Scholar]
- Hong, N.; Liu, A.; Zhu, P.; Zhao, X.; Guan, Y.; Yang, M.; Wang, H. Modelling Benzene Series Pollutants (BTEX) Build-Up Loads on Urban Roads and Their Human Health Risk: Implications for Stormwater Reuse Safety. Ecotoxicol. Environ. Saf. 2018, 164, 234–242. [Google Scholar] [CrossRef]
- Sander, R. Compilation of Henry’s Law Constants (Version 4.0) for Water as Solvent. Atmos. Chem. Phys. 2015, 15, 4399–4981. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Z.; Coulon, F.; Luo, G.; Wang, Q.; Gao, X.; Li, Z.; Song, X. Co-occurrence of PFASs, TPHs, and BTEX in Subsurface Soils: Impacts on Native Microbial Communities and Implications for Bioremediation. Environ. Res. 2024, 267, 120650. [Google Scholar] [CrossRef]
- Ravindra, K.; Sokhi, R.; Van Grieken, R. Atmospheric Polycyclic Aromatic Hydrocarbons: Source Attribution, Emission Factors, and Regulation. Atmos. Environ. 2009, 43, 2895–2921. [Google Scholar] [CrossRef]
- Khoshakhlagh, A.H.; Yazdanirad, S.; Ducatman, A. Climatic Conditions and Concentrations of BTEX Compounds in Atmospheric Media. Environ. Res. 2024, 251 Pt 1, 118553. [Google Scholar] [CrossRef]
- Barletta, B.; Meinardi, S.; Simpson, I.J.; Zou, S.; Rowland, F.S.; Blake, D.R. Ambient Mixing Ratios of Nonmethane Hydrocarbons (NMHCs) in Two Major Urban Areas of the Pearl River Delta (PRD), China. Atmos. Environ. 2008, 42, 4393–4408. [Google Scholar] [CrossRef]
- ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological Profile for Benzene; U.S. Department of Health and Human Services: Atlanta, GA, USA, 2007. [Google Scholar]
- Yadav, R.; Pandey, P. A Review on Volatile Organic Compounds (VOCs) as Environmental Pollutants: Fate and Distribution. Int. J. Plant Environ. 2018, 4, 14–26. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Milošević, D.; Savić, S.; Kresoja, M.; Lužanin, Z.; Šećerov, I.; Arsenović, D.; Dunjić, J.; Matzarakis, A. Analysis of Air Temperature Dynamics in the “Local Climate Zones” of Novi Sad (Serbia) Based on Long-Term Database from an Urban Meteorological Network. Int. J. Biometeorol. 2022, 66, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Dunjić, J.; Milošević, D.; Kojić, M.; Savić, S.; Lužanin, Z.; Šećerov, I.; Arsenović, D. Air Humidity Characteristics in Local Climate Zones of Novi Sad. ISPRS Int. J. Geo-Inf. 2021, 10, 810. [Google Scholar] [CrossRef]
- Irfeey, A.M.M.; Chau, H.-W.; Sumaiya, M.M.F.; Wai, C.Y.; Muttil, N.; Jamei, E. Sustainable Mitigation Strategies for Urban Heat Island Effects in Urban Areas. Sustainability 2023, 15, 10767. [Google Scholar] [CrossRef]
- Beaufort Wind Scale. National Weather Service, National Oceanic and Atmospheric Administration, Miami Weather Forecast Office, n.d. Web. Available online: https://www.weather.gov/mfl/beaufort (accessed on 10 July 2025).
- Jayaraj, S.; Sm, S. An assessment of atmospheric concentrations and spatiotemporal variation of BTEX and associated pollutants in India. J. Environ. Sci. 2024, 150, 230–245. [Google Scholar] [CrossRef]
- Khoshakhlagh, A.H.; Yazdanirad, S.; Sicard, P. Exposure to BTEX concentrations in different indoor microenvironments: Emphasis on different times of the year. Risk Anal. 2025, 1–16. [Google Scholar] [CrossRef]
- Cerón Bretón, J.G.; Bretón, R.M.C.; Morales, S.M.; Kahl, J.D.W.; Guarnaccia, C.; Severino, R.d.C.L.; Marrón, M.R.; Lara, E.R.; Fuentes, M.d.l.L.E.; Chi, M.P.U.; et al. Health Risk Assessment of the Levels of BTEX in Ambient Air of One Urban Site Located in Leon, Mexico during Two Climatic Seasons. Atmosphere 2020, 11, 165. [Google Scholar] [CrossRef]
- Kishore, N.; Koranga, B.S.; Srivastava, A.K. Effects of Human Activities from the Indo-Gangetic Plain on the Air Quality in the Foothills of the Himalayas. J. Graph. Era Univ. 2025, 13, 49–74. [Google Scholar] [CrossRef]
- Dai, T.; Liu, S.; Liu, J.; Jiang, N.; Chen, Q. Quantifying the uncertainty of the effects of varying wind conditions on outdoor airflow and pollutant dispersion. Sustain. Cities Soc. 2024, 113, 105698. [Google Scholar] [CrossRef]
- Rolph, G.; Stein, A.; Stunder, B. Real-time Environmental Applications and Display System: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, R.; Li, Y. Influence of Meteorological Factors on Air Pollutants in Coastal Cities. J. Environ. Sci. 2023, 127, 174–183. [Google Scholar] [CrossRef]
- Wang, L.; Wang, W.; Lyu, B.; Zhang, J.; Han, Y.; Bai, Y.; Guo, Z. The Identification and Analysis of Long-Range Aerosol Transport Pathways Using Lidar Data. Remote Sens. 2023, 15, 4537. [Google Scholar] [CrossRef]
- Brborić, M.; Nakomčić-Smaragdakis, B.; Šljivac, D.; Pavlović, S.; Bellos, E. Examining PAHs presence in Novi Sad’s ambient air: Sources and assessment. In Proceedings of the SimTerm Proceedings 2024—21st International Conference on Thermal Science and Engineering of Serbia, Niš, Serbia, 22–25 October 2024. [Google Scholar] [CrossRef]
- Oh, S.; Song, M.; Park, C.; Ko, D.; Kang, S.; Lee, T.; Park, J.; Bae, M. Long-range transport and airborne measurements of VOCs using proton-transfer-reaction mass spectrometry validated against GC-MS-canister data during the ASIA-AQ campaign. Environ. Res. Lett. 2025, 20, 3. [Google Scholar] [CrossRef]
- Kilian, M.; Grewe, V.; Jöckel, P.; Kerkweg, A.; Mertens, M.; Zahn, A.; Ziereis, H. Ozone source attribution in polluted European areas during summer 2017 as simulated with MECO(n). Atmos. Chem. Phys. 2024, 24, 13503–13523. [Google Scholar] [CrossRef]
- Eren, B.; Serat, S.; Arifoglu, Y.D.; Ozdemir, S. Seasonal Analysis and Machine Learning-Based Prediction of Air Pollutants in Relation to Meteorological Parameters: A Case Study from Sakarya, Türkiye. Appl. Sci. 2025, 15, 4551. [Google Scholar] [CrossRef]
- Zappi, A.; Brattich, E.; Biondi, M.; Tositti, L. How to use efficiently airborne criteria pollutants and radon-222 in source apportionment: A self-organizing maps approach. Chemosphere 2024, 367, 143619. [Google Scholar] [CrossRef]
- Nakhjirgan, S.; Mokhtari, M.; Charkari, M.; Vosoughi, M.; Tavakkoli, M.; Taghipour, H.; Mohammadi, M. Seasonal variation, health risk assessment and sources of BTEX in ambient air: A monitoring study in northwest Iran. Sci. Rep. 2024, 14, 12457. [Google Scholar] [CrossRef]
- Breton, M.; Delhomme, O.; Deguillaume, L.; Lahache, L.; Kfoury, A.; Wortham, H.; Gaimoz, C.; Amodeo, T. Assessment of BTEX levels and health risk in a Mediterranean area: Seasonal variation and influence of meteorological parameters. Atmosphere 2025, 16, 183. [Google Scholar] [CrossRef]
BTEX Compound | Endpoint | Trophic Level | TEL (µg/L) | AF | PNEC (µg/L) |
---|---|---|---|---|---|
Benzene | NOEC (20 d) | Crustaceans | 170 | 10 | 17 |
Toluene | LC50 (96 h) | Crustaceans | 490 | 1000 | 0.49 |
Ethylbenzene | NOEC (21 d) | Crustaceans | 1000 | 10 | 100 |
p-m-Xylene | LC50 (96 h) | Fish | 1200 | 1000 | 1.2 |
o-Xylene | LC50 (96 h) | Fish | 1200 | 1000 | 1.2 |
Anayte | Mean, µg/L | Stdev, µg/L | RQ, n.u. | Mean, µg/L | Stdev, µg/L | RQ, n.u. | Stat Test |
---|---|---|---|---|---|---|---|
05/09–22/11 | 28/11–25/12 | ||||||
Benzene | 0.45 | 0.004 | 0.03 | 0.08 | 0.004 | 0.005 | p < 0.01 |
Ethylbenzene | 3.45 | 0.08 | 0.03 | 0.03 | 0.005 | 0.0003 | p < 0.01 |
p-Xylene | 4.09 | 0.10 | 3.41 | 0.02 | 0.005 | 0.02 | p < 0.01 |
o-Xylene | 2.31 | 0.10 | 1.93 | 0.04 | 0.01 | 0.03 | p < 0.01 |
28/11–29/11 | |||||||
Toluene | 1.32 | 0.03 | 2.70 | 5.34 | ---- | 10.89 | Z = 6.3 |
09/12–25/12 | |||||||
1.12 | 0.19 | 2.28 | p = 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalkan, K.; Efremov, V.; Milošević, D.; Vukosavljev, M.; Novakov, N.; Habschied, K.; Mastanjević, K.; Kartalović, B. Urban Precipitation Scavenging and Meteorological Influences on BTEX Concentrations: Implications for Environmental Quality. Chemosensors 2025, 13, 274. https://doi.org/10.3390/chemosensors13080274
Kalkan K, Efremov V, Milošević D, Vukosavljev M, Novakov N, Habschied K, Mastanjević K, Kartalović B. Urban Precipitation Scavenging and Meteorological Influences on BTEX Concentrations: Implications for Environmental Quality. Chemosensors. 2025; 13(8):274. https://doi.org/10.3390/chemosensors13080274
Chicago/Turabian StyleKalkan, Kristina, Vitaly Efremov, Dragan Milošević, Mirjana Vukosavljev, Nikolina Novakov, Kristina Habschied, Kresimir Mastanjević, and Brankica Kartalović. 2025. "Urban Precipitation Scavenging and Meteorological Influences on BTEX Concentrations: Implications for Environmental Quality" Chemosensors 13, no. 8: 274. https://doi.org/10.3390/chemosensors13080274
APA StyleKalkan, K., Efremov, V., Milošević, D., Vukosavljev, M., Novakov, N., Habschied, K., Mastanjević, K., & Kartalović, B. (2025). Urban Precipitation Scavenging and Meteorological Influences on BTEX Concentrations: Implications for Environmental Quality. Chemosensors, 13(8), 274. https://doi.org/10.3390/chemosensors13080274