Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (207)

Search Parameters:
Keywords = traffic signal lights

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2053 KiB  
Article
Enhanced Real-Time Method Traffic Light Signal Color Recognition Using Advanced Convolutional Neural Network Techniques
by Fakhri Yagob and Jurek Z. Sasiadek
World Electr. Veh. J. 2025, 16(8), 441; https://doi.org/10.3390/wevj16080441 - 5 Aug 2025
Abstract
Real-time traffic light detection is essential for the safe navigation of autonomous vehicles, where timely and accurate recognition of signal states is critical. YOLOv8, a state-of-the-art object detection model, offers enhanced speed and precision, making it well-suited for real-time applications in complex driving [...] Read more.
Real-time traffic light detection is essential for the safe navigation of autonomous vehicles, where timely and accurate recognition of signal states is critical. YOLOv8, a state-of-the-art object detection model, offers enhanced speed and precision, making it well-suited for real-time applications in complex driving environments. This study presents a modified YOLOv8 architecture optimized for traffic light detection by integrating Depth-Wise Separable Convolutions (DWSCs) throughout the backbone and head. The model was first pretrained on a public traffic light dataset to establish a strong baseline and then fine-tuned on a custom real-time dataset consisting of 480 images collected from video recordings under diverse road conditions. Experimental results demonstrate high detection performance, with precision scores of 0.992 for red, 0.995 for yellow, and 0.853 for green lights. The model achieved an average mAP@0.5 of 0.947, with stable F1 scores and low validation losses over 80 epochs, confirming effective learning and generalization. Compared to existing YOLO variants, the modified architecture showed superior performance, especially for red and yellow lights. Full article
Show Figures

Figure 1

20 pages, 10603 KiB  
Article
A Safety-Based Approach for the Design of an Innovative Microvehicle
by Michelangelo-Santo Gulino, Susanna Papini, Giovanni Zonfrillo, Thomas Unger, Peter Miklis and Dario Vangi
Designs 2025, 9(4), 90; https://doi.org/10.3390/designs9040090 (registering DOI) - 31 Jul 2025
Viewed by 156
Abstract
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper [...] Read more.
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper presents the design and development of an innovative self-balancing microvehicle under the H2020 LEONARDO project, which aims to address these challenges through advanced engineering and user-centric design. The vehicle combines features of monowheels and e-scooters, integrating cutting-edge technologies to enhance safety, stability, and usability. The design adheres to European regulations, including Germany’s eKFV standards, and incorporates user preferences identified through representative online surveys of 1500 PLEV users. These preferences include improved handling on uneven surfaces, enhanced signaling capabilities, and reduced instability during maneuvers. The prototype features a lightweight composite structure reinforced with carbon fibers, a high-torque motorized front wheel, and multiple speed modes tailored to different conditions, such as travel in pedestrian areas, use by novice riders, and advanced users. Braking tests demonstrate deceleration values of up to 3.5 m/s2, comparable to PLEV market standards and exceeding regulatory minimums, while smooth acceleration ramps ensure rider stability and safety. Additional features, such as identification plates and weight-dependent motor control, enhance compliance with local traffic rules and prevent misuse. The vehicle’s design also addresses common safety concerns, such as curb navigation and signaling, by incorporating large-diameter wheels, increased ground clearance, and electrically operated direction indicators. Future upgrades include the addition of a second rear wheel for enhanced stability, skateboard-like rear axle modifications for improved maneuverability, and hybrid supercapacitors to minimize fire risks and extend battery life. With its focus on safety, regulatory compliance, and rider-friendly innovations, this microvehicle represents a significant advancement in promoting safe and sustainable urban mobility. Full article
(This article belongs to the Section Vehicle Engineering Design)
Show Figures

Figure 1

9 pages, 2459 KiB  
Proceeding Paper
Beyond the Red and Green: Exploring the Capabilities of Smart Traffic Lights in Malaysia
by Mohd Fairuz Muhamad@Mamat, Mohamad Nizam Mustafa, Lee Choon Siang, Amir Izzuddin Hasani Habib and Azimah Mohd Hamdan
Eng. Proc. 2025, 102(1), 4; https://doi.org/10.3390/engproc2025102004 - 22 Jul 2025
Viewed by 287
Abstract
Traffic congestion poses a significant challenge to modern urban environments, impacting both driver satisfaction and road safety. This paper investigates the effectiveness of a smart traffic light system (STL), a solution developed under the Intelligent Transportation System (ITS) initiative by the Ministry of [...] Read more.
Traffic congestion poses a significant challenge to modern urban environments, impacting both driver satisfaction and road safety. This paper investigates the effectiveness of a smart traffic light system (STL), a solution developed under the Intelligent Transportation System (ITS) initiative by the Ministry of Works Malaysia, to address these issues in Malaysia. The system integrates a network of sensors, AI-enabled cameras, and Automatic Number Plate Recognition (ANPR) technology to gather real-time data on traffic volume and vehicle classification at congested intersections. This data is utilized to dynamically adjust traffic light timings, prioritizing traffic flow on heavily congested roads while maintaining safety standards. To evaluate the system’s performance, a comprehensive study was conducted at a selected intersection. Traffic patterns were automatically analyzed using camera systems, and the performance of the STL was compared to that of traditional traffic signal systems. The average travel time from the start to the end intersection was measured and compared. Preliminary findings indicate that the STL significantly reduces travel times and improves overall traffic flow at the intersection, with average travel time reductions ranging from 7.1% to 28.6%, depending on site-specific factors. While further research is necessary to quantify the full extent of the system’s impact, these initial results demonstrate the promising potential of STL technology to enhance urban mobility and more efficient and safer roadways by moving beyond traditional traffic signal functionalities. Full article
Show Figures

Figure 1

6 pages, 326 KiB  
Proceeding Paper
Traffic Flow Model for Coordinated Traffic Light Systems
by Iliyan Andreev, Durhan Saliev and Iliyan Damyanov
Eng. Proc. 2025, 100(1), 45; https://doi.org/10.3390/engproc2025100045 - 17 Jul 2025
Viewed by 90
Abstract
Traffic in large cities is increasing due to continuous urbanization, the construction of new housing complexes and the accompanying new street network. The growth of cities creates prerequisites for increasing the intensity of transport, pedestrian, and bicycle flows, especially during peak periods. To [...] Read more.
Traffic in large cities is increasing due to continuous urbanization, the construction of new housing complexes and the accompanying new street network. The growth of cities creates prerequisites for increasing the intensity of transport, pedestrian, and bicycle flows, especially during peak periods. To improve the conditions in which traffic flows, it is necessary to introduce an effective method for reducing delays that arise at intersections, especially those regulated by traffic light systems. One of the possible approaches to this is to coordinate the operation of traffic light systems. The main thing in this is to determine relatively accurate times for the movement of individual flows, for which adequate traffic models are needed. This article presents a model of the movement of transport flows when starting from the first intersection in a coordinated mode of operation of traffic light systems. This is of particular importance when determining the times of individual signals and, above all, has an impact on the moment for switching on the permitting signal at the next intersection. The presented model aims to provide an opportunity to determine accurate times of passage of vehicles through consecutive intersections that operate in a coordinated mode of traffic light systems. Full article
Show Figures

Figure 1

31 pages, 1059 KiB  
Article
Adaptive Traffic Light Management for Mobility and Accessibility in Smart Cities
by Malik Almaliki, Amna Bamaqa, Mahmoud Badawy, Tamer Ahmed Farrag, Hossam Magdy Balaha and Mostafa A. Elhosseini
Sustainability 2025, 17(14), 6462; https://doi.org/10.3390/su17146462 - 15 Jul 2025
Viewed by 589
Abstract
Urban road traffic congestion poses significant challenges to sustainable mobility in smart cities. Traditional traffic light systems, reliant on static or semi-fixed timers, fail to adapt to dynamic traffic conditions, exacerbating congestion and limiting inclusivity. To address these limitations, this paper proposes H-ATLM [...] Read more.
Urban road traffic congestion poses significant challenges to sustainable mobility in smart cities. Traditional traffic light systems, reliant on static or semi-fixed timers, fail to adapt to dynamic traffic conditions, exacerbating congestion and limiting inclusivity. To address these limitations, this paper proposes H-ATLM (a hybrid adaptive traffic lights management), a system utilizing the deep deterministic policy gradient (DDPG) reinforcement learning algorithm to optimize traffic light timings dynamically based on real-time data. The system integrates advanced sensing technologies, such as cameras and inductive loops, to monitor traffic conditions and adaptively adjust signal phases. Experimental results demonstrate significant improvements, including reductions in congestion (up to 50%), increases in throughput (up to 149%), and decreases in clearance times (up to 84%). These findings open the door for integrating accessibility-focused features such as adaptive signaling for accessible vehicles, dedicated lanes for paratransit services, and prioritized traffic flows for inclusive mobility. Full article
Show Figures

Figure 1

27 pages, 6541 KiB  
Article
Multi-Object-Based Efficient Traffic Signal Optimization Framework via Traffic Flow Analysis and Intensity Estimation Using UCB-MRL-CSFL
by Zainab Saadoon Naser, Hend Marouane and Ahmed Fakhfakh
Vehicles 2025, 7(3), 72; https://doi.org/10.3390/vehicles7030072 - 11 Jul 2025
Viewed by 430
Abstract
Traffic congestion has increased significantly in today’s rapidly urbanizing world, influencing people’s daily lives. Traffic signal control systems (TSCSs) play an important role in alleviating congestion by optimizing traffic light timings and improving road efficiency. Yet traditional TSCSs neglected pedestrians, cyclists, and other [...] Read more.
Traffic congestion has increased significantly in today’s rapidly urbanizing world, influencing people’s daily lives. Traffic signal control systems (TSCSs) play an important role in alleviating congestion by optimizing traffic light timings and improving road efficiency. Yet traditional TSCSs neglected pedestrians, cyclists, and other non-monitored road users, degrading traffic signal optimization (TSO). Therefore, this framework proposes a multi-object-based traffic flow analysis and intensity estimation model for efficient TSO using Upper Confidence Bound Multi-agent Reinforcement Learning Cubic Spline Fuzzy Logic (UCB-MRL-CSFL). Initially, the real-time traffic videos undergo frame conversion and redundant frame removal, followed by preprocessing. Then, the lanes are detected; further, the objects are detected using Temporal Context You Only Look Once (TC-YOLO). Now, the object counting in each lane is carried out using the Cumulative Vehicle Motion Kalman Filter (CVMKF), followed by queue detection using Vehicle Density Mapping (VDM). Next, the traffic flow is analyzed by Feature Variant Optical Flow (FVOF), followed by traffic intensity estimation. Now, based on the siren flashlight colors, emergency vehicles are separated. Lastly, UCB-MRL-CSFL optimizes the Traffic Signals (TSs) based on the separated emergency vehicle, pedestrian information, and traffic intensity. Therefore, the proposed framework outperforms the other conventional methodologies for TSO by considering pedestrians, cyclists, and so on, with higher computational efficiency (94.45%). Full article
Show Figures

Figure 1

29 pages, 4413 KiB  
Article
Advancing Road Infrastructure Safety with the Remotely Piloted Safety Cone
by Francisco Javier García-Corbeira, David Alvarez-Moyano, Pedro Arias Sánchez and Joaquin Martinez-Sanchez
Infrastructures 2025, 10(7), 160; https://doi.org/10.3390/infrastructures10070160 - 27 Jun 2025
Viewed by 457
Abstract
This article presents the design, implementation, and validation of a Remotely Piloted Safety Cone (RPSC), an autonomous robotic system developed to enhance safety and operational efficiency in road maintenance. The RPSC addresses challenges associated with road works, including workers’ exposure to traffic hazards [...] Read more.
This article presents the design, implementation, and validation of a Remotely Piloted Safety Cone (RPSC), an autonomous robotic system developed to enhance safety and operational efficiency in road maintenance. The RPSC addresses challenges associated with road works, including workers’ exposure to traffic hazards and inefficiencies of traditional traffic cones, such as manual placement and retrieval, limited visibility in low-light conditions, and inability to adapt to dynamic changes in work zones. In contrast, the RPSC offers autonomous mobility, advanced visual signalling, and real-time communication capabilities, significantly improving safety and operational flexibility during maintenance tasks. The RPSC integrates sensor fusion, combining Global Navigation Satellite System (GNSS) with Real-Time Kinematic (RTK) for precise positioning, Inertial Measurement Unit (IMU) and encoders for accurate odometry, and obstacle detection sensors within an optimised navigation framework using Robot Operating System (ROS2) and Micro Air Vehicle Link (MAVLink) protocols. Complying with European regulations, the RPSC ensures structural integrity, visibility, stability, and regulatory compliance. Safety features include emergency stop capabilities, visual alarms, autonomous safety routines, and edge computing for rapid responsiveness. Field tests validated positioning accuracy below 30 cm, route deviations under 15 cm, and obstacle detection up to 4 m, significantly improved by Kalman filtering, aligning with digitalisation, sustainability, and occupational risk prevention objectives. Full article
Show Figures

Figure 1

24 pages, 4120 KiB  
Article
Real-Time Railway Hazard Detection Using Distributed Acoustic Sensing and Hybrid Ensemble Learning
by Yusuf Yürekli, Cevat Özarpa and İsa Avcı
Sensors 2025, 25(13), 3992; https://doi.org/10.3390/s25133992 - 26 Jun 2025
Viewed by 604
Abstract
Rockfalls on railways are considered a natural disaster under the topic of landslides. It is an event that varies regionally due to landforms and climate. In addition to traffic density, the Karabük–Yenice railway line also passes through mountainous areas, river crossings, and experiences [...] Read more.
Rockfalls on railways are considered a natural disaster under the topic of landslides. It is an event that varies regionally due to landforms and climate. In addition to traffic density, the Karabük–Yenice railway line also passes through mountainous areas, river crossings, and experiences heavy seasonal rainfall. These conditions necessitate the implementation of proactive measures to mitigate risks such as rockfalls, tree collapses, landslides, and other geohazards that threaten the railway line. Undetected environmental events pose a significant threat to railway operational safety. The study aims to provide early detection of environmental phenomena using vibrations emitted through fiber optic cables. This study presents a real-time hazard detection system that integrates Distributed Acoustic Sensing (DAS) with a hybrid ensemble learning model. Using fiber optic cables and the Luna OBR-4600 interrogator, the system captures environmental vibrations along a 6 km railway corridor in Karabük, Türkiye. CatBoosting, Support Vector Machine (SVM), LightGBM, Decision Tree, XGBoost, Random Forest (RF), and Gradient Boosting Classifier (GBC) algorithms were used to detect the incoming signals. However, the Voting Classifier hybrid model was developed using SVM, RF, XGBoost, and GBC algorithms. The signaling system on the railway line provides critical information for safety by detecting environmental factors. Major natural disasters such as rockfalls, tree falls, and landslides cause high-intensity vibrations due to environmental factors, and these vibrations can be detected through fiber cables. In this study, a hybrid model was developed with the Voting Classifier method to accurately detect and classify vibrations. The model leverages an ensemble of classification algorithms to accurately categorize various environmental disturbances. The system has proven its effectiveness under real-world conditions by successfully detecting environmental events such as rockfalls, landslides, and falling trees with 98% success for Precision, Recall, F1 score, and accuracy. Full article
Show Figures

Figure 1

22 pages, 3106 KiB  
Article
Confidential Intelligent Traffic Light Control System: Prevention of Unauthorized Traceability
by Ahmad Audat, Maram Bani Younes, Marah Yahia and Said Ghoul
Big Data Cogn. Comput. 2025, 9(7), 169; https://doi.org/10.3390/bdcc9070169 - 26 Jun 2025
Viewed by 487
Abstract
Many research studies have designed intelligent traffic light scheduling algorithms. Some researchers rely on specialized sensors and hardware to gather real-time traffic data at signalized road intersections. Others benefit from artificial intelligence techniques and/or cloud computing technologies. The technology of vehicular networks has [...] Read more.
Many research studies have designed intelligent traffic light scheduling algorithms. Some researchers rely on specialized sensors and hardware to gather real-time traffic data at signalized road intersections. Others benefit from artificial intelligence techniques and/or cloud computing technologies. The technology of vehicular networks has been widely used to gather the traffic characteristics of competing traffic flows at signalized road intersections. Intelligent traffic light controlling systems aim to fairly liberate competing traffic at signalized road intersections and eliminate traffic crises. These algorithms have been initially developed without focusing on the consequences of security threats or attacks. However, the accuracy of gathered traffic data at each road intersection affects its performance. Fake and corrupted packets highly affect the accuracy of the gathered traffic data. Thus, in this work, we aim to investigate the aspects of security and confidentiality of intelligent traffic light systems. The possible attacks on the confidentiality of intelligent traffic light systems are examined. Then, a confidential traffic light control system that protects the privacy of traveling vehicles and drivers is presented. The proposed algorithm mainly prevents unauthorized traceability and linkability attacks that threaten people’s lives and violate their privacy. Finally, the proposed algorithm is evaluated through extensive experiments to verify its correctness and benefits compared to traditional insecure intelligent traffic light systems. Full article
(This article belongs to the Special Issue Advances in Intelligent Defense Systems for the Internet of Things)
Show Figures

Figure 1

27 pages, 2739 KiB  
Article
Runtime Monitoring Approach to Safeguard Behavior of Autonomous Vehicles at Traffic Lights
by Adina Aniculaesei and Yousri Elhajji
Electronics 2025, 14(12), 2366; https://doi.org/10.3390/electronics14122366 - 9 Jun 2025
Viewed by 702
Abstract
Accurate traffic light status detection and the appropriate response to changes in that status are crucial for autonomous driving systems (ADSs) starting from SAE Level 3 automation. The dilemma zone problem occurs during the amber phase of traffic lights, when the ADS must [...] Read more.
Accurate traffic light status detection and the appropriate response to changes in that status are crucial for autonomous driving systems (ADSs) starting from SAE Level 3 automation. The dilemma zone problem occurs during the amber phase of traffic lights, when the ADS must decide whether to stop or proceed through the intersection. This paper proposes a methodology for developing a runtime monitor that addresses the dilemma zone problem and monitors the autonomous vehicle’s behavior at traffic lights, ensuring that the ADS’s decisions align with the system’s safety requirements. This methodology yields a set of safety requirements formulated in controlled natural language, their formal specification in linear temporal logic (LTL), and the implementation of a corresponding runtime monitor. The monitor is integrated within a safety-oriented software architecture through a modular autonomous driving system pipeline, enabling real-time supervision of the ADS’s decision-making at intersections. The results show that the monitor maintained stable and fast reaction times between 40 ms and 65 ms across varying speeds (up to 13 m/s), remaining well below the 100 ms threshold required for safe autonomous operation. At speeds of 30, 50, and 70 km/h, the system ensured correct behavior with no violations of traffic light regulations. Furthermore, the monitor achieved 100% detection accuracy of the relevant traffic lights within 76 m, with high spatial precision (±0.4 m deviation). While the system performed reliably under typical conditions, it showed limitations in disambiguating adjacent, irrelevant signals at distances below 25 m, indicating opportunities for improvement in dense urban environments. Full article
(This article belongs to the Special Issue Development and Advances in Autonomous Driving Technology)
Show Figures

Figure 1

20 pages, 4951 KiB  
Article
LNT-YOLO: A Lightweight Nighttime Traffic Light Detection Model
by Syahrul Munir and Huei-Yung Lin
Smart Cities 2025, 8(3), 95; https://doi.org/10.3390/smartcities8030095 - 6 Jun 2025
Viewed by 1136
Abstract
Autonomous vehicles are one of the key components of smart mobility that leverage innovative technology to navigate and operate safely in urban environments. Traffic light detection systems, as a key part of autonomous vehicles, play a key role in navigation during challenging traffic [...] Read more.
Autonomous vehicles are one of the key components of smart mobility that leverage innovative technology to navigate and operate safely in urban environments. Traffic light detection systems, as a key part of autonomous vehicles, play a key role in navigation during challenging traffic scenarios. Nighttime driving poses significant challenges for autonomous vehicle navigation, particularly in regard to the accuracy of traffic lights detection (TLD) systems. Existing TLD methodologies frequently encounter difficulties under low-light conditions due to factors such as variable illumination, occlusion, and the presence of distracting light sources. Moreover, most of the recent works only focused on daytime scenarios, often overlooking the significantly increased risk and complexity associated with nighttime driving. To address these critical issues, this paper introduces a novel approach for nighttime traffic light detection using the LNT-YOLO model, which is based on the YOLOv7-tiny framework. LNT-YOLO incorporates enhancements specifically designed to improve the detection of small and poorly illuminated traffic signals. Low-level feature information is utilized to extract the small-object features that have been missing because of the structure of the pyramid structure in the YOLOv7-tiny neck component. A novel SEAM attention module is proposed to refine the features that represent both the spatial and channel information by leveraging the features from the Simple Attention Module (SimAM) and Efficient Channel Attention (ECA) mechanism. The HSM-EIoU loss function is also proposed to accurately detect a small traffic light by amplifying the loss for hard-sample objects. In response to the limited availability of datasets for nighttime traffic light detection, this paper also presents the TN-TLD dataset. This newly curated dataset comprises carefully annotated images from real-world nighttime driving scenarios, featuring both circular and arrow traffic signals. Experimental results demonstrate that the proposed model achieves high accuracy in recognizing traffic lights in the TN-TLD dataset and in the publicly available LISA dataset. The LNT-YOLO model outperforms the original YOLOv7-tiny model and other state-of-the-art object detection models in mAP performance by 13.7% to 26.2% on the TN-TLD dataset and by 9.5% to 24.5% on the LISA dataset. These results underscore the model’s feasibility and robustness compared to other state-of-the-art object detection models. The source code and dataset will be available through the GitHub repository. Full article
Show Figures

Figure 1

17 pages, 2243 KiB  
Article
Modeling Visual Fatigue in Remote Tower Air Traffic Controllers: A Multimodal Physiological Data-Based Approach
by Ruihan Liang, Weijun Pan, Qinghai Zuo, Chen Zhang, Shenhao Chen, Sheng Chen and Leilei Deng
Aerospace 2025, 12(6), 474; https://doi.org/10.3390/aerospace12060474 - 27 May 2025
Cited by 1 | Viewed by 463
Abstract
As a forward-looking development in air traffic control (ATC), remote towers rely on virtualized information presentation, which may exacerbate visual fatigue among controllers and compromise operational safety. This study proposes a visual fatigue recognition model based on multimodal physiological signals. A 60-min simulated [...] Read more.
As a forward-looking development in air traffic control (ATC), remote towers rely on virtualized information presentation, which may exacerbate visual fatigue among controllers and compromise operational safety. This study proposes a visual fatigue recognition model based on multimodal physiological signals. A 60-min simulated remote tower task was conducted with 36 participants, during which eye-tracking (ET), electroencephalography (EEG), electrocardiography (ECG), and electrodermal activity (EDA) signals were collected. Subjective fatigue questionnaires and objective ophthalmic measurements were also recorded before and after the task. Statistically significant features were identified through paired t-tests, and fatigue labels were constructed by combining subjective and objective indicators. LightGBM was then employed to rank feature importance by integrating split frequency and information gain into a composite score. The top 12 features were selected and used to train a multilayer perceptron (MLP) for classification. The model achieved an average balanced accuracy of 0.92 and an F1 score of 0.90 under 12-fold cross-validation, demonstrating excellent predictive performance. The high-ranking features spanned four modalities, revealing typical physiological patterns of visual fatigue across ocular behavior, cortical activity, autonomic regulation, and arousal level. These findings validate the effectiveness of multimodal fusion in modeling visual fatigue and provide theoretical and technical support for human factor monitoring and risk mitigation in remote tower environments. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

21 pages, 7139 KiB  
Article
Exploring the Impacts of Yellow Light Duration on Intersection Performance Under Driving Behavior Uncertainty: A Risk Perception and Fuzzy Decision-Based Simulation Framework
by Jun Hua, Bin Li, Pengcheng Li, Wei Zhang and Zhenhua Li
Appl. Sci. 2025, 15(10), 5758; https://doi.org/10.3390/app15105758 - 21 May 2025
Viewed by 341
Abstract
In existing traffic simulation software or studies related to traffic flow at signalized intersections, the treatment of yellow lights is often simplified or overlooked. However, driving behavior during the yellow phase is characterized by significant uncertainty, which can lead to discrepancies between simulation [...] Read more.
In existing traffic simulation software or studies related to traffic flow at signalized intersections, the treatment of yellow lights is often simplified or overlooked. However, driving behavior during the yellow phase is characterized by significant uncertainty, which can lead to discrepancies between simulation results and real-world conditions. To address this issue, this paper develops a driving behavior model based on risk perception and fuzzy decision-making and integrates it into a simulation framework to replicate continuous driving behaviors at isolated signalized intersections. The performance of intersections under varying yellow light durations is analyzed, yielding some key findings. For instance, when vehicles strictly adhere to the designed speed, increasing the yellow light duration from 3 s to 5 s results in higher traffic volumes under high traffic density. Furthermore, real-time traffic speed fluctuations stabilize, and the occurrence of unsafe driving behaviors decreases. The concept of risk perception is employed to explain the underlying mechanisms behind these phenomena. This paper provides both a theoretical foundation and a simulation framework for more detailed representations of driving behaviors and for explaining the fundamental principles governing intersection performance. Full article
Show Figures

Figure 1

22 pages, 4223 KiB  
Article
Algorithmic Identification of Conflicting Traffic Lights: A Large-Scale Approach with a Network Conflict Matrix
by Sergio Rojas-Blanco, Alberto Cerezo-Narváez, Sol Sáez-Martínez and Manuel Otero-Mateo
Systems 2025, 13(4), 290; https://doi.org/10.3390/systems13040290 - 15 Apr 2025
Viewed by 613
Abstract
Efficient urban traffic management is crucial for mitigating congestion and enhancing road safety. This study introduces a novel algorithm, with code provided, to generate a traffic light conflict matrix, identifying potential signal conflicts solely based on road network topology. Unlike existing graphical approaches [...] Read more.
Efficient urban traffic management is crucial for mitigating congestion and enhancing road safety. This study introduces a novel algorithm, with code provided, to generate a traffic light conflict matrix, identifying potential signal conflicts solely based on road network topology. Unlike existing graphical approaches that are difficult to execute automatically, our method leverages readily available topological data and adjacency matrices, ensuring broad applicability and automation. While our approach deliberately focuses on topology as a stable foundation, it is designed to complement rather than replace dynamic traffic analysis, serving as an essential preprocessing layer for subsequent temporal optimization. Implemented in MATLAB, with specific functionality for Vissim users, the algorithm has been tested on various networks with up to 547 traffic lights, demonstrating high efficiency, even in complex scenarios. This tool enables focused allocation of computational resources for traffic light optimization and is particularly valuable for prioritizing emergency vehicles. Our findings make a significant contribution to traffic management strategies by offering a scalable and efficient tool that bridges critical gaps in current research. As urban areas continue to grow, this algorithm represents a step forward in developing sustainable solutions for modern transportation challenges. Full article
(This article belongs to the Special Issue Modelling and Simulation of Transportation Systems)
Show Figures

Figure 1

31 pages, 644 KiB  
Article
Dynamic Traffic Flow Optimization Using Reinforcement Learning and Predictive Analytics: A Sustainable Approach to Improving Urban Mobility in the City of Belgrade
by Volodymyr N. Skoropad, Stevica Deđanski, Vladan Pantović, Zoran Injac, Slađana Vujičić, Marina Jovanović-Milenković, Boris Jevtić, Violeta Lukić-Vujadinović, Dejan Vidojević and Ištvan Bodolo
Sustainability 2025, 17(8), 3383; https://doi.org/10.3390/su17083383 - 10 Apr 2025
Cited by 2 | Viewed by 2784
Abstract
Efficient traffic management in urban areas represents a key challenge for modern cities, particularly in the context of sustainable development and reducing negative environmental impacts. This paper explores the application of artificial intelligence (AI) in optimizing urban traffic through a combination of reinforcement [...] Read more.
Efficient traffic management in urban areas represents a key challenge for modern cities, particularly in the context of sustainable development and reducing negative environmental impacts. This paper explores the application of artificial intelligence (AI) in optimizing urban traffic through a combination of reinforcement learning (RL) and predictive analytics. The focus is on simulating the traffic network in Belgrade (Serbia, Europe), where RL algorithms, such as Deep Q-Learning and Proximal Policy Optimization, are used for dynamic traffic signal control. The model optimized traffic signal operations at intersections with high traffic volumes using real-time data from IoT sensors, computer vision-enabled cameras, third-party mobile usage data and connected vehicles. In addition, implemented predictive analytics leverage time series models (LSTM, ARIMA) and graph neural networks (GNNs) to anticipate traffic congestion and bottlenecks, enabling initiative-taking decision-making. Special attention is given to challenges such as data transmission delays, system scalability, and ethical implications, with proposed solutions including edge computing and distributed RL models. Results of the simulation demonstrate significant advantages of AI application in 370 traffic signal control devices installed in fixed timing systems and adaptive timing signal systems, including an average reduction in waiting times by 33%, resulting in a 16% decrease in greenhouse gas emissions and improved safety in intersections (measured by an average reduction in the number of traffic accidents). A limitation of this paper is that it does not offer a simulation of the system’s adaptability to temporary traffic surges during mass events or severe weather conditions. The key finding is that integrating AI into an urban traffic network that consists of fixed-timing traffic lights represents a sustainable approach to improving urban quality of life in large cities like Belgrade and achieving smart city objectives. Full article
Show Figures

Figure 1

Back to TopTop