Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (968)

Search Parameters:
Keywords = traffic mode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1832 KiB  
Review
Breaking the Traffic Code: How MaaS Is Shaping Sustainable Mobility Ecosystems
by Tanweer Alam
Future Transp. 2025, 5(3), 94; https://doi.org/10.3390/futuretransp5030094 (registering DOI) - 1 Aug 2025
Abstract
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and [...] Read more.
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and improving the user experience. This review critically examines the role of MaaS in fostering sustainable mobility ecosystems. MaaS aims to enhance user-friendliness, service variety, and sustainability by adopting a customer-centric approach to transportation. The findings reveal that successful MaaS systems consistently align with multimodal transport infrastructure, equitable access policies, and strong public-private partnerships. MaaS enhances the management of routes and traffic, effectively mitigating delays and congestion while concurrently reducing energy consumption and fuel usage. In this study, the authors examine MaaS as a new mobility paradigm for a sustainable transportation system in smart cities, observing the challenges and opportunities associated with its implementation. To assess the environmental impact, a sustainability index is calculated based on the use of different modes of transportation. Significant findings indicate that MaaS systems are proliferating in both quantity and complexity, increasingly integrating capabilities such as real-time multimodal planning, dynamic pricing, and personalized user profiles. Full article
Show Figures

Figure 1

20 pages, 10604 KiB  
Article
A Safety-Based Approach for the Design of an Innovative Microvehicle
by Michelangelo-Santo Gulino, Susanna Papini, Giovanni Zonfrillo, Thomas Unger, Peter Miklis and Dario Vangi
Designs 2025, 9(4), 90; https://doi.org/10.3390/designs9040090 (registering DOI) - 31 Jul 2025
Abstract
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper [...] Read more.
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper presents the design and development of an innovative self-balancing microvehicle under the H2020 LEONARDO project, which aims to address these challenges through advanced engineering and user-centric design. The vehicle combines features of monowheels and e-scooters, integrating cutting-edge technologies to enhance safety, stability, and usability. The design adheres to European regulations, including Germany’s eKFV standards, and incorporates user preferences identified through representative online surveys of 1500 PLEV users. These preferences include improved handling on uneven surfaces, enhanced signaling capabilities, and reduced instability during maneuvers. The prototype features a lightweight composite structure reinforced with carbon fibers, a high-torque motorized front wheel, and multiple speed modes tailored to different conditions, such as travel in pedestrian areas, use by novice riders, and advanced users. Braking tests demonstrate deceleration values of up to 3.5 m/s2, comparable to PLEV market standards and exceeding regulatory minimums, while smooth acceleration ramps ensure rider stability and safety. Additional features, such as identification plates and weight-dependent motor control, enhance compliance with local traffic rules and prevent misuse. The vehicle’s design also addresses common safety concerns, such as curb navigation and signaling, by incorporating large-diameter wheels, increased ground clearance, and electrically operated direction indicators. Future upgrades include the addition of a second rear wheel for enhanced stability, skateboard-like rear axle modifications for improved maneuverability, and hybrid supercapacitors to minimize fire risks and extend battery life. With its focus on safety, regulatory compliance, and rider-friendly innovations, this microvehicle represents a significant advancement in promoting safe and sustainable urban mobility. Full article
(This article belongs to the Section Vehicle Engineering Design)
Show Figures

Figure 1

6 pages, 326 KiB  
Proceeding Paper
Traffic Flow Model for Coordinated Traffic Light Systems
by Iliyan Andreev, Durhan Saliev and Iliyan Damyanov
Eng. Proc. 2025, 100(1), 45; https://doi.org/10.3390/engproc2025100045 - 17 Jul 2025
Viewed by 79
Abstract
Traffic in large cities is increasing due to continuous urbanization, the construction of new housing complexes and the accompanying new street network. The growth of cities creates prerequisites for increasing the intensity of transport, pedestrian, and bicycle flows, especially during peak periods. To [...] Read more.
Traffic in large cities is increasing due to continuous urbanization, the construction of new housing complexes and the accompanying new street network. The growth of cities creates prerequisites for increasing the intensity of transport, pedestrian, and bicycle flows, especially during peak periods. To improve the conditions in which traffic flows, it is necessary to introduce an effective method for reducing delays that arise at intersections, especially those regulated by traffic light systems. One of the possible approaches to this is to coordinate the operation of traffic light systems. The main thing in this is to determine relatively accurate times for the movement of individual flows, for which adequate traffic models are needed. This article presents a model of the movement of transport flows when starting from the first intersection in a coordinated mode of operation of traffic light systems. This is of particular importance when determining the times of individual signals and, above all, has an impact on the moment for switching on the permitting signal at the next intersection. The presented model aims to provide an opportunity to determine accurate times of passage of vehicles through consecutive intersections that operate in a coordinated mode of traffic light systems. Full article
Show Figures

Figure 1

18 pages, 3850 KiB  
Article
Operational Evaluation of Mixed Flow on Highways Considering Trucks and Autonomous Vehicles Based on an Improved Car-Following Decision Framework
by Nan Kang, Chun Qian, Yiyan Zhou and Wenting Luo
Sustainability 2025, 17(14), 6450; https://doi.org/10.3390/su17146450 - 15 Jul 2025
Viewed by 325
Abstract
This study proposes a new method to improve the accuracy of car-following models in predicting the mobility of mixed traffic flow involving trucks and automated vehicles (AVs). A classification is developed to categorize car-following behaviors into eight distinct modes based on vehicle type [...] Read more.
This study proposes a new method to improve the accuracy of car-following models in predicting the mobility of mixed traffic flow involving trucks and automated vehicles (AVs). A classification is developed to categorize car-following behaviors into eight distinct modes based on vehicle type (passenger car/truck) and autonomy level (human-driven vehicle [HDV]/AV) for parameter calibration and simulation. The car-following model parameters are calibrated based on the HighD dataset, and the models are selected through minimizing statistical error. A cellular-automaton-based simulation platform is implemented in MATLAB (R2023b), and a decision framework is developed for the simulation. Key findings demonstrate that mode-specific parameter calibration improves model accuracy, achieving an average error reduction of 80% compared to empirical methods. The simulation results reveal a positive correlation between the AV penetration rate and traffic flow stability, which consequently enhances capacity. Specifically, a full transition from 0% to 100% AV penetration increases traffic capacity by 50%. Conversely, elevated truck penetration rates degrade traffic flow stability, reducing the average speed by 75.37% under full truck penetration scenarios. Additionally, higher AV penetration helps stabilize traffic flow, leading to reduced speed fluctuations and lower emissions, while higher truck proportions contribute to higher emissions due to increased traffic instability. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

32 pages, 11521 KiB  
Article
Ultimate Capacity of a GFRP-Reinforced Concrete Bridge Barrier–Deck Anchorage Subjected to Transverse Loading
by Gledis Dervishhasani, Khaled Sennah, Hamdy M. Afefy and Ahmed Diab
Appl. Sci. 2025, 15(14), 7771; https://doi.org/10.3390/app15147771 - 10 Jul 2025
Viewed by 392
Abstract
This paper outlines a structural qualification process to assess the use of newly developed high-modulus (HM) glass fiber-reinforced polymer (GFRP) bars with headed ends in the joint between concrete bridge barriers and decks. The main goals of the study are to evaluate the [...] Read more.
This paper outlines a structural qualification process to assess the use of newly developed high-modulus (HM) glass fiber-reinforced polymer (GFRP) bars with headed ends in the joint between concrete bridge barriers and decks. The main goals of the study are to evaluate the structural performance of GFRP-reinforced TL-5 barrier–deck systems under transverse loading and to determine the pullout capacity of GFRP anchorage systems for both new construction and retrofit applications. The research is divided into two phases. In the first phase, six full-scale Test-Level 5 (TL-5) barrier wall–deck specimens, divided into three systems, were constructed and tested up to failure. The first system used headed-end GFRP bars to connect the barrier wall to a non-deformable thick deck slab. The second system was similar to the first but had a deck slab overhang for improved anchorage. The third system utilized postinstalled GFRP bars in a non-deformable thick deck slab, bonded with a commercial epoxy adhesive as a solution for deteriorated barrier replacement. The second phase involves an experimental program to evaluate the pullout strength of the GFRP bar anchorage in normal-strength concrete. The experimental results from the tested specimens were then compared to the factored applied moments in existing literature based on traffic loads in the Canadian Highway Bridge Design Code. Experimental results confirmed that GFRP-reinforced TL-5 barrier–deck systems exceeded factored design moments, with capacity-to-demand ratios above 1.38 (above 1.17 with the inclusion of an environmental reduction factor of 0.85). A 195 mm embedment length proved sufficient for both pre- and postinstalled bars. Headed-end GFRP bars improved pullout strength compared to straight-end bars, especially when bonded. Failure modes occurred at high loads, demonstrating structural integrity. Postinstalled bars bonded with epoxy performed comparably to preinstalled bars. A design equation for the barrier resistance due to a diagonal concrete crack at the barrier–deck corner was developed and validated using experimental findings. This equation offers a conservative and safe design approach for evaluating barrier–deck anchorage. Full article
Show Figures

Figure 1

27 pages, 5427 KiB  
Article
Beyond Traditional Public Transport: A Cost–Benefit Analysis of First and Last-Mile AV Solutions in Periurban Environment
by Félix Carreyre, Tarek Chouaki, Nicolas Coulombel, Jaâfar Berrada, Laurent Bouillaut and Sebastian Hörl
Sustainability 2025, 17(14), 6282; https://doi.org/10.3390/su17146282 - 9 Jul 2025
Viewed by 337
Abstract
With the advent of Autonomous Vehicles (AV) technology, extensive research around the design of on-demand mobility systems powered by such vehicles is performed. An important part of these studies consists in the evaluation of the economic impact of such systems for involved stakeholders. [...] Read more.
With the advent of Autonomous Vehicles (AV) technology, extensive research around the design of on-demand mobility systems powered by such vehicles is performed. An important part of these studies consists in the evaluation of the economic impact of such systems for involved stakeholders. In this work, a cost–benefit analysis (CBA) is applied to the introduction of AV services in Paris-Saclay, an intercommunity, south of Paris, simulated through MATSim, an agent-based model capable of capturing complex travel behaviors and dynamic traffic interactions. AVs would be implemented as a feeder service, first- and last-mile service to public transit, allowing intermodal trips for travelers. The system is designed to target the challenges of public transport accessibility in periurban areas and high private car use, which the AV feeder service is designed to mitigate. To our knowledge, this study is one of the first CBA analyses of an intermodal AV system relying on an agent-based simulation. The introduction of AV in a periurban environment would generate more pressure on the road network (0.8% to 1.7% increase in VKT for all modes, and significant congestion around train stations) but would improve traveler utilities. The utility gains from the new AV users benefiting from a more comfortable mode offsets the longer travel times from private car users. A Stop-Based routing service generates less congestion than a Door-to-Door routing service, but the access/egress time counterbalances this gain. Finally, in a periurban environment where on-demand AV feeder service would be added to reduce the access and egress cost of public transit, the social impact would be nuanced for travelers (over 99% of gains captured by the 10% of most benefiting agents), but externality would increase. This would benefit some travelers but would also involve additional congestion. In that case, a Stop-Based routing on a constrained network (e.g., existing bus network) significantly improves economic viability and reduces infrastructure costs and would be less impacting than a Door-to-Door service. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

19 pages, 26419 KiB  
Article
Pulse–Glide Behavior in Emerging Mixed Traffic Flow Under Sensor Accuracy Variations: An Energy-Safety Perspective
by Mengyuan Huang, Jinjun Sun, Honggang Li and Qiqi Miao
Sensors 2025, 25(13), 4189; https://doi.org/10.3390/s25134189 - 5 Jul 2025
Viewed by 376
Abstract
Pulse and Glide (PnG), as a fuel-saving technique, has primarily been applied to manual transmission vehicles. So, its effectiveness when integrated with a novel vehicle type like connected and automated vehicles (CAVs) remains largely unexplored. On the other hand, CAVs have evidently received [...] Read more.
Pulse and Glide (PnG), as a fuel-saving technique, has primarily been applied to manual transmission vehicles. So, its effectiveness when integrated with a novel vehicle type like connected and automated vehicles (CAVs) remains largely unexplored. On the other hand, CAVs have evidently received less attention regarding energy conservation, and their prominent perception capabilities clearly exhibit individual variations. In light of this, this study investigates the impacts of PnG combined with CAVs on energy conservation and safety within the emerging mixed traffic flow composed of CAVs with varying sensing accuracies. The results indicate the following: (i) compared to the traditional driving modes, the PnG can achieve a maximum fuel-saving rate of 39.53% at Fuel Consumption with Idle (FCI), reducing conflicts by approximately 30% on average; (ii) CAVs, equipped with sensors boasting a greater detection range, markedly enhance safety during vehicle operation and contribute to a more uniform distribution of individual fuel consumption; (iii) PnG modes with moderate acceleration, such as 1–2 m/s2, can achieve excellent fuel consumption while ensuring safety and may even slightly enhance the operational efficiency of the intersection. The findings could provide a theoretical reference for the transition of transportation systems toward sustainability. Full article
Show Figures

Figure 1

20 pages, 1032 KiB  
Article
Crash Risk Analysis in Highway Work Zones: A Predictive Model Based on Technical, Infrastructural, and Environmental Factors
by Sofia Palese, Margherita Pazzini, Davide Chiola, Claudio Lantieri, Andrea Simone and Valeria Vignali
Sustainability 2025, 17(13), 6112; https://doi.org/10.3390/su17136112 - 3 Jul 2025
Viewed by 384
Abstract
Road infrastructure is the foundation of the predominant modes of transport, and its effective management is crucial to meet mobility needs. Although necessary for reconstruction, maintenance, and expansion projects, roadworks produce negative impacts, resulting in further risk for workers and drivers and failing [...] Read more.
Road infrastructure is the foundation of the predominant modes of transport, and its effective management is crucial to meet mobility needs. Although necessary for reconstruction, maintenance, and expansion projects, roadworks produce negative impacts, resulting in further risk for workers and drivers and failing to ensure sustainable development. The objective of this paper is twofold: Firstly, investigate the contributing factors to the occurrence of crashes in roadworks. Secondly, develop a model to estimate crash numbers in these areas. The results, which could support municipalities at the planning stage and implement policies for safe and sustainable development, are achieved by examining 121 sites, where 549 crashes occurred, and 25 contributing factors. The variables are divided into three categories: technical characteristics of the site, infrastructural, and environmental. Besides the conventional variables, a risk-increasing factor is calibrated. It assesses the impact of roadworks according to the manoeuvres imposed and the number of lanes. Consistent with previous findings, several variables related to the work zone layout, traffic conditions, infrastructure, and surrounding environment are correlated with the crash number. After performing a further statistical analysis, a multiple linear regression model, statistically significant (0.000) and suitable for accurately estimating the possible number of crashes (R2adj = 0.41), is determined. Full article
33 pages, 1710 KiB  
Systematic Review
Promoting Sustainable Transport: A Systematic Review of Walking and Cycling Adoption Using the COM-B Model
by Hisham Y. Makahleh, Madhar M. Taamneh and Dilum Dissanayake
Future Transp. 2025, 5(3), 79; https://doi.org/10.3390/futuretransp5030079 - 1 Jul 2025
Viewed by 883
Abstract
Walking and cycling, as active modes of transportation, play a vital role in advancing sustainable urban mobility by reducing emissions and improving public health. However, widespread adoption faces challenges such as inadequate infrastructure, safety concerns, socio-cultural barriers, and policy limitations. This study systematically [...] Read more.
Walking and cycling, as active modes of transportation, play a vital role in advancing sustainable urban mobility by reducing emissions and improving public health. However, widespread adoption faces challenges such as inadequate infrastructure, safety concerns, socio-cultural barriers, and policy limitations. This study systematically reviewed 56 peer-reviewed articles from 2004 to 2024, across 30 countries across five continents, employing the Capability, Opportunity and Motivation-Behaviour (COM-B) framework to identify the main drivers of walking and cycling behaviours. Findings highlight that the lack of dedicated infrastructure, inadequate enforcement of road safety measures, personal and traffic safety concerns, and social stigmas collectively hinder active mobility. Strategic interventions such as developing integrated cycling networks, financial incentives, urban planning initiatives, and behavioural change programs have promoted increased engagement in walking and cycling. Enhancing urban mobility further requires investment in pedestrian and cycling infrastructure, improved integration with public transportation, the implementation of traffic-calming measures, and public education campaigns. Post-pandemic initiatives to establish new pedestrian and cycling spaces offer a unique opportunity to establish enduring changes that support active transportation. The study suggests expanding protected cycling lanes and integrating pedestrian pathways with public transit systems to strengthen safety and accessibility. Additionally, leveraging digital tools can enhance mobility planning and coordination. Future research is needed to explore the potential of artificial intelligence in enhancing mobility analysis, supporting the development of climate-resilient infrastructure, and informing transport policies that integrate gender perspectives to better understand long-term behavioural changes. Coordinated policy efforts and targeted investments can lead to more equitable transportation access, support sustainability goals, and alleviate urban traffic congestion. Full article
Show Figures

Figure 1

27 pages, 7037 KiB  
Article
Research on Three-Axis Vibration Characteristics and Vehicle Axle Shape Identification of Cement Pavement Under Heavy Vehicle Loads Based on EMD–Energy Decoupling Method
by Pengpeng Li, Linbing Wang, Songli Yang and Zhoujing Ye
Sensors 2025, 25(13), 4066; https://doi.org/10.3390/s25134066 - 30 Jun 2025
Viewed by 349
Abstract
The structural integrity of cement concrete pavements, paramount for ensuring traffic safety and operational efficiency, faces mounting challenges from the escalating burden of heavy-duty vehicular traffic. Precise characterisation of pavement dynamic responses under such conditions proves indispensable for implementing effective structural health monitoring [...] Read more.
The structural integrity of cement concrete pavements, paramount for ensuring traffic safety and operational efficiency, faces mounting challenges from the escalating burden of heavy-duty vehicular traffic. Precise characterisation of pavement dynamic responses under such conditions proves indispensable for implementing effective structural health monitoring and early warning system deployment. This investigation examines the triaxial dynamic response characteristics of cement concrete pavement subjected to low-speed, heavy-duty vehicular excitations, employing data acquired through in situ field measurements. A monitoring system incorporating embedded triaxial MEMS accelerometers was developed to capture vibration signals directly within the pavement structure. Raw data underwent preprocessing utilising a smoothing wavelet transform technique to attenuate noise, followed by empirical mode decomposition (EMD) and short-time energy (STE) analysis to scrutinise the time–frequency and energetic properties of triaxial vibration signals. The findings demonstrate that heavy, slow-moving vehicles generate substantial triaxial vibrations, with the vertical (Z-axis) response exhibiting the greatest amplitude and encompassing higher dominant frequency components compared to the horizontal (X and Y) axes. EMD successfully decomposed the complex signals into discrete intrinsic mode functions (IMFs), identifying high-frequency components (IMF1–IMF3) associated with transient vehicular impacts, mid-frequency components (IMF4–IMF6) presumably linked to structural and vehicle dynamics, and low-frequency components (IMF7–IMF9) representing system trends or ambient noise. The STE analysis of the selected IMFs elucidated the transient nature of axle loading, revealing pronounced, localised energy peaks. These findings furnish a comprehensive understanding of the dynamic behaviour of cement concrete pavements under heavy vehicle loads and establish a robust methodological framework for pavement performance assessment and refined axle load identification. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

21 pages, 3019 KiB  
Article
Spatiotemporal Patterns and Drivers of Urban Traffic Carbon Emissions in Shaanxi, China
by Yongsheng Qian, Junwei Zeng, Wenqiang Hao, Xu Wei, Minan Yang, Zhen Zhang and Haimeng Liu
Land 2025, 14(7), 1355; https://doi.org/10.3390/land14071355 - 26 Jun 2025
Viewed by 428
Abstract
Mitigating traffic-related carbon emissions is pivotal for achieving carbon peaking targets and advancing sustainable urban development. This study employs spatial autocorrelation and high-low clustering analyses to analyze the spatial correlation and clustering patterns of urban road traffic carbon emissions in Shaanxi Province. The [...] Read more.
Mitigating traffic-related carbon emissions is pivotal for achieving carbon peaking targets and advancing sustainable urban development. This study employs spatial autocorrelation and high-low clustering analyses to analyze the spatial correlation and clustering patterns of urban road traffic carbon emissions in Shaanxi Province. The spatiotemporal evolution and structural impacts of emissions are quantified through a systematic framework, while the GTWR (Geographically Weighted Temporal Regression) model uncovers the multidimensional and heterogeneous driving mechanisms underlying carbon emissions. Findings reveal that road traffic CO2 emissions in Shaanxi exhibit an upward trajectory, with a temporal evolution marked by distinct phases: “stable growth—rapid increase—gradual decline”. Emission dynamics vary significantly across transport modes: private vehicles emerge as the primary emission source, taxi/motorcycle emissions remain relatively stable, and bus/electric vehicle emissions persist at low levels. Spatially, the province demonstrates a pronounced high-carbon spillover effect, with persistent high-value clusters concentrated in central Shaanxi and the northern region of Yan’an City, exhibiting spillover effects on adjacent urban areas. Notably, the spatial distribution of CO2 emissions has evolved significantly: a relatively balanced pattern across cities in 2010 transitioned to a pronounced “M”-shaped gradient along the north–south axis by 2015, stabilizing by 2020. The central urban cluster (Yan’an, Tongchuan, Xianyang, Baoji) initially formed a secondary low-carbon core, which later integrated into the regional emission gradient. By focusing on the micro-level dynamics of urban road traffic and its internal structural complexities—while incorporating built environment factors such as network layout, travel behavior, and infrastructure endowments—this study contributes novel insights to the transportation carbon emission literature, offering a robust framework for regional emission mitigation strategies. Full article
Show Figures

Figure 1

27 pages, 1973 KiB  
Article
The Impact of Travel Behavior Factors on the Acceptance of Carsharing and Autonomous Vehicles: A Machine Learning Analysis
by Jamil Hamadneh and Noura Hamdan
World Electr. Veh. J. 2025, 16(7), 352; https://doi.org/10.3390/wevj16070352 - 25 Jun 2025
Viewed by 397
Abstract
The rapid evolution of the transport industry requires a deep understanding of user preferences for emerging mobility solutions, particularly carsharing (CS) and autonomous vehicles (AVs). This study employs machine learning techniques to model transport mode choice, with a focus on traffic safety perceptions [...] Read more.
The rapid evolution of the transport industry requires a deep understanding of user preferences for emerging mobility solutions, particularly carsharing (CS) and autonomous vehicles (AVs). This study employs machine learning techniques to model transport mode choice, with a focus on traffic safety perceptions of people towards CS and privately shared autonomous vehicles (PSAVs). A stated preference (SP) survey is conducted to collect data on travel behavior, incorporating key attributes such as trip time, trip cost, waiting and walking time, privacy, cybersecurity, and surveillance concerns. Sociodemographic factors, such as income, gender, education, employment status, and trip purpose, are also examined. Three gradient boosting models—CatBoost, XGBoost, and LightGBM are applied to classify user choices. The performance of models is evaluated using accuracy, precision, and F1-score. The XGBoost demonstrates the highest accuracy (77.174%) and effectively captures the complexity of mode choice behavior. The results indicate that CS users are easily classified, while PSAV users present greater classification challenges due to variations in safety perceptions and technological acceptance. From a traffic safety perspective, the results emphasize that companionship, comfort, privacy, cybersecurity, safety in using CS and PSAVs, and surveillance significantly influence CS and PSAV acceptance, which leads to the importance of trust in adopting AVs. The findings suggest that ensuring public trust occurs through robust safety regulations and transparent data security policies. Furthermore, the envisaged benefits of shared autonomous mobility are alleviating congestion and promoting sustainability. Full article
Show Figures

Figure 1

36 pages, 29858 KiB  
Article
Mode Shape Extraction with Denoising Techniques Using Residual Responses of Contact Points of Moving Vehicles on a Beam Bridge
by Guandong Qiao, Xiaoyue Du, Qi Wang and Liu Jiang
Appl. Sci. 2025, 15(13), 7059; https://doi.org/10.3390/app15137059 - 23 Jun 2025
Viewed by 210
Abstract
This work introduces a novel approach to extract beam bridge mode shapes using the residual response between consecutive contact points of vehicles passing through a bridge. A comprehensive investigation is conducted on several critical parameters, including window size, vehicle velocity, road roughness, and [...] Read more.
This work introduces a novel approach to extract beam bridge mode shapes using the residual response between consecutive contact points of vehicles passing through a bridge. A comprehensive investigation is conducted on several critical parameters, including window size, vehicle velocity, road roughness, and beam damping property, as well as the influence of traffic flow. To enhance the mode shape extraction performance using the approximate expression of the contact points’ displacements under noisy disturbance, two new signal denoising methods, CEEMDAN-NSPCA and CEEMDAN-IWT, are proposed based on complete ensemble empirical mode decomposition (CEEMDAN). CEEMDAN-NSPCA integrates CEEMDAN with principal component analysis and a coefficient-based filtering strategy. While CEEMDAN-IWT utilizes an improved wavelet thresholding technique with adaptive threshold selection. The numerical simulations demonstrate that both methods could effectively attenuate high-frequency noise with small amplitudes and retain low-frequency components. Among them, CEEMDAN-IWT exhibits superior denoising performance and greater stability, making it particularly suitable for robust modal identification in noisy environments. Full article
(This article belongs to the Special Issue Advances in Architectural Acoustics and Vibration)
Show Figures

Figure 1

37 pages, 6550 KiB  
Article
Multiphase Transport Network Optimization: Mathematical Framework Integrating Resilience Quantification and Dynamic Algorithm Coupling
by Linghao Ren, Xinyue Li, Renjie Song, Yuning Wang, Meiyun Gui and Bo Tang
Mathematics 2025, 13(13), 2061; https://doi.org/10.3390/math13132061 - 21 Jun 2025
Viewed by 400
Abstract
This study proposes a multi-dimensional urban transportation network optimization framework (MTNO-RQDC) to address structural failure risks from aging infrastructure and regional connectivity bottlenecks. Through dual-dataset validation using both the Baltimore road network and PeMS07 traffic flow data, we first develop a traffic simulation [...] Read more.
This study proposes a multi-dimensional urban transportation network optimization framework (MTNO-RQDC) to address structural failure risks from aging infrastructure and regional connectivity bottlenecks. Through dual-dataset validation using both the Baltimore road network and PeMS07 traffic flow data, we first develop a traffic simulation model integrating Dijkstra’s algorithm with capacity-constrained allocation strategies for guiding reconstruction planning for the collapsed Francis Scott Key Bridge. Next, we create a dynamic adaptive public transit optimization model using an entropy weight-TOPSIS decision framework coupled with an improved simulated annealing algorithm (ISA-TS), achieving coordinated suburban–urban network optimization while maintaining 92.3% solution stability under simulated node failure conditions. The framework introduces three key innovations: (1) a dual-layer regional division model combining K-means geographical partitioning with spectral clustering functional zoning; (2) fault-tolerant network topology optimization demonstrated through 1000-epoch Monte Carlo failure simulations; (3) cross-dataset transferability validation showing 15.7% performance variance between Baltimore and PeMS07 environments. Experimental results demonstrate a 28.7% reduction in road network traffic variance (from 42,760 to 32,100), 22.4% improvement in public transit path redundancy, and 30.4–44.6% decrease in regional traffic load variance with minimal costs. Hyperparameter analysis reveals two optimal operational modes: rapid cooling (rate = 0.90) achieves 85% improvement within 50 epochs for emergency response, while slow cooling (rate = 0.99) yields 12.7% superior solutions for long-term planning. The framework establishes a new multi-objective paradigm balancing structural resilience, functional connectivity, and computational robustness for sustainable smart city transportation systems. Full article
Show Figures

Figure 1

20 pages, 13323 KiB  
Article
Dynamic Weight Model Predictive Control for Longitudinal Adaptive Cruise Systems in Electric Vehicles
by Wentian Wei, Lan Li, Qiyuan Li, Song Zhang, Chaoqun Fan and Lizhe Liang
Appl. Sci. 2025, 15(12), 6715; https://doi.org/10.3390/app15126715 - 16 Jun 2025
Cited by 1 | Viewed by 565
Abstract
This paper proposes a dynamic weight model predictive control (DWMPC) strategy for adaptive cruise control (ACC) in pure electric vehicles, aiming to enhance robustness, energy efficiency, and ride comfort under complex traffic conditions. Unlike conventional MPC with static weights, the proposed method integrates [...] Read more.
This paper proposes a dynamic weight model predictive control (DWMPC) strategy for adaptive cruise control (ACC) in pure electric vehicles, aiming to enhance robustness, energy efficiency, and ride comfort under complex traffic conditions. Unlike conventional MPC with static weights, the proposed method integrates a fuzzy inference system that evaluates driving urgency based on real-time spacing and velocity errors. The resulting emergency coefficient is mapped through a nonlinear function to dynamically adjust the velocity tracking weight in the MPC cost function. Additionally, a four-mode coordination mechanism adaptively modifies acceleration and jerk penalties according to risk levels, enabling balanced responses between safety and comfort. A composite performance evaluation index (PEI) is formulated to quantitatively assess energy consumption, ride comfort, spacing accuracy, and emergency responsiveness. Simulation results under WLTC and typical urban driving scenarios demonstrate that DWMPC outperforms fixed-weight MPC and PI controllers, reducing energy consumption by 6.5%, jerk by 42.9%, and response time by 41.8% while improving coordination in speed tracking, inter-vehicle distance regulation, and energy-efficient control. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

Back to TopTop