Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (755)

Search Parameters:
Keywords = traffic information and control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 3694 KiB  
Article
Decoding Urban Traffic Pollution: Insights on Trends, Patterns, and Meteorological Influences for Policy Action in Bucharest, Romania
by Cristiana Tudor, Alexandra Horobet, Robert Sova, Lucian Belascu and Alma Pentescu
Atmosphere 2025, 16(8), 916; https://doi.org/10.3390/atmos16080916 - 29 Jul 2025
Viewed by 258
Abstract
Traffic-related pollutants remain a challenging global issue, with significant policy implications. Within the European Union, Romania has the highest yearly societal cost per capita due to air pollution, which kills 29,000 Romanians every year, whereas the health and economic costs are also significant. [...] Read more.
Traffic-related pollutants remain a challenging global issue, with significant policy implications. Within the European Union, Romania has the highest yearly societal cost per capita due to air pollution, which kills 29,000 Romanians every year, whereas the health and economic costs are also significant. In this context, municipal authorities in the country, particularly in high-density areas, should place a strong focus on mitigating air pollution. In particular, the capital city, Bucharest, ranks among the most congested cities in the world while registering the highest pollution index in Romania, with traffic pollution responsible for two-thirds of its air pollution. Consequently, studies that assess and model pollution trends are paramount to inform local policy-making processes and assist pollution-mitigation efforts. In this paper, a generalized additive modeling (GAM) framework is employed to model hourly concentrations of nitrogen dioxide (NO2), i.e., a relevant traffic-pollution proxy, at a busy urban traffic location in central Bucharest, Romania. All models are developed on a wide, fine-granularity dataset spanning January 2017–December 2022 and include extensive meteorological covariates. Model robustness is assured by switching between the generalized additive model (GAM) framework and the generalized additive mixed model (GAMM) framework when the residual autoregressive process needs to be specifically acknowledged. Results indicate that trend GAMs explain a large amount of the hourly variation in traffic pollution. Furthermore, meteorological factors contribute to increasing the models’ explanation power, with wind direction, relative humidity, and the interaction between wind speed and the atmospheric pressure emerging as important mitigators for NO2 concentrations in Bucharest. The results of this study can be valuable in assisting local authorities to take proactive measures for traffic pollution control in the capital city of Romania. Full article
(This article belongs to the Special Issue Sources Influencing Air Pollution and Their Control)
Show Figures

Figure 1

33 pages, 16026 KiB  
Article
Spatiotemporal Analysis of BTEX and PM Using Me-DOAS and GIS in Busan’s Industrial Complexes
by Min-Kyeong Kim, Jaeseok Heo, Joonsig Jung, Dong Keun Lee, Jonghee Jang and Duckshin Park
Toxics 2025, 13(8), 638; https://doi.org/10.3390/toxics13080638 - 29 Jul 2025
Viewed by 124
Abstract
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for [...] Read more.
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for the rapid dispersion of hazardous air pollutants (HAPs). In this study, we conducted spatiotemporal data collection and analysis for the first time in Korea using real-time measurements obtained through mobile extractive differential optical absorption spectroscopy (Me-DOAS) mounted on a solar occultation flux (SOF) vehicle. The measurements were conducted in the Saha Sinpyeong–Janglim Industrial Complex in Busan, which comprises the Sasang Industrial Complex and the Sinpyeong–Janglim Industrial Complex. BTEX compounds were selected as target volatile organic compounds (VOCs), and real-time measurements of both BTEX and fine particulate matter (PM) were conducted simultaneously. Correlation analysis revealed a strong relationship between PM10 and PM2.5 (r = 0.848–0.894), indicating shared sources. In Sasang, BTEX levels were associated with traffic and localized facilities, while in Saha Sinpyeong–Janglim, the concentrations were more influenced by industrial zoning and wind patterns. Notably, inter-compound correlations such as benzene–m-xylene and p-xylene–toluene suggested possible co-emission sources. This study proposes a GIS-based, three-dimensional air quality management approach that integrates variables such as traffic volume, wind direction, and speed through real-time measurements. The findings are expected to inform effective pollution control strategies and future environmental management plans for industrial complexes. Full article
Show Figures

Graphical abstract

4 pages, 976 KiB  
Proceeding Paper
Developing a Risk Recognition System Based on a Large Language Model for Autonomous Driving
by Donggyu Min and Dong-Kyu Kim
Eng. Proc. 2025, 102(1), 7; https://doi.org/10.3390/engproc2025102007 - 29 Jul 2025
Viewed by 101
Abstract
Autonomous driving systems have the potential to reduce traffic accidents dramatically; however, conventional modules often struggle to accurately detect risks in complex environments. This study presents a novel risk recognition system that integrates the reasoning capabilities of a large language model (LLM), specifically [...] Read more.
Autonomous driving systems have the potential to reduce traffic accidents dramatically; however, conventional modules often struggle to accurately detect risks in complex environments. This study presents a novel risk recognition system that integrates the reasoning capabilities of a large language model (LLM), specifically GPT-4, with traffic engineering domain knowledge. By incorporating surrogate safety measures such as time-to-collision (TTC) alongside traditional sensor and image data, our approach enhances the vehicle’s ability to interpret and react to potentially dangerous situations. Utilizing the realistic 3D simulation environment of CARLA, the proposed framework extracts comprehensive data—including object identification, distance, TTC, and vehicle dynamics—and reformulates this information into natural language inputs for GPT-4. The LLM then provides risk assessments with detailed justifications, guiding the autonomous vehicle to execute appropriate control commands. The experimental results demonstrate that the LLM-based module outperforms conventional systems by maintaining safer distances, achieving more stable TTC values, and delivering smoother acceleration control during dangerous scenarios. This fusion of LLM reasoning with traffic engineering principles not only improves the reliability of risk recognition but also lays a robust foundation for future real-time applications and dataset development in autonomous driving safety. Full article
Show Figures

Figure 1

19 pages, 1951 KiB  
Article
System for the Acquisition and Analysis of Maintenance Data of Railway Traffic Control Devices
by Mieczysław Kornaszewski, Waldemar Nowakowski and Roman Pniewski
Appl. Sci. 2025, 15(15), 8305; https://doi.org/10.3390/app15158305 - 25 Jul 2025
Viewed by 159
Abstract
A particularly important activity carried out by railway infrastructure managers to maintain railway devices in full working order is the diagnostic process. It increases the level of railway safety. The diagnostic process involves collecting information about the equipment through inspections, tests, functional trials, [...] Read more.
A particularly important activity carried out by railway infrastructure managers to maintain railway devices in full working order is the diagnostic process. It increases the level of railway safety. The diagnostic process involves collecting information about the equipment through inspections, tests, functional trials, parameter measurements, and analysis of the working environment, followed by comparing the obtained information with the required parameters or permissible conditions. This activity also enables the formulation of a technical diagnosis regarding the current ability of the devices to perform its intended functions, taking into account the impact of its technical condition on railway traffic safety. This is especially important in the case of railway traffic control devices, as these devices are largely responsible for ensuring railway traffic safety. The collection of data on the condition of railway traffic control devices in the form of Big Data sets and diagnostic inference is an effective factor in making operational decisions for such devices. It enables the acquisition of complete information about the actual course of the exploitation process and allows for obtaining reliable information necessary to manage this process, particularly in the areas of diagnostics forecasting of devices conditions, renewal, and organization of maintenance and repair facilities. To support this, a service data acquisition and analysis system for railway traffic control devices (SADEK) was developed. This system can serve as a software platform for maintenance needs in the railway sector. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

29 pages, 8706 KiB  
Article
An Integrated Risk Assessment of Rockfalls Along Highway Networks in Mountainous Regions: The Case of Guizhou, China
by Jinchen Yang, Zhiwen Xu, Mei Gong, Suhua Zhou and Minghua Huang
Appl. Sci. 2025, 15(15), 8212; https://doi.org/10.3390/app15158212 - 23 Jul 2025
Viewed by 179
Abstract
Rockfalls, among the most common natural disasters, pose risks such as traffic congestion, casualties, and substantial property damage. Guizhou Province, with China’s fourth-longest highway network, features mountainous terrain prone to frequent rockfall incidents annually. Consequently, assessing highway rockfall risks in Guizhou Province is [...] Read more.
Rockfalls, among the most common natural disasters, pose risks such as traffic congestion, casualties, and substantial property damage. Guizhou Province, with China’s fourth-longest highway network, features mountainous terrain prone to frequent rockfall incidents annually. Consequently, assessing highway rockfall risks in Guizhou Province is crucial for safeguarding the lives and travel of residents. This study evaluates highway rockfall risk through three key components: susceptibility, hazard, and vulnerability. Susceptibility was assessed using information content and logistic regression methods, considering factors such as elevation, slope, normalized difference vegetation index (NDVI), aspect, distance from fault, relief amplitude, lithology, and rock weathering index (RWI). Hazard assessment utilized a fuzzy analytic hierarchy process (AHP), focusing on average annual rainfall and daily maximum rainfall. Socioeconomic factors, including GDP, population density, and land use type, were incorporated to gauge vulnerability. Integration of these assessments via a risk matrix yielded comprehensive highway rockfall risk profiles. Results indicate a predominantly high risk across Guizhou Province, with high-risk zones covering 41.19% of the area. Spatially, the western regions exhibit higher risk levels compared to eastern areas. Notably, the Bijie region features over 70% of its highway mileage categorized as high risk or above. Logistic regression identified distance from fault lines as the most negatively correlated factor affecting highway rockfall susceptibility, whereas elevation gradient demonstrated a minimal influence. This research provides valuable insights for decision-makers in formulating highway rockfall prevention and control strategies. Full article
Show Figures

Figure 1

22 pages, 3091 KiB  
Article
Assessment of the Risk of Failure in Electric Power Supply Systems for Railway Traffic Control Devices
by Tomasz Ciszewski, Jerzy Wojciechowski, Mieczysław Kornaszewski, Grzegorz Krawczyk, Beata Kuźmińska-Sołśnia and Artur Hermanowicz
Sensors 2025, 25(14), 4501; https://doi.org/10.3390/s25144501 - 19 Jul 2025
Viewed by 363
Abstract
This paper provides a reliability analysis of selected components in the electrical power supply systems used for railway traffic control equipment. It includes rectifiers, controllers, inverters, generators, batteries, sensors, and switching elements. The study used failure data from power supply system elements on [...] Read more.
This paper provides a reliability analysis of selected components in the electrical power supply systems used for railway traffic control equipment. It includes rectifiers, controllers, inverters, generators, batteries, sensors, and switching elements. The study used failure data from power supply system elements on selected railway lines. The analysis was performed using a mathematical model based on Markov processes. Based on the findings, recommendations were made to improve safety levels. The results presented in the paper could serve as a valuable source of information for operators of power supply systems in railway traffic control, helping them optimize maintenance processes and increase equipment reliability. Full article
(This article belongs to the Special Issue Diagnosis and Risk Analysis of Electrical Systems)
Show Figures

Figure 1

12 pages, 1393 KiB  
Article
A Proactive Collision Avoidance Model for Connected and Autonomous Vehicles in Mixed Traffic Flow
by Guojing Hu, Kun Li, Weike Lu, Ouchan Chen, Chuan Sun and Yuanqi Zhao
World Electr. Veh. J. 2025, 16(7), 394; https://doi.org/10.3390/wevj16070394 - 14 Jul 2025
Viewed by 233
Abstract
Collision avoidance between vehicles is a great challenge, especially in the context of mixed driving of connected and autonomous vehicles (CAVs) and human-driven vehicles (HVs). Advances in automation and connectivity technologies provide opportunities for CAVs to drive cooperatively. This paper proposes a proactive [...] Read more.
Collision avoidance between vehicles is a great challenge, especially in the context of mixed driving of connected and autonomous vehicles (CAVs) and human-driven vehicles (HVs). Advances in automation and connectivity technologies provide opportunities for CAVs to drive cooperatively. This paper proposes a proactive collision avoidance model, aiming to avoid collisions by controlling the speed and lane-changing behavior of CAVs. In the model, the subject vehicle first collects information about surrounding lanes and judges the traffic conditions; it then chooses to decelerate or change lanes to avoid collisions. The subject vehicle also searches for the optimal vehicle in the surrounding lanes for cooperation. The effectiveness of the proposed collision avoidance model is verified through the Python-SUMO platform. The experimental results show that the performance of the collision avoidance model is better than that of the cooperative adaptive cruise control (CACC) model in terms of average speed, lost time and the number of vehicle conflicts, proving the advantages of the proposed model in safety and efficiency. Full article
(This article belongs to the Special Issue Modeling for Intelligent Vehicles)
Show Figures

Figure 1

27 pages, 6541 KiB  
Article
Multi-Object-Based Efficient Traffic Signal Optimization Framework via Traffic Flow Analysis and Intensity Estimation Using UCB-MRL-CSFL
by Zainab Saadoon Naser, Hend Marouane and Ahmed Fakhfakh
Vehicles 2025, 7(3), 72; https://doi.org/10.3390/vehicles7030072 - 11 Jul 2025
Viewed by 409
Abstract
Traffic congestion has increased significantly in today’s rapidly urbanizing world, influencing people’s daily lives. Traffic signal control systems (TSCSs) play an important role in alleviating congestion by optimizing traffic light timings and improving road efficiency. Yet traditional TSCSs neglected pedestrians, cyclists, and other [...] Read more.
Traffic congestion has increased significantly in today’s rapidly urbanizing world, influencing people’s daily lives. Traffic signal control systems (TSCSs) play an important role in alleviating congestion by optimizing traffic light timings and improving road efficiency. Yet traditional TSCSs neglected pedestrians, cyclists, and other non-monitored road users, degrading traffic signal optimization (TSO). Therefore, this framework proposes a multi-object-based traffic flow analysis and intensity estimation model for efficient TSO using Upper Confidence Bound Multi-agent Reinforcement Learning Cubic Spline Fuzzy Logic (UCB-MRL-CSFL). Initially, the real-time traffic videos undergo frame conversion and redundant frame removal, followed by preprocessing. Then, the lanes are detected; further, the objects are detected using Temporal Context You Only Look Once (TC-YOLO). Now, the object counting in each lane is carried out using the Cumulative Vehicle Motion Kalman Filter (CVMKF), followed by queue detection using Vehicle Density Mapping (VDM). Next, the traffic flow is analyzed by Feature Variant Optical Flow (FVOF), followed by traffic intensity estimation. Now, based on the siren flashlight colors, emergency vehicles are separated. Lastly, UCB-MRL-CSFL optimizes the Traffic Signals (TSs) based on the separated emergency vehicle, pedestrian information, and traffic intensity. Therefore, the proposed framework outperforms the other conventional methodologies for TSO by considering pedestrians, cyclists, and so on, with higher computational efficiency (94.45%). Full article
Show Figures

Figure 1

42 pages, 5471 KiB  
Article
Optimising Cyclist Road-Safety Scenarios Through Angle-of-View Analysis Using Buffer and GIS Mapping Techniques
by Zahra Yaghoobloo, Giuseppina Pappalardo and Michele Mangiameli
Infrastructures 2025, 10(7), 184; https://doi.org/10.3390/infrastructures10070184 - 11 Jul 2025
Viewed by 266
Abstract
In the present era, achieving sustainability requires the development of planning strategies to develop a safer urban infrastructure. This study examines the realistic aspects of cyclist safety by analysing cyclists’ fields of view, using Geographic Information Systems (GIS) and spatial data analysis. The [...] Read more.
In the present era, achieving sustainability requires the development of planning strategies to develop a safer urban infrastructure. This study examines the realistic aspects of cyclist safety by analysing cyclists’ fields of view, using Geographic Information Systems (GIS) and spatial data analysis. The research introduces novel geoprocessing tools-based GIS techniques that mathematically simulate cyclists’ angles of view and the distances to nearby environmental features. It provides precise insights into some potential hazards and infrastructure challenges encountered while cycling. This research focuses on managing and analysing the data collected, utilising OpenStreetMap (OSM) as vector-based supporting data. It integrates cyclists’ behavioural data with the urban environmental features encountered, such as intersections, road design, and traffic controls. The analysis is categorised into specific classes to evaluate the impacts of these aspects of the environment on cyclists’ behaviours. The current investigation highlights the importance of integrating the objective environmental elements surrounding the route with subjective perceptions and then determining the influence of these environmental elements on cyclists’ behaviours. Unlike previous studies that ignore cyclists’ visual perspectives in the context of real-world data, this work integrates objective GIS data with cyclists’ field of view-based modelling to identify high-risk areas and highlight the need for enhanced safety measures. The proposed approach equips urban planners and designers with data-informed strategies for creating safer cycling infrastructure, fostering sustainable mobility, and mitigating urban congestion. Full article
Show Figures

Figure 1

24 pages, 17098 KiB  
Article
A Combined Energy Management Strategy for Heavy-Duty Trucks Based on Global Traffic Information Optimization
by Haishan Wu, Liang Li and Xiangyu Wang
Sustainability 2025, 17(14), 6361; https://doi.org/10.3390/su17146361 - 11 Jul 2025
Viewed by 219
Abstract
As public concern over environmental pollution and the urgent need for sustainable development grow, the popularity of new-energy vehicles has increased. Hybrid electric vehicles (HEVs) represent a significant segment of this movement, undergoing robust development and playing an important role in the global [...] Read more.
As public concern over environmental pollution and the urgent need for sustainable development grow, the popularity of new-energy vehicles has increased. Hybrid electric vehicles (HEVs) represent a significant segment of this movement, undergoing robust development and playing an important role in the global transition towards sustainable mobility. Among the various factors affecting the fuel economy of HEVs, energy management strategies (EMSs) are particularly critical. With continuous advancements in vehicle communication technology, vehicles are now equipped to gather real-time traffic information. In response to this evolution, this paper proposes an optimization method for the adaptive equivalent consumption minimization strategy (A-ECMS) equivalent factor that incorporates traffic information and efficient optimization algorithms. Building on this foundation, the proposed method integrates the charge depleting–charge sustaining (CD-CS) strategy to create a combined EMS that leverages traffic information. This approach employs the CD-CS strategy to facilitate vehicle operation in the absence of comprehensive global traffic information. However, when adequate global information is available, it utilizes both the CD-CS strategy and the A-ECMS for vehicle control. Simulation results indicate that this combined strategy demonstrates effective performance, achieving fuel consumption reductions of 5.85% compared with the CD-CS strategy under the China heavy-duty truck cycle, 4.69% under the real vehicle data cycle, and 3.99% under the custom driving cycle. Full article
(This article belongs to the Special Issue Powertrain Design and Control in Sustainable Electric Vehicles)
Show Figures

Figure 1

37 pages, 18679 KiB  
Article
Real-Time DDoS Detection in High-Speed Networks: A Deep Learning Approach with Multivariate Time Series
by Drixter V. Hernandez, Yu-Kuen Lai and Hargyo T. N. Ignatius
Electronics 2025, 14(13), 2673; https://doi.org/10.3390/electronics14132673 - 1 Jul 2025
Viewed by 459
Abstract
The exponential growth of Distributed Denial-of-Service (DDoS) attacks in high-speed networks presents significant real-time detection and mitigation challenges. The existing detection frameworks are categorized into flow-based and packet-based detection approaches. Flow-based approaches usually suffer from high latency and controller overhead in high-volume traffic. [...] Read more.
The exponential growth of Distributed Denial-of-Service (DDoS) attacks in high-speed networks presents significant real-time detection and mitigation challenges. The existing detection frameworks are categorized into flow-based and packet-based detection approaches. Flow-based approaches usually suffer from high latency and controller overhead in high-volume traffic. In contrast, packet-based approaches are prone to high false-positive rates and limited attack classification, resulting in delayed mitigation responses. To address these limitations, we propose a real-time DDoS detection architecture that combines hardware-accelerated statistical preprocessing with GPU-accelerated deep learning models. The raw packet header information is transformed into multivariate time series data to enable classification of complex traffic patterns using Temporal Convolutional Networks (TCN), Long Short-Term Memory (LSTM) networks, and Transformer architectures. We evaluated the proposed system using experiments conducted under low to high-volume background traffic to validate each model’s robustness and adaptability in a real-time network environment. The experiments are conducted across different time window lengths to determine the trade-offs between detection accuracy and latency. The results show that larger observation windows improve detection accuracy using TCN and LSTM models and consistently outperform the Transformer in high-volume scenarios. Regarding model latency, TCN and Transformer exhibit constant latency across all window sizes. We also used SHAP (Shapley Additive exPlanations) analysis to identify the most discriminative traffic features, enhancing model interpretability and supporting feature selection for computational efficiency. Among the experimented models, TCN achieves the most balance between detection performance and latency, making it an applicable model for the proposed architecture. These findings validate the feasibility of the proposed architecture and support its potential as a real-time DDoS detection application in a realistic high-speed network. Full article
(This article belongs to the Special Issue Emerging Technologies for Network Security and Anomaly Detection)
Show Figures

Figure 1

36 pages, 4653 KiB  
Article
A Novel Method for Traffic Parameter Extraction and Analysis Based on Vehicle Trajectory Data for Signal Control Optimization
by Yizhe Wang, Yangdong Liu and Xiaoguang Yang
Appl. Sci. 2025, 15(13), 7155; https://doi.org/10.3390/app15137155 - 25 Jun 2025
Viewed by 341
Abstract
As urban traffic systems become increasingly complex, traditional traffic data collection methods based on fixed detectors face challenges such as poor data quality and acquisition difficulties. Traditional methods also lack the ability to capture complete vehicle path information essential for signal optimization. While [...] Read more.
As urban traffic systems become increasingly complex, traditional traffic data collection methods based on fixed detectors face challenges such as poor data quality and acquisition difficulties. Traditional methods also lack the ability to capture complete vehicle path information essential for signal optimization. While vehicle trajectory data can provide rich spatiotemporal information, its sampling characteristics present new technical challenges for traffic parameter extraction. This study addresses the key issue of extracting traffic parameters suitable for signal timing optimization from sampled trajectory data by proposing a comprehensive method for traffic parameter extraction and analysis based on vehicle trajectory data. The method comprises five modules: data preprocessing, basic feature processing, exploratory data analysis, key feature extraction, and data visualization. An innovative algorithm is proposed to identify which intersections vehicles pass through, effectively solving the challenge of mapping GPS points to road network nodes. A dual calculation method based on instantaneous speed and time difference is adopted, improving parameter estimation accuracy through multi-source data fusion. A highly automated processing toolchain based on Python and MATLAB is developed. The method advances the state of the art through a novel polygon-based trajectory mapping algorithm and a systematic multi-source parameter extraction framework specifically designed for signal control optimization. Validation using actual trajectory data containing 2.48 million records successfully eliminated 30.80% redundant data and accurately identified complete paths for 7252 vehicles. The extracted multi-dimensional parameters, including link flow, average speed, travel time, and OD matrices, accurately reflect network operational status, identifying congestion hotspots, tidal traffic characteristics, and unstable road segments. The research outcomes provide a feasible technical solution for areas lacking traditional detection equipment. The extracted parameters can directly support signal optimization applications such as traffic signal coordination, timing optimization, and congestion management, providing crucial support for implementing data-driven intelligent traffic control. This research presents a theoretical framework validated with real-world data, providing a foundation for future implementation in operational signal control systems. Full article
(This article belongs to the Special Issue Research and Estimation of Traffic Flow Characteristics)
Show Figures

Figure 1

17 pages, 6537 KiB  
Article
Onboard LiDAR–Camera Deployment Optimization for Pavement Marking Distress Fusion Detection
by Ciyun Lin, Wenjian Sun, Ganghao Sun, Bown Gong and Hongchao Liu
Sensors 2025, 25(13), 3875; https://doi.org/10.3390/s25133875 - 21 Jun 2025
Viewed by 727
Abstract
Pavement markings, as a crucial component of traffic guidance and safety facilities, are subject to degradation and abrasion after a period of service. To ensure traffic safety, retroreflectivity and diffuse illumination should be above the minimum thresholds and required to undergo inspection periodically. [...] Read more.
Pavement markings, as a crucial component of traffic guidance and safety facilities, are subject to degradation and abrasion after a period of service. To ensure traffic safety, retroreflectivity and diffuse illumination should be above the minimum thresholds and required to undergo inspection periodically. Therefore, an onboard light detection and ranging (LiDAR) and camera deployment optimization method is proposed for pavement marking distress detection to adapt to complex traffic conditions, such as shadows and changing light. First, LiDAR and camera sensors’ detection capability was assessed based on the sensors’ built-in features. Then, the LiDAR–camera deployment problem was mathematically formulated for pavement marking distress fusion detection. Finally, an improved red fox optimization (RFO) algorithm was developed to solve the deployment optimization problem by incorporating a multi-dimensional trap mechanism and an improved prey position update strategy. The experimental results illustrate that the proposed method achieves 5217 LiDAR points, which fall on a 0.58 m pavement marking per data frame for distress fusion detection, with a relative error of less than 7% between the mathematical calculation and the field test measurements. This empirical accuracy underscores the proposed method’s robustness in real-world scenarios, effectively mitigating the challenges posed by environmental interference. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

34 pages, 720 KiB  
Review
A Comprehensive Review of Unobtrusive Biosensing in Intelligent Vehicles: Sensors, Algorithms, and Integration Challenges
by Shiva Maleki Varnosfaderani, Mohd. Rizwan Shaikh and Mohamad Forouzanfar
Bioengineering 2025, 12(6), 669; https://doi.org/10.3390/bioengineering12060669 - 18 Jun 2025
Viewed by 555
Abstract
Unobtrusive in-vehicle measurement and the monitoring of physiological signals have recently attracted researchers in industry and academia as an innovative approach that can provide valuable information about drivers’ health and status. The main goal is to reduce the number of traffic accidents caused [...] Read more.
Unobtrusive in-vehicle measurement and the monitoring of physiological signals have recently attracted researchers in industry and academia as an innovative approach that can provide valuable information about drivers’ health and status. The main goal is to reduce the number of traffic accidents caused by driver errors by monitoring various physiological parameters and devising appropriate actions to alert the driver or to take control of the vehicle. The research on this topic is in its early stages. While there have been several publications on this topic and industrial prototypes made by car manufacturers, a comprehensive and critical review of the current trends and future directions is missing. This review examines the current research and findings in in-vehicle physiological monitoring and suggests future directions and potential uses. Various physiological sensors, their potential locations, and the results they produce are demonstrated. The main challenges of in-vehicle biosensing, including unobtrusive sensing, vehicle vibration and driver movement cancellation, and privacy management, are discussed, and possible solutions are presented. The paper also reviews the current in-vehicle biosensing prototypes built by car manufacturers and other researchers. The reviewed methods and presented directions provide valuable insights into robust and accurate biosensing within vehicles for researchers in the field. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Figure 1

36 pages, 314 KiB  
Review
Urban Traffic State Sensing and Analysis Based on ETC Data: A Survey
by Yizhe Wang, Ruifa Luo and Xiaoguang Yang
Appl. Sci. 2025, 15(12), 6863; https://doi.org/10.3390/app15126863 - 18 Jun 2025
Viewed by 509
Abstract
Urban traffic management faces challenges, including inadequate sensing capabilities and insufficient operational status evaluation. The rapid expansion of electronic toll collection (ETC) systems from highways to urban roads provides new opportunities to address these issues. The vast amount of “dormant” ETC data contains [...] Read more.
Urban traffic management faces challenges, including inadequate sensing capabilities and insufficient operational status evaluation. The rapid expansion of electronic toll collection (ETC) systems from highways to urban roads provides new opportunities to address these issues. The vast amount of “dormant” ETC data contains rich traffic information that urgently needs to be deeply mined and effectively utilized. This paper reviews the research status, key technologies, and development trends of urban traffic state sensing and analysis technologies based on ETC data. In terms of technological development, ETC systems have evolved from simple toll collection tools to comprehensive traffic management platforms, featuring unique advantages such as accurate vehicle identification, extensive spatiotemporal coverage, and stable data quality. ETC data-based traffic sensing technologies encompass traffic state representation at microscopic, mesoscopic, and macroscopic levels, enabling comprehensive sensing from individual vehicle behavior to overall network operations. The construction of multi-source data fusion frameworks enables effective complementarity between ETC data, floating car data, and video detection data, significantly improving traffic state estimation accuracy. In practical applications, ETC data has demonstrated enormous potential in real-time monitoring and signal control optimization, traffic prediction and artificial intelligence technologies, environmental impact assessment, and other fields. Meanwhile, ETC data-based urban traffic management is transitioning from passive responses to proactive prediction, from single functions to comprehensive services, and from isolated systems to integrated platforms. Looking toward the future, the deep integration of emerging technologies, such as vehicle–road networking, edge computing, and artificial intelligence, with ETC systems will further promote the intelligent, refined, and precise development of urban traffic management. Full article
Back to TopTop